

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Кафедра «Программное обеспечение вычислительной техники и автоматизированных систем»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к проведению практических занятий на темы

«Эквивалентность линейных блочных помехоустойчивых кодов»

И

«Способы нахождения весового спектра кода»
ПО ДИСЦИПЛИНЕ

«Теория информации»

Авторы Могилевская Н.С., Мазуренко А.

Ростов-на-Дону, 2014

Аннотация

Методические указания предназначены для студентов специальности 090301 «Компьютерная безопасность» и преподавателей, ведущих практические занятия по курсу «Теория информации»; в них содержатся краткие теоретические сведения о способах проверки эквивалентности линейных блочных помехоустойчивых кодов, двух способах нахождения весового спектра кода, а так же индивидуальные задания для студентов.

Авторы

к.т.н., доцент Могилевская Н.С., студент Мазуренко А.

Оглавление

Практическое	занятие	на	тему	«ПĮ	роверка
Эквивалентности	линейных	блочны	х кодов	на	основе
теоремы Ф.Мак-В	ильямс»				4
Цель заняти	ıя				4
	не теоретичес				
Практическое зан	•				
блочных кодов» .					9
Цель заняти	ıя				9
	не теоретичес				
Индивидуальные	задания				13
Литература					16
• •					

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ НА ТЕМУ «ПРОВЕРКА ЭКВИВАЛЕНТНОСТИ ЛИНЕЙНЫХ БЛОЧНЫХ КОДОВ НА ОСНОВЕ ТЕОРЕМЫ Ф.МАК-ВИЛЬЯМС»

Цель занятия

Целью практического занятия на тему «Проверка эквивалентности помехоустойчивых кодов на основе теоремы Ф.Мак-Вильямс» является получение студентами специальности 090301 – Компьютерная безопасность практических навыков по проверке эквивалентности блочных линейных помехоустойчивых кодов над полем F_2 .

Необходимые теоретические сведения

Рассмотрим некоторый линейный (n,k,d)-код $\mathcal C$ с параметрами над конечным полем F_2 , где n — длина кода, k — размерность кода, d — минимальное кодовое расстояние. Тогда $\mathcal C$ представляет собой линейное подпространство размерности k линейного пространства V_n , представляющего собой множество n-мерных векторов, элементы которых принадлежат F_2 . Одним из способов задания кода $\mathcal C$ является использование порождающей матрицы $\mathcal G$, размерности $k \times n$, строки которой представляют собой набор базисных векторов линейного подпространства образуемого $\mathcal C$. Код $\mathcal C$ также можно задать перечислением всех его кодовых слов $\mathcal C = \{\bar c_1, \dots, \bar c_{2^k}\}$. Более подробно с основами теории помехоустойчивого кодирования можно ознакомиться, например, по [1, 2, 4].

Из некоторого кода $\mathcal C$ можно получить новый код $\tilde{\mathcal C}$, например, с помощью перестановки местами двух координат в каждом кодовом слове, или, что то же самое, с помощью перестановки местами двух столбцов порождающей матрицы кода. Очевидно, что новый код $\tilde{\mathcal C}$ будет отличаться от исходного $\mathcal C$ лишь видом кодовых слов и сохранит неизменными все остальные параметры.

Определение 1. Два линейных кода \mathcal{C} и $\tilde{\mathcal{C}}$. совпадающих с точностью до перестановки координат называются эквивалентными [2]: $\mathcal{C} \sim \tilde{\mathcal{C}}$.

В общем случае задача определения эквивалентности двух определенных порождающих матриц не решена, то есть до сих пор не существует практических эффективных методов. Мак-Вильямс доказала терему позволяющую утверждать являются ли два заданных кода эквивалент- ными [3], но этот результат

представляет собой скорее теоретическую ценность.

Порождающие матрицы G и \widetilde{G} эквивалентных кодов могут быть получены одна из другой с помощью элементарных операций над строками и перестановки столбцов. Порождающие матрицы G и \widetilde{G} эквивалентных кодов будем называть эквивалентными матрицами.

Пример 1. Рассмотрим два (5,3,2)-кода C_1 и C_2 , заданных

порождающими матрицами
$$G_1$$
 и G_2 соответственно:
$$G_1 = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}, \ G_2 = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

Нетрудно убедиться, что эти матрицы могут быть получены друг из друга с помощью элементарных операций над строками:

$$G_1 = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} = G_2.$$

Следовательно, рассмотренные коды являются эквивалентными.

Упражнение 1. Постройте множества всех кодовых слов кодов C_1 и C_2 из примера 1 и сделайте вывод о их взаимосвязи. •

Упражнение 2. Пусть коды C_1 и C_2 заданы порождающими матрицами:

$$G_1 = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}, \ \ G_2 = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

Выясните, являются ли эти коды эквивалентными и сделайте вывод о взаимосвязи множества всех кодовых слов кодов \mathcal{C}_1 и C_2 . •

Рассмотрим более строгое определение эквивалентных кодов. Используем для этого определения понятие мономиальной матрицы – квадратной матрицы, заданной над F_2 , каждая строка и каждый столбец которой содержат только один ненулевой элемент.

Определение 2. Два кода C и \tilde{C} называются эквивалентными $C \sim \tilde{C}$, если существует такая мономиальная матрица $L_{n \times n}$ что $\tilde{C} = \{\bar{c}L_{n\times n}|\bar{c}\ \epsilon C\}$ [1]. •

Пример 2. Пусть C_1 и C_2 два линейных (4,2,2)-кода, задан-

ных над
$$F_2$$
 с помощью порождающих матриц G_1 и G_2 :
$$G_1 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}, \quad G_2 = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$$

Эти коды являются эквивалентными и связаны мономиаль-

ной матрицей $L_{4 imes4}$ вида:

$$L_{4\times 4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

В выполнении равенства $C_2=\{\bar{c}L_{n\times n}|\bar{c}\ \epsilon C_1\}$ легко убедиться, построив множества всех кодовых слов C_1 и C_2 :

$$C_1 = \{0000,1001,0110,1111\}, C_2 = \{0000,1010,0101,1111\}.$$
 Например, $(1010)L_{4\times4} = (1001),(0101)L_{4\times4} = (0110).$ \bullet

При работе с кодами, у которых большие параметры длины и размерности, решение задачи определения эквивалентности при помощи элементарных операций (см. определение 1) становится достаточно громоздким. Определение 2 эквивалентности кодов не содержит способа построения мономиальной матрицы, что также затрудняет его использование для длинных кодов.

Опишем хороший метод проверки эквивалентности помехоустойчивых кодов, основанный на использовании теоремы Ф.Мак-Вильямс [1].

Согласно [1] необходимым условием для того чтобы порождающие матрицы G_1 и G_2 (n,k)-кодов были эквивалентными является следующее: если некоторый вектор-столбец \bar{s} появляется n_s раз в одной из порождающих матриц, то и в эквивалентной порождающей матрице вектор-столбец \bar{s} появляется n_s раз.

Определение 3. Информационной матрицей назовем матрицу вида

$$M_{k \times (2^{k}-1)} = (m_1, \dots, m_{2^{k}-1}),$$
 (1)

содержащую в качестве столбцов все возможные (2^k-1) ненулевые векторы, упорядоченные следующим образом: m_i — это вектор-столбец, совпадающий с двоичным представлением числа i, $i=1,...,2^k-1$. \bullet

Определение 4. Модулярным представлением (n,k)-кода ${\it C}$, заданного порождающей матрицей ${\it G}$ называется вектор

$$N = (n_1, ..., n_{2^k - 1}), \tag{2}$$

где n_i — число столбцов вида m_i из информационной матрицы $M_{k \times (2^k-1)} = (m_1, ..., m_{2^k-1})$, определенной формулой (1). •

Теорема об эквивалентности кодов, заданных модулярным представлением [1]. Пусть C и \tilde{C} — линейные (n,k)-коды, заданные порождающими матрицами G и \tilde{G} . Коды C и \tilde{C} являются эквивалентными тогда и только тогда, когда их модулярные представления N_1 и N_2 отличаются только некоторой пе-

рестановкой π , то есть

$$N = \pi(\widetilde{N}) \tag{3}$$

$$N=\pi(\widetilde{N})$$
 (3) или, иначе, $N^T=L_{n\times n}\widetilde{N}^T,$ (4)

где $L_{n\times n}$ – мономиальная матрица, N и \widetilde{N} – модулярные представления кодов C и \tilde{C} , соответственно. •

Из теоремы об эквивалентности кодов следует, что для решения задачи определения эквивалентности двух кодов необходимо и достаточно построить модулярные представления рассматриваемых кодов и сравнить их.

Пример 3. Пусть C и \tilde{C} – линейные (6,3)-коды, заданные порождающими матрицами G и \tilde{G} :

$$G = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}, \ \ \tilde{G} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Построим вспомогательную информационную матрицу вида (1):

$$M_{3\times7} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix},$$

используя $M_{3 imes 7}$ построим модулярные представления N и \widetilde{N} кодов C и \tilde{C} , соответственно:

$$N = (2,2,0,2,0,0,0), \widetilde{N} = (2,2,0,2,0,0,0).$$

Из теоремы об эквивалентности кодов следует, что коды ${\it C}$ и \tilde{C} , являются эквивалентными.

Используя определение 1 можно показать, что эти коды являются эквивалентными и связаны следующей перестановкой столбцов:

$$\vartheta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 3 & 4 & 2 & 5 \end{pmatrix}.$$

Используя определение 2 и формулу (4) можно показать, что эти коды являются эквивалентными и связаны мономиальной матрицей $L_{6\times6}$ вида:

Пример 4. Пусть C и \tilde{C} — линейные (5,3)-коды, заданные порождающими матрицами G и \tilde{G} :

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ \end{pmatrix}, \quad \tilde{G} = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

Построим вспомогательную информационную матрицу вида (1):

$$M_{3\times7} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix},$$

используя $M_{3 \times 7}$ построим модулярные представления N и \widetilde{N} кодов C и \widetilde{C} , соответственно:

$$N = (1,1,1,1,0,1,0), \widetilde{N} = (0,1,0,1,1,1,1).$$

Модулярные представления кодов связаны перестановкой π (см. формулу (3)):

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 2 & 7 & 4 & 1 & 6 & 3 \end{pmatrix},$$

следовательно, рассматриваемые коды являются эквивалентными: $\mathcal{C} \sim \tilde{\mathcal{C}}$. \bullet

Полученные результаты можно использовать для построения весового спектра заданного кода по его порождающей матрице.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ НА ТЕМУ «ВЕСОВОЙ СПЕКТР ЛИНЕЙНЫХ БЛОЧНЫХ КОДОВ»

Цель занятия

Целью практического занятия на тему «Весовой спектр линейных блочных кодов» является получение студентами специальности 090301 — Компьютерная безопасность практических навыков по нахождению весового спектра линейного блочного кода.

Необходимые теоретические сведения

Определение 4. Обозначим через A_i число кодовых слов веса i в блочном (n,k)-коде. Вектор $A=(A_0,A_1,\dots,A_n)$, в i — ой позиции которого расположено число $A_i,\ i=0,1,\dots,n$, назовем весовым спектром кода [1]. •

Очевидным способом нахождения спектра кода является построение всех кодовых слов в явном виде и вычисление их весов. Однако, этот метод достаточно трудоемкий. Например, для вычисления весового спектра двоичного (255, 223)-кода (это параметры реально используемых в системах связи кодов) таким способом потребуется произвести 2²²³ умножений векторов длины 223 на матрицу размером (223×255) для построения множества всех кодовых слов. Для того, что бы понять насколько это большое число можно сделать такое сравнение $2^{223} \approx 10^{67}$, что, согласно [5], совпадает с числом атомов нашей галактики. Для ряда кодов, например, кодов Рида-Соломона, получены аналитические выражения, позволяющие вычислять весовой спектр по параметрам кода. Но, к сожалению, такие выражения известны лишь для немногих кодов. Более того, для многих кодов точное значение весового спектра не известно. Рассмотрим пример, демонстрируюший вычисление весового спектра «в лоб», а затем опишем еще один метод нахождения весового спектра, основанный на результате, полученном Макдональд [1], основанный на работе Маквильямс [3].

Пример 5. Рассмотрим линейные (6,3)-коды \mathcal{C}_3 и $\tilde{\mathcal{C}}_3$ из примера 3. Рассмотрим линейные (5,3)-коды \mathcal{C}_4 и $\tilde{\mathcal{C}}_4$ из примера 4. Построим весовые спектры этих кодов, основываясь на нахождении всех кодовых слов и вычислении их весов.

Перечислим все кодовые слова линейного блочного (6,3)-

кода C_3 и укажем веса Хемминга этих слов.

теда -3 г. / генте - 2 сенте - 2 сен			
Кодовое слово	Вес кодового	Кодовое слово	Вес кодового
	слова		слова
000000	0	111100	4
110000	2	110011	4
001100	2	001111	4
000011	2	111111	6

Отсюда, весовой спектр кода A = (1,0,3,0,3,0,1).

Перечислим все кодовые слова линейного блочного (6,3)-кода $\tilde{\mathcal{C}}_3$ и укажем веса Хемминга этих слов.

topa 23 transcriptora termina print atopi			
Кодовое слово	Вес кодового	Кодовое слово	Вес кодового
	слова		слова
000000	0	101101	4
100001	2	110011	4
001100	2	011110	4
010010	2	111111	6

Отсюда, весовой спектр кода A = (1,0,3,0,3,0,1).

Перечислим все кодовые слова линейного блочного (5,3)- кода \mathbb{C}_4 и укажем веса Хемминга этих слов.

RODU SA VI YRUMEN BEEG MENTUNITU STVIM CHOB:			
Кодовое слово	Вес кодового	Кодовое слово	Вес кодового
	слова		слова
00000	0	11001	3
10010	2	10111	4
01011	3	01110	3
00101	2	11100	3

Отсюда, весовой спектр кода A = (1,0,2,4,1,0).

Перечислим все кодовые слова линейного блочного (5,3)-кода $\tilde{\mathbb{C}}_4$ и укажем веса Хемминга этих слов.

Кодовое слово	Вес кодового	Кодовое слово	Вес кодового
	слова		слова
00000	0	11001	3
10111	4	10010	2
01110	3	01011	3
00101	2	11100	3

Отсюда, весовой спектр кода A = (1,0,2,4,1,0). •

Теорема Макдональд о построении весового спектра через модулярное представление кода [2]. Рассмотрим (n,k)-код C, заданный порождающей матрицей G над полем F_2 и модулярным представлением N. Пусть

$$K = M^T M$$

где M — информационная матрица, определенная формулой (1). Тогда

$$W = NK$$

W = NK, где $W = (w_1, ..., w_{2^k-1}), \ w_i \in \mathbf{N}$, умножение происходит в поле действительных чисел, содержит веса всех ненулевых кодовых слов кода \mathcal{C} , для которого N является модулярным представлением его порождающей матрицы G. •

Пример 6. Рассмотрим линейные (6,3)-коды C_3 и \tilde{C}_3 с модупредставлениями $N_3 = (2,2,0,2,0,0,0)$ $\widetilde{N}_{3}=(2,2,0,2,0,0,0)$, соответственно, из примера 3. Рассмотрим линейные (5,3)-коды \mathcal{C}_4 и $\tilde{\mathcal{C}}_4$ с модулярными представлениями $N_4 = (1,1,1,1,0,1,0)$ и $\widetilde{N}_4 = (0,1,0,1,1,1,1)$, соответственно, из примера 4. Построим весовые спектры этих кодов, основываясь на теореме Макдональд.

На основе мономиальной матрицы (единой для всех рассматриваемых кодов)

$$M_{3\times7} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

построим вспомогательную матрицу K:

$$K = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}.$$

Далее, согласно теореме Макдональд построим векторы, содержащие значения весов всех кодовых слов рассматриваемого кода, напомним, что вычисления производятся по правилам работы с натуральными числами:

$$\begin{split} W^{(1)} &= N_3 K = (2,2,4,2,4,4,6), \\ W^{(2)} &= \widetilde{N}_3 K = (2,2,4,2,4,4,6), \\ W^{(3)} &= N_4 K = (2,3,3,2,4,3,3), \\ W^{(4)} &= \widetilde{N}_4 K = (2,3,3,4,2,3,3). \end{split}$$

Затем, на основе $W^{(j)}$,построим весовые спектры рассмотренных кодов. Так из вектора $W^{(1)}$ видно, что в, связанном с этим вектором коде C_3 находятся три кодовых слова веса 2, три кодовых слова веса 4 и одно кодовое слово веса 6. Принимая во внимание, что в линейном коде всегда содержится одно кодовое слово веса 0, легко построим весовой спектр рассматриваемого кода $A^{(1)}=(1,0,3,0,3,0,1)$, где структура весов. Повторим эти вычисления для остальных кодов:

$$A^{(2)} = (1,0,3,0,3,0,1),$$

 $A^{(3)} = (1,0,2,4,1,0),$
 $A^{(4)} = (1,0,2,4,1,0).$

Легко убедиться, что результаты, полученные в примерах 5 и 6, совпадают.

ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ

Согласно выданному преподавателем варианту двумя различными способами выясните, являются ли приведенные ниже порождающие матрицы эквивалентными. Постройте двумя различными способами весовые спектры кодов, заданных порождающими матрицами.

Ban	Матрицы
Вар. 1	(1000011) (1000111)
	$G_1 = egin{bmatrix} 0100111 \ 0010110 \ 0001101 \end{pmatrix}, G_2 = egin{bmatrix} 0100011 \ 0010101 \ 0001110 \end{pmatrix}$
	$G_1 = 0010110 , G_2 = 0010101 $
	(0001101) (0001110)
2	(1000010) (1000010)
	$G_1 = \begin{pmatrix} 1000010 \\ 0100101 \\ 0010101 \\ 0001001 \end{pmatrix}, G_2 = \begin{pmatrix} 1000010 \\ 0100101 \\ 0010101 \\ 0001010 \end{pmatrix}$
	$G_1 = 0010101 G_2 = 0010101 $
3	$G_1 = \begin{pmatrix} 101001\\010001 \end{pmatrix}, G_2 = \begin{pmatrix} 101001\\010011 \end{pmatrix}$
	$(010001)^{3}$, (010011)
4	(100000000) (100000000)
	010000001 010000110
	$G_1 = egin{bmatrix} 001000100 \\ 000100110 \\ 000010000 \end{bmatrix}, G_2 = egin{bmatrix} 001000110 \\ 000100000 \\ 000010110 \end{bmatrix}$
	$G_1 = 000100110$, $G_2 = 000100000$
	000010000 000010110
	(000001001) (000001111)
5	(100000000) (100000001)
	$G_1 = \begin{bmatrix} 010101011 \\ 001100111 \end{bmatrix}, G_2 = \begin{bmatrix} 010000000 \\ 001011101 \end{bmatrix}$
	(001100111) (001011101)

	100p
Вар.	Матрицы
6	$G_1 = \begin{pmatrix} 100000010 \\ 010000010 \\ 001001000 \end{pmatrix}, G_2 = \begin{pmatrix} 100000000 \\ 010100111 \\ 001010100 \end{pmatrix}$
7	$G_1 = \begin{pmatrix} 1000000000 \\ 0100000111 \\ 0010100110 \\ 0001111100 \end{pmatrix}, G_2 = \begin{pmatrix} 1000000000 \\ 0100000111 \\ 0010100110 \\ 0001111111 \end{pmatrix}$
8	$G_{1} = \begin{pmatrix} 1000011 \\ 0100101 \\ 0010110 \\ 0001111 \end{pmatrix}, G_{2} = \begin{pmatrix} 1000111 \\ 0100011 \\ 0010110 \\ 0001101 \end{pmatrix}$ $G_{1} = \begin{pmatrix} 101110 \\ 010011 \end{pmatrix}, G_{2} = \begin{pmatrix} 101110 \\ 011000 \end{pmatrix}$
9	$G_1 = \begin{pmatrix} 101110\\010011 \end{pmatrix}, G_2 = \begin{pmatrix} 101110\\011000 \end{pmatrix}$
10	$G_1 = \begin{pmatrix} 101001\\011000 \end{pmatrix}, G_2 = \begin{pmatrix} 101010\\010010 \end{pmatrix}$
11	$G_{1} = \begin{pmatrix} 100000000 \\ 010000110 \\ 001000111 \\ 000010000 \\ 000010000 \\ 000001010 \end{pmatrix}, G_{2} = \begin{pmatrix} 100000000 \\ 010000111 \\ 001000000 \\ 00010001$

Вар.	Матрицы
12	$G_1 = \begin{pmatrix} 100000001\\010000001\\001001001 \end{pmatrix}, G_2 = \begin{pmatrix} 100000001\\010110110\\001010111 \end{pmatrix}$
13	$G_{1} = \begin{pmatrix} 1000000001\\ 0100000100\\ 0010010000\\ 0001101110 \end{pmatrix}, G_{2} = \begin{pmatrix} 10000000000\\ 0100110110\\ 0010101011\\ 0001010111 \end{pmatrix}$
14	$G_{1} = \begin{pmatrix} 1000000001\\ 0100000100\\ 0010010000\\ 0001101000 \end{pmatrix}, G_{2} = \begin{pmatrix} 1000000000\\ 0100110110\\ 0010110000\\ 0001001011 \end{pmatrix}$

ЛИТЕРАТУРА

- 1. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки: Пер. с англ. / Под ред. Р.Д. Добрушина и С.И. Самойленко. М.: Мир, 1976
- 2. 1.Блейхут Р. Теория и практика кодов, контролирующих ошибки = Theory and Practice of Error Control Codes. М.: Мир, 1986. 576 с.
- 3. MacWilliams, F. J., Combinatorial problems of elementary abelian groups, Ph.D. Dissertation, Harvard University, Cambridge, Mass., 1962
- 4. Могилевская Н.С. Введение в теорию информации: учеб. пособие / Н.С. Могилевская. Издательский центр ДГТУ, 2013. 125 с.
- 5. Шнайер Б. Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си. М.: ТРИУМФ, 2003 816 с.