Электронный образовательный ресурс по теме
"Интегральные Исчисления"

СОДЕРЖАНИЕ


Глава I


НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

$ 1. Первообразная и неопределенный интеграл

$ 2. Таблица интегралов

$ 3. Некоторые свойства неопределенного интеграла

$ 4. Интегрирование методом замены переменной или способом подстановки

$ 5. Интегралы от некоторых функций, содержащих квадратный трехчлен

$ 6. Интегрирование по частям

$ 7. Рациональные дроби. Простейшие рациональные дроби и их интегрирование

$ 8. Разложение рациональной дроби на простейшие

$ 9. Интегрирование рациональных дробей

$ 10. Интегралы от иррациональных функций

$ 11. Интегрирование некоторых классов тригонометрических функций



Глава II


ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

$ 1. Постановка задачи. Нижняя и верхняя интегральные суммы

$ 2. Определенный интеграл. Теорема о существовании определенного интеграла

$ 3. Основные свойства определенного интеграла

$ 4. Вычисление определенного интеграла. Формула Ньютона — Лейбница

$ 5. Замена переменной в определенном интеграле

$ 6. Интегрирование по частям

$ 7. Несобственные интегралы

$ 8. Приближенное вычисление определенных интегралов

$ 9. Формула Чебышева

$ 10. Интегралы, зависящие от параметра. Гамма-функция

$ 11. Интегрирование комплексной функции действительной переменной

$ 12. Геометрические и механические приложения определенного интеграла



Глава III


КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ПЕРВОГО РОДА ИНТЕГРАЛЫ

$ 1. Определение двойного интеграла

$ 2. Замена переменных в двойном интеграле

$ 3. Приложения двойного интеграла.

$ 4. Тройной интеграл.

Глава IV


КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ВТОРОГО РОДА ИНТЕГРАЛЫ

$ 1. Определение криволинейного интеграла второго рода

$ 2. Интеграл по замкнутому контуру

$ 3. Условия независимости интеграла от пути интегрирования.

Глава V


ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ

$ 1. Поверхностные интегралы первого и второго рода.

$ 2. Формула Стокса.

$ 3. Формула Остроградского.

Глава I


НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ


$ 4. Интегрирование методом замены переменной или способом подстановки


Пусть требуется найти итеграл причем непосредственно подобрать первообразную для f(x) мы не можем, но нам известно, что она существует.

Сделаем замену переменной в подынтегральном выражении, положив

где ф(t) - непрерывная функция с непрерывной производной, имеющая обратную функцию. Тогда докажем, что в этом случае имеет место следующее равенство:

Здесь подразумевается, что после интегрирования в правой части равенства вместо t будет подставлено его выражение через х на основании равенства (1).

   Для того чтобы установить, что выражения, стоящие справа и слева, одинаковы в указанном выше смысле, нужно доказать, что их производные по х р-авны между собой. Находим производную от левой части: Правую часть равенства (2) будем дифференцировать по х как сложную функцию, где t — промежуточный аргумент. Зависимость t от х выражается равенством (1), при этом и по правилу дифференцирования обратной функции Таким образом, имеем:

Следовательно, производные по х от правой и левой частей равен- ства (2) равны, что и требовалось доказать. Функцию х = ф(t) следует выбирать так, чтобы можно было вычислить неопределенный интеграл, стоящий в правой части равенства (2).

   Замечание.При интегрировании иногда целесообразнее подбирать замену переменной не в виде х = ф(t), а в виде

Проиллюстрируем это на примере. Пусть нужно вычислять интеграл, имеющий вид

Здесь удобно положить

   Приведем несколько примеров на интегрирование с помощью замены переменных.

   В примерах 3 и 4 выведены формулы, приведенные в таблице интегралов под номерами 11' и 13'(см выше § 2).

   Методы замены переменных является одним из основных методов вычисления неопределенных интегралов. Даже в тех случаях, когда мы интегрируем каким-либо другим методом, нам часто приходится в промежуточных вычислениях прибегать к замене переменных. Успех интегрирования зависит в значительной степени от того, сумеем ли мы подобрать такую удачную замену переменных, которая упростила бы данный интеграл. По существу говоря, изучение методов интегрирования сводится к выяснению того, какую надо сделать замену переменной при том или ином виде подынтегрального выражения. Этому и посвящена большая часть настоящей главы.