

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

Кафедра «Основы конструирования машин»

Практикум

«Табличная параметризация при моделировании детали. Массивы параметров зубчатого зацепления»

Часть 1.

по дисциплине

«САПР технических систем»

Авторы Савостина Т. П., Сиротенко А. Н., Партко С. А.

Ростов-на-Дону, 2020

Аннотация

Практикум предназначен для студентов очной, заочной форм обучения направлений 15.04.05, 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств».

Авторы

преподаватель кафедры «Основы CT. конструирования машин» Савостина Т.П., кафедры «Основы K.T.H., доцент конструирования машин» Сиротенко А.Н., кафедры «Основы K.T.H., доцент конструирования машин» Партко С.А.

Оглавление

ВВЕДЕНИЕ			4
ТЕОРЕТИЧЕСКА	Я ЧАСТЬ		4
исходные	ДАННЫЕ	для	выполнения
индивидуаль	ного задания	a	6
Практическая ч	асть		7
			боты7 11
_			12

ВВЕДЕНИЕ

Эффективное применение САПР для конструирования изделий машиностроения предусматривает не только использование двух и трехмерного черчения, но и различных технологий параметрического проектирования. Фактически, обучающийся создает не 2D/3D модель изделия, а его специализированную математическую модель. Изменение входных параметров такой модели влечет за собой ассоциативное изменение твердотельных моделей и рабочих чертежей изделия. Это позволяет за короткие сроки создавать или корректировать конструкторскую документацию на однотипные детали машин.

Существуют различные виды параметризации: табличная; иерархическая; размерная; геометрическая. В практикуме курса «САПР технических систем» используются все виды параметризации. В данной методических указаниях представленной части практикума используется табличная параметризация.

Для обучающихся по программе 15.03.05 «Конструкторскотехнологическое обеспечение машиностроительных производств» данные материалы являются методическими указаниями к первому этапу выполнения индивидуального задания по курсу «САПР технических систем». Для обучающихся по другим направлениям бакалавратуры и специалитета данный практикум будет полезен при обучении дисциплинам «Детали машин и основы конструирования», «Подъемно-транспортное оборудование», «Основы конструирования и САПР технических систем», «Основы проектирования нестандартного оборудования», «Гидромеханический привод машин и оборудования».

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Microsoft Excel – это программа выполнения расчетов и управления так называемыми электронными таблицами.

Электронная таблица — одно из основных средств, используемых для обработки и анализа цифровой информации средствами вычислительной техники. Хотя электронные таблицы в основном связаны с числовыми или финансовыми операциями, они с успехом используются для задач анализа и синтеза данных, расширяя обучающемуся возможности значительной автоматизации инженерных расчетов и построений. Одним из эффективных примеров интеграции графических CAD с средой Excel является САПР «КОМПАС».

Excel выполняет математические расчеты, в которых используются данные, располо- женные в разных областях элек-

тронной таблицы. Данные могут быть связаны между собой функциональными зависимостями. Для адаптации инженерных расчетов к среде Excel необходимо ввести параметры и их зависимости в данные ячеек. Excel выполнит вычисления и отобразит результат в ячейке куда введена математическая зависимость (формула). При изменении входных параметров в ячейке таблицы, пересчет математических зависимостей происходит автоматически. Если пересчитанные параметры связаны ассоциативно с 2/3D моделью, то изменятся массово-габаритные характеристики модели и ее конструкторские чертежи.

Текущий файл, с которым работает Excel, называется **«кни-га»**. **«Книга»**, как правило, состоит из нескольких **«рабочих ли-стов»**, которые могут содержать таблицы, тексты, диаграммы, рисунки.

«Книга» является хорошим органайзером. В одной «книге» можно собрать все документы («рабочие листы»), относящиеся к определенному проекту (задаче), или все документы, которые ведутся одним исполнителем. Основа «рабочего листа» — сетка из строк и столбцов. «Ячейка» образуется пересечением строки и столбца. «Ячейка» активна — если она выделена.

Строка в **«рабочем листе»** идентифицируется именем (цифрой), которое отображено на левой стороне **«рабочего листа»**.

Столбец в рабочем листе также идентифицируется именем (буквами <u>латинского алфавита</u>), которое появляется вверху «**рабочего листа**».

Рабочий лист книги Excel может содержать до 65 536 строк и 256 столбцов. «Ячейка» — основной элемент таблицы. Она имеет свой уникальный адрес, состоящий из номера столбца и строки, например *E4*. Каждая ячейка содержит один элемент информации, будь то цифровое значение, текст или формула.

Далее подробнее рассмотрим окно Excel. При входе в программу открывается окно Excel и на экран выводится пустая рабочая книга с именем «**Книга 1**».

При открытии ранее созданного файла в <u>окне Excel</u> появляется книга с введенными данными.

ИСХОДНЫЕ ДАННЫЕ ДЛЯ ВЫПОЛНЕНИЯ ИНДИВИДУАЛЬНОГО ЗАДАНИЯ

вариант	число зубьев шестер- ни	пере- даточ- ное число ГОСТ 2185-66	мо- дуль, мм ГОСТ 9563-60	ширина колеса, мм	диаметр вала под шестер- ню, мм	диа- метр вала под ко- лесо, мм
1	17	1,4	1	25	17	23,8
2	18	1,6	1,125	28	20,25	32,4
3	19	1,8	1,25	30	23,75	42,75
4	20	2,00	1,375	35	27,5	55
5	21	2,24	1,5	37	31,5	70,56
6	22	2,5	1,75	45	38,5	96,25
7	23	2,8	2	50	46	128,8
8	24	3,15	2,25	57	54	170,1
9	25	3,55	2,5	63	62,5	221,88
10	26	4	2,75	70	71,5	286
11	27	4,5	3	75	81	364,5
12	28	1,8	1	25	28	50,4
13	29	2,00	1,125	32	32,63	65,25
14	30	2,24	1,25	31	37,5	84
15	31	2,5	1,375	34	42,63	106,56
16	32	2,8	1,5	38	48	134,4
17	33	3,15	1,75	44	57,75	181,91
18	34	3,55	2	51	68	241,4
19	35	4	2,25	56	78,75	315
20	36	4,5	2,5	60	90	405

ПРАКТИЧЕСКАЯ ЧАСТЬ

Порядок выполнения практической работы

1. Открываем Microsoft Exel. Создаем новую книгу.

2. Листы переименовываем согласно рисунку

Зубчатое зацепление Справочник VarTable

Лист1 – Зубчатое зацепление

Лист 2 – Справочник

Лист 3 - VarTable

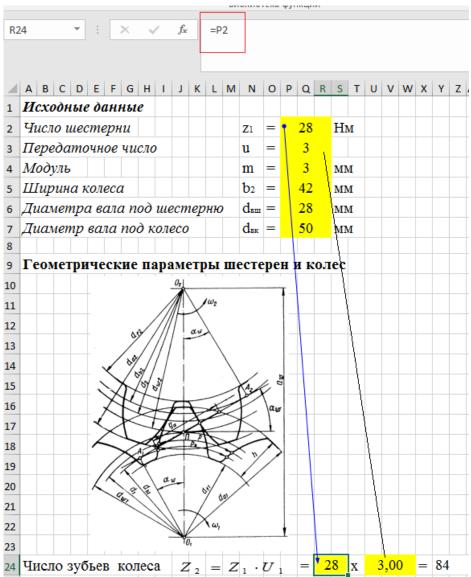
3. На листе *Зубчатое зацепление* будет располагаться расчет зубчатой пары – колеса и шестерни.

Заполняем исходные данные расчета согласно рисунку

A	A B C D E F G H I J K L	М	N	0	P	Q	R	S	Т
1	Исходные данные								
2	Число шестерни		Z 1	=		28		H	νI
3	Передаточное число		u	=		3			
4	Модуль		m	=		3		MN	I
5	Ширина колеса		b ₂	=		42		MN	I
6	Диаметра вала под шестерню)	₫вш	=		28		MN	I
7	Диаметр вала под колесо		$d_{\scriptscriptstyle BK}$	=		50		MN	I

4. Далее будет располагаться расчетные формулы **Геометрических параметров шестерни и колеса**.

Порядок расчет зубчатых передач были изучены в рамках дисциплины «Детали машин». На данном листе необходимо последовательно ввести порядок для расчета.



5. Начинаем записывать параметры, которые необходимы для расчета.

В строке пишем наименование параметра, который рассчитываем, вводим формулу по которой рассчитывается данный параметр, а затем ячейке присваиваем значение из исходных данных соответствующей значению данного параметра, затем в другой проделываем аналогичные действия. Для получения результата расчета необходимо в ячейке поставить математический знак равенства (=), а затем нажать на первую ячейку только что введенных данных, поставить соответствующее математическое действие (умножение, деление, сложение или вычитание) и нажать на ячейку со вторыми данными. При нажатии Enter в ячейке появится результат математического действия.

Для расчета необходимо ввести последовательность расчета и формулы согласно Приложению :

24	Число з	зубі	ьег	з ко	ле	ca	2	2	=	Z	1 .	U	1	=	2	8	Х	3	8,0	0	=	84	ļ	
25	Ширин	ак	ОЛ	ëca			b2	=	4	2	MM													
26	Ширин	аш	ec	тері	ш		b_1	=	b ₂	+(:	51	0)	=	4	2	+	7	=	4	9	M	Μ		
27	Высота	го	лс	вки	3	уба	h	a1.	2 =	n	n_n	=	:	3	MI	νſ								
	Высота										25 m					X		3		=	3	3,7	5	MM
29	Делите	ТЬН	ый	і ди	аме	етр		1,2																
30	$d_{w1}=m$ 2	Z ₁ =	3	X	:	28		=	84	١,0	MM													
31	dw2=m 2	Z ₂ =	3	2	ζ.	84		=	2	252	2,0	M	νI											
33	Диамет	рв	ep	шин	зу	бье	В			d_a	= d	+	2m	l _n										
34	$d_{a1} = d_w$	1+	2n	n _n	8	4	+	2	3	3	=	9	90,	0	MI	M								
35	$d_{a2} = d_{w2}$	+ 2	2m	_n =	25	2	+	2	3	3	=	2	58	,0	MI	M								
36	Диамет	ры	вп	ади	нз	убь	ев	$d_{\mathbf{f}}$	=	d-	2.5	m,	1											
37	$d_{f1} = d_w$	1- 2	,5r	n _n =	:	84		-	2	,5	3		=	7	6,5	0	MI	vI						
38	$df_2 = d_{w2}$	- 2	,51	m _n =	=	252	2	-	2	,5	3		=	2	44	,5	MI	vI						
	Наружн																							
	de=1,7d					50	=		85		MM													
41	Толщи	на д	цис	ска і	сол	eca																		
42	k = 0.3	b2=	=	0,3		42	=	12	2,6	M	M													
43	Диамет	ро	бо	да																				
44	Dk=df-6	m=		24	4,5	-	6	3	3,00	0	=	2	26	,5	MM	I								
45	Диамет	рo	кр	ужн	oc	ги р	oac	по.	пох	кеі	кин	OTI	вер	ст	ий									
46	D1=0,5(D _k +	-d)=	0,5	3	11	,5	=	1	55,7	75	M	M										
	Длина	_																						
	lет=1,5d	вк=	1,	5	50	=	7	5	MI	νI														
	Фаска																							
50	c=0,5m 6.	x45					pan	 1ет	р L	ЦП Ц	онқи	 1 .			١.									
6	1 Шпо	нк	a	noè	<i>u</i>	ieci	mp	ен	ιю															
6	2 8	X		7	X	4	19	Ι	О	C'	T 2	33	60	-7	8			t ₂	=	=	3.	3	М	M
6	з Шпо	HK	a	noč) K			+										T			ĺ			
				9	X			-	\sim	C	T 2	33	60	_7	Q			to	=		4,	3	3.5	M
0	4 14	X		9	Λ	<u>'</u>	+4	1	U	C	1 4	33	UU	-/	0			L2			4,	3	M	IVI

СПИСОК ЛИТЕРАТУРЫ

- 1. Малюх В.Н. Введение в современные САПР: Курс лекций. М.: ДМК Пресс, 2010. 192 с.
- 2. Андросов А.А., Андрющенко Ю.А., Дьяченко А.Г., Кушнарев В.И., Маньшин Ф.П., Шабанов Б.М. Расчет и проектирование деталей машин: Учеб. пособие/Под общ. Ред. А.А.Андросова. Ростов н/Д: Издательский центр ДГТУ, 2002. 285 с.
- 3. Гжиров Р.И. Краткий справочник конструктора: Справочник Л: Машиностроение, Ленингр. Отд-ние, 1984. 464 с.
- 4. Курмаз Л.В. Детали машин. Проектирование: учебн. пособие/Л.В. Курмаз, А.Т. Скойбеда. 2-еизд., испр. и доп. Мн.: УП «Технопринт», 2002. 290 с.

ПРИЛОЖЕНИЕ

Параметр	Обозна- чение	Расчетная формула
Высота головки зуба	h_a	$h_a=m$
Высота ножки зуба	h_f	$h_f = 1,25m$
Высота зуба	h	$h = h_a + h_f = 2,25m$
Делительный циаметр	d	d=mz
Диаметр вершин зубьев	d _a	$d_a = d + 2h_a = m(z+2)$
Диаметр впадин	d_f	$d_f = d - 2h_f = m(z - 2,5)$
Шаг окружной	p_t	$p_t = \pi m$
Окружная толщина зуба	s_t	$s_i = 0,5p_i = 0,5\pi m$
Окружная ширина впадины	e_t	$e_t = 0.5p_i = 0.5\pi m$
Радиус кривизны переходной кривой зуба	ϱ_f	$\varrho_{j}=0,4m$
Ширина венца вубчатого колеса	b	b=(6÷8)m
Голщина обода зубчатого венца	e	$e=(2,5\div 3)m$
Наружный диаметр ступицы	d_c	$d_c = (1,6 \div 1,8)D_B$
Толщина диска	k	$k = (3 \div 3, 6)m$
Диаметр окружности, определяющий распо- ложение отверстий в циске	D_1	$D_1 = 0.5(D_x + d_c)$
Диаметр отверстий в	D_0	
циске	0	$D_0 \approx \frac{D_{\kappa} - d_{c}}{2,5 \div 3,0}$
Цлина ступицы	l _{er}	$l_{cr}=1,5D_B$
Фаска	c	c=0,5m×45°