

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Кафедра «Вычислительные системы и информационная безопасность»

Учебно-методическое пособие

по дисциплине

«Технологии обработки информации»

Автор Цветкова О.Л.

Аннотация

Учебно-методическое пособие предназначено для студентов очной формы обучения направления 10.03.01.

Автор

доцент, к.т.н., доцент кафедры «Вычислительные системы и информационная безопасность» Цветкова О.Л.

Оглавление

Лабора	торная	работа:	Спектральный	анализ	и синтез
стацио	нарных	и нестаці	ионарных сигна.	лов	4
	Вариант Контрол	ы ьные вопр	ия лабораторной р осы Вейвлет-преобр		16 16
					17
			ия работы		

ЛАБОРАТОРНАЯ РАБОТА: СПЕКТРАЛЬНЫЙ АНАЛИЗ И СИНТЕЗ СТАЦИОНАРНЫХ И НЕСТАЦИОНАРНЫХ СИГНАЛОВ

Цель работы: получение навыков проведения спектрального анализа и синтеза стационарных и нестационарных сигналов.

Порядок выполнения лабораторной работы

Примечание. Приведенные примеры выполнены в пакете **Mathcad**. Студенты могут использовать любой свободно распространяемый аналог (например, **SMath Studio**).

Задание 1. Сформируйте дискретные функции f_st_i и f_nest_i , i=0,1,...,N, описывающие стационарный и нестационарный сигналы. Количество отсчетов амплитуды сигнала сделайте равным N=256.

Нестационарный сигнал должен представляет собой сумму четырех синусоид различных частот, причем каждая из частот присутствует в сигнале в течение некоторого промежутка времени. Пусть $a=\frac{N}{4}$ определяет количество отчетов дискретной функции для одного значения частоты.

Пример выполнения задания:

$$N_var := 10$$

$$j := 0..3$$

$$A_j := (j + 1) \cdot N_var$$

$$\omega s_i := md(N_var)$$

$$\omega s := sort(\omega s)$$

$$A = \begin{pmatrix} 10 \\ 20 \\ 30 \\ 40 \end{pmatrix}$$

$$\omega s = \begin{pmatrix} 4.621 \\ 5.393 \\ 8.76 \\ 9.559 \end{pmatrix}$$

$$m := 8$$

$$N := 2^m$$

$$N = 256$$

$$i := 0.. N - 1$$

Примем, что спектр сигнала ограничен частотой:

$$Fm := \frac{1.5 \cdot max(\omega s)}{2 \cdot \pi}$$

$$Fm = 2.282$$

Тогда линейная частота дискретизации по теореме Котельникова определяется следующим образом:

Угловая частота дискретизации: $\omega 0 := 2 \cdot \pi \cdot f0$

Шаг дискретизации:
$$T0 := \frac{1}{f0}$$

$$T0 = 0.219$$

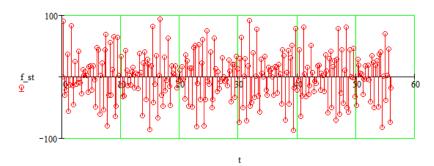
Основная частота гармоник (синусоид):

$$\omega_{osn} := \frac{\omega 0}{2^m}$$

$$\omega_{osn} = 0.112$$

Частоты дискретных отсчетов кратные основной частоте синусоид:

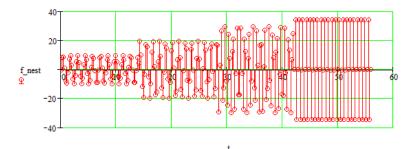
$$j := 0...2^{m-1}$$


$$\omega_j := \omega_osn\cdot j$$

Формирование стационарного сигнала:

$$t_i := i \cdot T0$$

$$\mathbf{f}_{\mathbf{s}}\mathbf{t}_{i} := \sum_{j=0}^{3} \mathbf{A}_{j} \cdot \sin(\omega \mathbf{s}_{j} \cdot \mathbf{t}_{i})$$

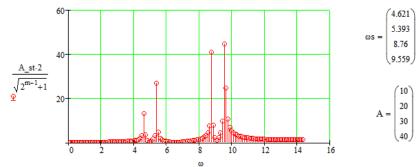

Формирование нестационарного сигнала:

$$a := \frac{N}{4}$$

$$a = 64$$

$$f_nest := \begin{cases} \text{for } i \in 0.. \ N-1 \\ \text{for } j \in 1..4 \\ f_nest_i \leftarrow A_{j-1} \cdot sin \Big(\omega s_{j-1} \cdot t_i \Big) \text{ if } (j-1) \cdot a \leq i \leq j \cdot a \end{cases}$$

$$f_nest$$

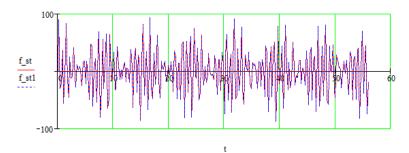

Задание 2. Выполните прямое преобразование Фурье стационарного сигнала f_st_i с помощью функ-

ции БПФ $\mathbf{fft}(\mathbf{v})$. Результатом будет спектральная характеристика F_st сигнала. Постройте график амплитудно-частотной спектральной характеристики A_st сигнала.

Пример выполнения задания:

$$F_st := fft(f_st)$$

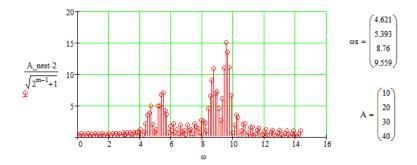
$$A_st := \sqrt{Re(F_st)^2 + Im(F_st)^2}$$



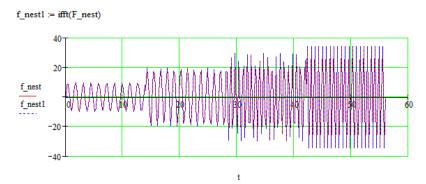
Задание 3. Выполните обратное преобразование Фурье над спектральной характеристикой F_st стационарного сигнала, отобразите результат графически и сравните с исходной функцией f_st_i . Если результаты сравнения показали значительные отличия между графиками, необходимо проверить правильность вычислений.

Пример выполнения задания:

 $f_st1 := ifft(F_st)$



Задание 4. Выполните задания 2 и 3 для нестационарного сигнала f_nest_i . Получите характеристи-ки F_nest и A_nest .


Пример выполнения задания:

F_nest := fft(f_nest)

$$A_{nest} := \sqrt{Re(F_{nest})^2 + Im(F_{nest})^2}$$

Задание 5. Сравнив графики амплитудных спектров A_st и A_nest , объясните, почему преобразование Фурье не подходит для анализа нестационарных сигналов.

Задание 6. Для нестационарного сигнала выполните оконное преобразование Фурье с использованием весового окна, вид которого указан в индивидуальном задании.

Постройте графики полученных амплитудночастотных спектральных характеристик сигнала.

Вычисления проведите для двух значений ширины окна (количество отчетов амплитуды, попадающее в поле окна):

—ширина окна равна b=N/4. В задании 1 функция нестационарного сигнала была сформирована таким образом, что четыре гармоники с разной частотой входят в спектральный состав сигнала в определенные промежутки времени. Таким образом, внутри окна нестационарный сигнал, по сути, является стационарным (что собственно и требуется при оконном преобразовании Фурье);

— ширина окна равна b = N/8.

Пример выполнения задания:

Разбиение векторов, содержащих отчеты амплитуд нестационарного сиг- нала и моментов времени

на четыре части (или на восемь). В итоге формируются две матрицы размера 64×4 (или 32×8):

$$b := \frac{N}{8}$$

$$\begin{pmatrix} y \\ T \end{pmatrix} := \begin{cases} \text{for } j \in 1... \frac{N}{b} \\ \text{for } i \in (j-1) \cdot b... j \cdot b - 1 \\ y_{i-(j-1) \cdot b, j-1} \leftarrow f_{nest}_i \\ T_{i-(j-1) \cdot b, j-1} \leftarrow t_i \end{cases}$$

b = 32

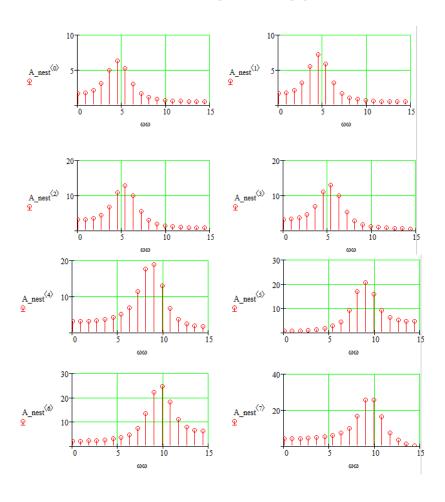
		0	1	2	3
	0	0	8.312	4.58	6.794
	1	8.481	9.119	19.751	19.982
	2	8.987	1.351	10.404	8.366
	3	1.042	-7.688	11.857	13.635
y =	4	-7.883	-9.497	-19.4	-18.711
	5	-9.395	-2.375	-2.862	-0.561
	6	-2.072	6.98	17.229	18.285
	7	7.199	9.771	15.933	14.434
	8	9.701	3.374	-5.141	-7.335
	9	3.08	-6.196	19.833	19.998

		0	1	2	3
	0	0	7.011	14.023	21.034
	1	0.219	7.23	14.242	21.253
	2	0.438	7.449	14.461	21.472
	3	0.657	7.669	14.68	21.691
T =	4	0.876	7.888	14.899	21.91
	5	1.096	8.107	15.118	22.129
	6	1.315	8.326	15.337	22.348
	7	1.534	8.545	15.556	22.568
	8	1.753	8.764	15.775	22.787
	9	1.972	8.983	15.994	23.006

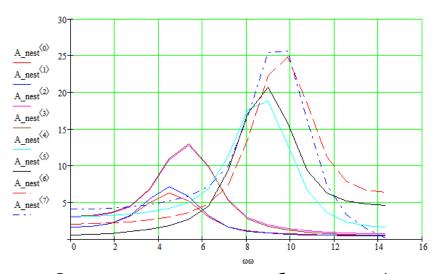
Вычисление оконного преобразования Фурье с использованием окна Гаусса $w_i, i=0,1,...,b-1$:

$$\begin{pmatrix} F_nest_okno \\ A_nest \end{pmatrix} := \begin{cases} for \ j \in 0... \frac{N}{b} - 1 \\ \\ for \ i \in 0... b - 1 \\ \\ \\ w_i \leftarrow exp \left(\frac{-i^2}{2 \cdot b} \right) \\ \\ Pr_i \leftarrow \left(y^{(j)} \right)_i \cdot w_i \\ \\ F_nest_okno^{(j)} \leftarrow \sqrt{Re \left(F_nest_okno^{(j)} \right)^2 + Im \left(F_nest_okno^{(j)} \right)^2} \\ \\ \left(\frac{F_nest_okno}{A_nest} \right) \end{cases}$$

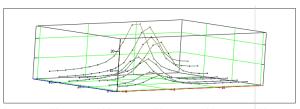
		U	
	0	1.653	1.654
	1	4+1.477i·10 -4	1.702-0.354i
	2	2.081+0.013i	1.903-0.838i
F nest okno =	3	3.051+0.356i	2.727-1.614i
	4	4.164+2.747i	5.333-1.342i
	5	1.145+6.173i	6.502+2.96i
	6	-3.286+4.039i	2.265+5.359i
	7	-2.929+0.77i	-0.254+3.156i
	8	-1.663+0.043i	-0.154+1.619i


0 1

		0	1	2	3	4
	0	1.653	1.654	3.04	3.146	3.072
	1	1.74	1.738	3.139	3.246	3.104
	2	2.081	2.079	3.49	3.598	3.205
	3	3.071	3.169	4.369	4.481	3.389
A_nest =	4	4.989	5.5	6.724	6.867	3.688
	5	6.278	7.145	10.814	11.03	4.174
	6	5.207	5.818	12.821	13.012	5.021
	7	3.028	3.166	9.848	9.874	6.854
	8	1.664	1.626	5.376	5.27	11.335
	9	1.114	1.068	2.886	2.738	17.594


Формирование вектора частот:

$$\omega\omega := \begin{bmatrix} \text{for } i \in 0... \frac{b}{2} \\ & \omega\omega_i \leftarrow \omega \\ & i.\frac{N}{b} \end{bmatrix}$$



Результаты оконного преобразования Фурье можно отобразить с помощью трехмерного графика. Формирование матрицы моментов времени:

$$TT := \begin{cases} \text{for } j \in 0... \frac{N}{b} - 1 \\ \\ \text{for } i \in 0... \frac{b}{2} - 1 \\ \\ TT_{i,j} \leftarrow T_{2 \cdot i,j} \\ \\ TT \\ \frac{b}{2}, j \leftarrow T_{\text{last}\left(T^{\left\langle 0 \right\rangle}\right), j} \end{cases}$$

		0	1	2	3	4	5	6	7
	1	0.438	7.449	14.461	21.472	28.483	35.495	42.506	49.517
	2	0.876	7.888	14.899	21.91	28.921	35.933	42.944	49.955
	3	1.315	8.326	15.337	22.348	29.36	36.371	43.382	50.393
	4	1.753	8.764	15.775	22.787	29.798	36.809	43.82	50.832
	5	2.191	9.202	16.214	23.225	30.236	37.247	44.259	51.27
	6	2.629	9.64	16.652	23.663	30.674	37.686	44.697	51.708
	7	3.067	10.079	17.09	24.101	31.112	38.124	45.135	52.146
TT =	8	3.506	10.517	17.528	24.539	31.551	38.562	45.573	52.584
	9	3.944	10.955	17.966	24.978	31.989	39	46.011	53.023
	10	4.382	11.393	18.405	25.416	32.427	39.438	46.45	53.461
	11	4.82	11.832	18.843	25.854	32.865	39.877	46.888	53.899
	12	5.258	12.27	19.281	26.292	33.303	40.315	47.326	54.337
	13	5.697	12.708	19.719	26.73	33.742	40.753	47.764	54.775
	14	6.135	13.146	20.157	27.169	34.18	41.191	48.202	55.214
	15	6.573	13.584	20.596	27.607	34.618	41.629	48.641	55.652
	16	6.792	13.803	20.815	27.826	34.837	41.848	48.86	55.871

 $(\omega_{\emptyset}, TT^{\langle\emptyset}, \underline{A}_{nest}^{\langle\emptyset\rangle}), (\omega_{\emptyset}, TT^{\langle\emptyset\rangle}, \underline{A}_{nest}^{\langle\emptyset\rangle})$

Задание 7. Сделайте выводы по лабораторной работе.

Варианты

Функция стационарного сигнала:

$$f_{-}st(t) = \sum_{i=1}^{4} A_i \sin(\omega_i t),$$

где $A_i=i\cdot N$ _ var — амплитуды гармоник; N_ var — номер варианта по списку; $\omega_i=md(N$ _ var) — частоты гармоник.

Функция нестационарного сигнала формируется таким образом, чтобы гармоники разных частот входили в сигнал только на определенный промежуток времени. Для упрощения расчетов предлагается разделить весь временной интервал исследования сигнала на четыре части (по количеству гармоник).

№ варианта	Вид окна
1, 4, 7, 10, 13, 16, 19, 22	Хэннинга (Ханна)
2, 5, 8, 11, 14, 17, 20, 23	Хэмминга
3, 6, 9, 12, 15, 18, 21, 24	Гауса

Контрольные вопросы

- 1. Для чего используется спектральный анализ и синтез сигналов?
- 2. От чего зависит выбор: разложение сигнала в ряд Фурье или выполнение преобразования Фурье при проведении спектрального анализа?
- 3. Что показывают амплитудный и фазовый спектры сигнала?
- 4. В каком случае используется дискретное преобразование Фурье?
- 5. В чем заключается особенность быстрого дискретного преобра- зования Фурье?

- 6. Какая существует связь между спектрами аналогового и дискретного сигналов?
- 7. Какие ограничения и недостатки имеет преобразование Фурье?
- 8. Сущность и назначение кратковременного оконного преобразования Фурье.

ЛАБОРАТОРНАЯ РАБОТА: ВЕЙВЛЕТ- ПРЕОБРАЗОВАНИЕ СИГНАЛОВ

Цель работы: получение навыков проведения вейвлет-преобразования и анализа сигналов.

Порядок выполнения работы

Примечание. Лабораторная работа выполняется с использованием пакета **Matlab**.

Задание 1. Выполните вейвлет-преобразование сигнала, представляющего собой гармоническое колебание $f1(t) = A_1 \sin(\omega_1 t)$.

В качестве материнских вейвлетов используйте вейвлеты, указанные в индивидуальных заданиях.

Графически отобразите исходный сигнал и его вейвлет-спектрограмму (на плоскости и в пространстве).

При выполнении всех заданий временной интервал исследования сигналов задайте самостоятельно, с учетом особенностей конкретных сигналов (так, чтобы были видны эти особенности).

Пример выполнения задания:

```
% Исходные данные
% Параметры гармонических колебаний
A1 = 2;
A2 = 5;
A3 = 7;
w1 = 3;
w2 = 10;
w3 = 20;
% Параметры прямоугольного импульса
U = 4:
tau0 = 0.5;
delta tau = 1;
% Параметры временного интервала
Fm = 1.5*max([w1 w2 w3]); % пусть спектр сигнала ограничен частотой <math>Fm
T0 = 1/(2*Fm); % период дискретизации
N = 2^n0; % количество отсчетов амплитуды сигнала
i = 0:N-1;
t = i*T0;
а = 1:2:32; % вектор, содержащий значения временных масштабов вейвлетов
% Гармоническое колебание
f1 = A1*sin(w1*t);
c1 = plot_2D_3D(a, f1, t); % вызов файла-функции для расчета
% и визуализации результатов вейвлет-преобразования
```

Содержание файла-функции **plot_2D_3D**:


```
Function cc = plot_2D_3D(a, ff, t)

figure
plot(t, ff)
grid on
title('Временная зависимость исходного сигнала')

figure
cc = cwt(ff, a, 'mexh', 'plot'); % спектр на плоскости
title('Вейвлет-спектрограмма сигнала на плоскости')

figure
cc = cwt(ff, a, 'mexh', '3Dplot'); % спектр в пространстве
- title('Вейвлет-спектрограмма сигнала в пространстве')
```

Задание 2. Выполните задание 1 для сигнала, представляющего собой сумму двух гармонических колебаний $f 2(t) = A_2 \sin(\omega_2 t) + A_3 \sin(\omega_3 t)$.

Задание 3. Выполните задание 1 для сигнала, представляющего собой прямоугольный импульс:

$$f3(t) = egin{aligned} U, \text{ при } & au_0 \leq t \leq au_0 + \Delta au, \ 0, \text{ при } & t < au_0, \ t > au_0 + \Delta au. \end{aligned}$$

Задание 4. Выполните задания 1—3 для указанных сигналов при добавлении аддитивного шума с нормальным законом распределения.

Пример выполнения задания (только формирование шума и зашумленных сигналов):

```
% Формирование функции шума
g = 0.5;
n = g*randn(size(t));
% Формирование зашумленных сигналов
fs1 = f1 + n;
fs2 = f2 + n;
fs3 = f3 + n;
```

Задание 5. Сделайте выводы по лабораторной работе.

Варианты

Νō	A_1 ;	$\omega_{_{\! 1}};$	U;		
	-	_	·	a	Типы
	A_2 ;	ω_2 ;	$ au_0$;	g	вейвлетов
	A_3	ω_3	$\Delta \tau$		
1.	2;6;10	10;6;4	3;10;3	0,2	Haar (haar)
					Daubechies
					(db1)
2.	3;6;4	12;9;5	4;12;4	0,3	Symlets
					(sym2)
					Coiflets
					(coif1)
3.	2;6;10	10;6;4	6;14;5	0,4	Meyer
					(meyr)
					DMeyer
					(dmey)
4.	3;6;4	12;9;5	8;16;6	0,5	Mexi-
					can_hat
					(mexh)
					Morlet
					(morl)
5.	3;6;4	12;9;5	9;18;7	0,6	Gaussian
					(gaus)
					Daubechies
					(db2)
6.	2;6;10	10;6;4	3;20;8	0,7	Symlets
					(sym4)
					Daubechies
					(db2)
7.	3;6;4	12;9;5	3;22;9	0,8	Meyer
					(meyr)
					Daubechies
					(db6)

8.	2;6;10	10;6;4	5;24;1 0	0,9	Haar (haar) Daubechies (db3)
9.	5;3;1	8;6;3	6;26;3	0,1	Symlets (sym4) Coiflets (coif2)
10.	6;4;9	4;9;3	7;28;4	0,2	Meyer (meyr) Mexi- can_hat (mexh)
11.	5;3;1	8;6;3	8;30;5	0,3	Mexi- can_hat (mexh) Morlet (morl)
12.	6;4;9	4;9;3	9;10;6	0,4	Gaussian (gaus) Daubechies (db3)
13.	6;4;9	4;9;3	6;12;7	0,5	Gaussian (gaus) Daube chies (db4)
14.	5;3;1	8;6;3	4;14;8	0,6	Mexi- can_hat (mexh) Daubechies (db3)
15.	6;4;9	4;9;3	3;16;9	0,7	Haar (haar) Daubechies (db2)

F 2 4	0.63	2.40.4	0.0	C 1.
5;3;1	8;6;3	2;18;1	0,8	Symlets
		0		(sym3)
				Coiflets
				(coif4)
6;4;9	4;9;3	1;20;3	0,9	Haar (haar)
				DMeyer
				(dmey)
5;3;1	8;6;3	4;22;4	0,1	Mexi-
				can_hat
				(mexh)
				Morlet
				(morl)
6;4;9	4;9;3	5;24;5	0,2	Gaussian
				(gaus)
				Daubechies
				(db4)
5;3;1	8;6;3	6;26;6	0,3	Mexi-
				can_hat
				(mexh)
				Daubechies
				(db3)
2;6;10	2;4;5	7;28;7	0,4	Gaussian
				(gaus)
				Daubechies
				(db2)
5;3;1	2;4;5	8;30;8	0,5	Symlets
				(sym2)
				Coiflets
				(coif1)
3;6;4	6;5;2	9;32;9	0,6	Meyer
				(meyr)
				DMeyer
				(dmey)
	2;6;10	6;4;9 4;9;3 5;3;1 8;6;3 5;3;1 8;6;3 2;6;10 2;4;5 5;3;1 2;4;5	6;4;9 4;9;3 1;20;3 5;3;1 8;6;3 4;22;4 6;4;9 4;9;3 5;24;5 5;3;1 8;6;3 6;26;6 2;6;10 2;4;5 7;28;7 5;3;1 2;4;5 8;30;8	6;4;9 4;9;3 1;20;3 0,9 5;3;1 8;6;3 4;22;4 0,1 6;4;9 4;9;3 5;24;5 0,2 5;3;1 8;6;3 6;26;6 0,3 2;6;10 2;4;5 7;28;7 0,4 5;3;1 2;4;5 8;30;8 0,5

24.	7;3;1	6;5;2	3;34;1	0,7	Mexi-
			0		can_hat
					(mexh)
					Morlet
					(morl)
25.	3;6;5	6;5;2	6;36;4	0,8	Gaussian
					(gaus)
					Daubechies
					(db5)

Контрольные вопросы

- 1. Какие ограничения и недостатки имеет оконное преобразование Фурье?
- 2. Сущность и особенности вейвлет-преобразования.
- 3. Примеры материнских вейвлетов.
- 4. Непрерывное вейвлет-преобразование.
- 5. Диадное и дискретное вейвлет-преобразования.