Автоматизация
производственных
процессов

10.5. Управление по состоянию. Системы управления состоянием

Подключение дополнительных контуров обратной связи в многоконтурных системах обеспечивает повышение качества управления. Наиболее полная информация об управляемом объекте содержится в переменных состояния. Управление по состоянию предусматривает введение в структуру системы контуров прямых и обратных связей по переменным состояния объекта управления. При этом задача стабилизации и слежения формулируется как задача поддержания постоянного X* = const или изменяющегося по заданному закону X* (t) состояния объекта управления X* = X* (t).

Изменяющиеся во времени или фиксированные сигналы xi* , определяющие требуемый характер изменения переменных состояния xi , составляют расширенный вектор задания X* = { xi* }, а ошибка движения объекта управления по состоянию определяется вектором отклонения e = X* - X.

Упраление по состоянию, как и управление по выходу объекта управления, может быть разомкнутым: U = F[X*], замкнутым U = F[e], или комбинированным: U = F[e, X*].

Системы с регуляторами состояния относятся к многоконтурным системам и, следовательно, обладают лучшими точностными и динамическими свойствами, чем одноконтурные. Они проектируются для управления как одномерными, так и многомерными объектами управления.

Проанализируем использование линейных регуляторов состояния для решения задач стабилизации и слежения [15].

Рассмотрим задачу стабилизации объекта управления (ОУ) в точке Y* = 0, полагая, что при этом вектор состояния также принимает нулевое значение: X* = 0 (к такому виду задача почти всегда может быть приведена преобразованием координат векторов X и Y).

Простейший регулятор состояния - пропорциональный или модальный регулятор вводит обратные связи по всем переменным xi (рис. 10.5).

Рис. 10.5. Структурная схема системы с П-регулятором

Модальный регулятор реализует пропорциональный закон управления

U = - K ×X ,                           (10.38)

где K - матрица коэффициентов обратной связи по состоянию. Для одномерного объекта управления в качестве координат xi вектора X можно выбрать, например, фазовые переменные y,y2, ..., y(n-1) , то есть

X = [ x1 x2 ... xn ]T = [ y y2... y(n-1) ]T ,                          (10.39)

где ; n - порядок системы.

Тогда K = [ k1 k2 ... kn ]. Выражение (10.38) можно записать в скалярной форме

                          (10.40)

Первые члены закона управления (10.40) соответствуют описанию ПД-регулятора выхода при y* = 0.

Таким образом, регуляторы состояния являются обобщением ПД-регуляторов, хотя и не содержат в явном виде дифференцирующих звеньев. Выбор коэффициентов k матрицы обратной связи K обеспечивает получение заданных динамических свойств системы.

В условиях действия на объект управления внешних возмущений F точностные показатели качества системы с пропорциональным регулятором состояния ограничены. Снижение установившихся ошибок достигается введением в состав регулятора контуров интегральных обратных связей (рис. 10.6).

Рис. 10.6. Структурная схема системы с ПИ-регулятором

ПИ-регулятор реализует пропорционально-интегральный закон управления

                          (10.41)

где KI - матрица обратных связей по интегралу от вектора состояния.

Комбинированный регулятор позволяет обеспечить компенсацию возмущения за счет прямых связей по возмущающему воздействию F (рис. 10.7).

Рис. 10.7. Структурная схема комбинированной системы по возмущающему воздействию

В этом случае закон управления принимает вид

U = - K×X - LF×XF                           (10.42)

где LF - матрица коэффициентов контура связей по F;

XF - вектор, составленный из возмущения F и его производных.

Задача слежения рассматривается как задача отработки расширенного вектора задания X* = X* (t). П-регулятор состояния в следящей системе вырабатывает управляющее воздействие, пропорциональное вектору отклонения e = X* - X, то есть реализует закон управления

U = K×e                           (10.43)

Для одномерного объекта управления с вектором состояния (10.39) выражение (10.43) можно переписать в скалярной форме

                          (10.44)

где xi* = (y(i-1))* .

ПИ-регулятор дополняет структуру системы интегральными связями:

                          (10.45)

Эффективная компенсация ошибок, вызванных возмущающим воздействием F и изменениями задания X* достигается использованием комбинированного управления (рис. 10.8)

U = K×e + LX×X* + LF,/sub>×XF                           (10.46)

где LX - матрица коэффициентов контура прямых связей по X*;

X* - расширенный вектор задания;

LF - матрица коэффициентов контура связей по F;

XF - вектор, составленный из возмущения F и его производных.

Рис. 10.8. Структурная схема комбинированной системы

Параметры регуляторов (коэффициенты прямых и обратных связей) определяются как функции параметров χ математической модели объекта управления. Поэтому при управлении нестационарным объектом возникает необходимость изменения параметров регулятора в процессе работы системы. Задача настройки регулятора осложняется, когда параметры объекта управления неизвестны или неконтролируемо изменяются. Для управления такими объектами используются адаптивные регуляторы, параметры которых настраиваются с помощью блока адаптации (БА, рис. 10.9).

Рис. 10.9. Структурная схема адаптивной системы

Адаптивный регулятор состояния комбинированного типа содержит настраиваемые контуры обратных связей по состоянию X и прямых связей по расширенному вектору задания X*. Закон управления такого регулятора

                          (10.47)

где L, K - матрицы прямых и обратных связей с переменными коэффициентами (параметрами).

Функции блока адаптации заключаются в автоматической настройке параметров регулятора (10.47).

В практике адаптивных систем получили распространение два подхода к настройке параметров.

Первый из них предусматривает включение в состав системы блока идентификатора, осуществляющего вычисление неизвестных параметров объекта управления. Тогда после определения вектора  значения и могут быть найдены по известным, подготовленным заранее, зависимостям

                          (10.48)

Второй подход (безидентификационный) позволяет осуществить настройку контура прямых связей части регулятора (10.47). При этом матрица обратных связей рассчитывается по номинальному значению вектора  и остается неизменной = KO. В качестве источника информации о параметрических ошибках регулятора в блоке адаптации используется сигнал обратной связи по отклонению:

Ue = KO × e                           (10.49)

Блок адаптации осуществляет изменение параметров регулятора до тех пор, пока в системе не установится нулевое значение сигнала обратной связи Ue и, следовательно, значение e будет равняться нулю.

ЦДО ДГТУ © 2012