Главная
Введение
Линейные уравнения
Системы линейных уравнений
Метод Гаусса
Матрицы
Квадратные матрицы
Действия с матрицами
Умножение матриц
Определитель матрицы
Миноры и т. д.
Сист. лин. ур. с квадр. матрицей
Реш. сист. с пом. обр. матрицы
Литература

Умножение матриц

Произведение матрицы на матрицу определено только в том случае, когда число столбцов матрицы равно числу строк матрицы . В результате умножения получим матрицу , у которой столько же строк, как у матрицы , и столько же столбцов, как у матрицы .

По определению элемент матрицы равен сумме парных произведений элементов -ой строки матрицы , на соответствующие элементы -го столбца матрицы .

Пример. Найти произведение матриц

,

Очевидно, что произведение матриц не обладает перестановочным свойством, т.е. некоммутативно. Если все-таки выполняется равенство , то матрицы и называются перестановочными.

Свойства произведения матриц:

1) , где -число;

2) ;

3) ;

4) .

Единичной матрицей называется диагональная матрица, у которой все элементы равны 1.

.

Свойство единичной матрицы: для любой квадратной матрицы .

Рассмотрим произвольную квадратную матрицу , порядка . Если существует такая матрица , что , то говорят, что обратима, а называют обратной матрицей для матрицы .