

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

Кафедра «Прикладная математика»

Учебно-методическое пособие

по дисциплине «Математика»

«Функции нескольких переменных»

Автор Ермилова О.В.

Математика. Функции нескольких переменных

Аннотация

Учебно-методическое пособие предназначено для студентов очной формы обучения всех технических направлений подготовки бакалавриата.

Составлено для проведения теоретических и практических работ по дисциплине «Математика». С целью овладения студентами теоретическими и практическими навыками решения задач ПО разделу «Функции многих переменных». В пособии рассмотрены следующие вопросы: функции от двух и п переменных, область определения, частные производные и их геометрический смысл, дифференцирование сложных и неявные функции, полный дифференциал и его применение к приближенным вычислениям, экстремумы функции двух переменных, градиент и производная по направлению, касательная плоскость и нормаль к поверхности. В пособии приведены основные теоретические сведения, которые иллюстрируются большим количеством примеров, что значительно упрощает усвоение материала, способствует закреплению приобретённых навыков и справиться с решением поставленных задач.

Автор

Старший преподаватель каф. «Прикладная математика» Ермилова О.В.

Оглавление

ГЛАВА1.Понятие	ФУНКЦІ	1И	НЕСКОЛ	ЬКИХ
переменных.График І	и линии	уровня	функции	двух
переменных				4
1.1. Функция график функции	якции двух г ныхпроизводнь трический см	іеременных ые функц	. Непреры ций неско	4 11 вность 17 ольких 24
функции $z=f(x;y)$ 1.6. Применение приближенным вычисле 1.7. Дифференци 1.8. Производная 1.9. Градиент фун 1.10. Уравнение поверхности	е полного дениям рование неяв сложной фун нкции и прои касательно	ифференци вных функц нкции зводная по й плоскост	иала функ ий направлен ги и норм	ции к 41 57 ию. 70 али к 81
высших порядков				93
2.1. Частные прои 2.2. Дифференция 2.3. Экстремумы с 2.4. Формула переменных	алы высших функции несн Тейлора <i>д</i>	порядков кольких пер іля функі	ременных ции неско	97 109 эльких 122

ГЛАВА1.ПОНЯТИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ.ГРАФИК И ЛИНИИ УРОВНЯ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ

Функции одной независимой переменной, например, y=f(x) не охватывают всех зависимостей, существующих в природе. Поэтому нам придётся расширить известное понятие функциональной зависимости на случай функций нескольких переменных.

1.1. Функция двух переменных, область определения, график функции.

Переменная величина z называется функцией двух независимых переменных x и y:z=f(x;y), заданной на множестве D, если по некоторому закону каждой паре $(x,y)\in D$ соответствует определенное значение z. Функциональную зависимость z от x и y записывают в виде z=f(x;y)или z=z(x;y).

Например, формула $V=\pi R^2 h$ - выражающая объем цилиндра, является функцией двух переменных R и h, где R — радиус основания цилиндра и h — высота цилиндра.

Аналогично определяется функция n-переменных. Пусть D некоторое множество точек в n-мерном пространстве. Если задан закон f, в силу которого каждой точке $M(x_1;x_2;...;x_n)\in D$ ставится в соответствие некоторое действительное число u, то говорят, что на множестве D определена функция $u=f(x_1;x_2;...;x_n)$.

Переменные $x_1, x_2, ..., x_n$ называют независимыми переменными или аргументами функции, а переменную u — за-висимой перемен-

ной.

Функцию n переменных принято записывать в виде $u=f(x_1;x_2;...;x_n)$,а функции трех переменных в виде u=f(x;y;z).

Замечание: функции многих переменных можно обозначать и символом u = f(M), указывая размерность пространства, которому принадлежит точка M.

Множество точек $M(x_1;x_2;...;x_n)$, для которых функция $u=f(x_1;x_2;...;x_n)$ определена, называют **областью определения** этой функции.

Обозначение:D(f).

Областью определения функции двух переменных является некоторое множество точек плоскости, а областью определения функции трех переменных — некоторое множество точек трехмерного пространства. Например, областью определения функции двух переменных $z=\frac{x^2}{a^2}+\frac{y^2}{b^2}$ множество точек плоскости R^2 , а областью определения функции трех переменных u=x+y+z -множество точек пространство R^3 .

Множество всех чисел u вида $u=f(x_1;x_2;...;x_n)$,где $(x_1;x_2;...;x_n)\in D(f)$ называют **множеством значений функции**.

Пример 1.1. Найти область определения функции: **a)**z=3-x-3y;**6)** $z=\sqrt{1-x^2-y^2}$; **B)**z=ln(x+y-1).

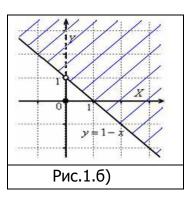
Решение.

- **а)** Так как, аргументы x, y, могут принимать любые значение, то областью определения данной функции является вся координатная плоскость, то есть $(x;y) \in \mathbb{R}^2$;
- Функции $z = \sqrt{1 x^2 y^2}$ определена, если $1 x^2 y^2 \ge 0$, то есть $x^2 + y^2 \le 1$. Таким образом, областью определения функции является множество точек, лежащих внутри и на границе круга радиуса R = 1, с центром в начале коор-

динат (рис.1. a)); **в)** Областью определения функ-

ции z = ln(x + y - 1) будет

множество точек плоскости Oxy, для которых определена логарифмическая функция, то есть при x+y-1>0, y>1-x. Таким образом, областью определения данной функции является множество точек, лежащих выше прямой y=1-x (рис.1. б)).



Графиком функции двух переменных z = f(x; y)в прямоугольной системе координат Oxy называется геометрическое место точек в трехмерном пространстве, координаты которых(x; y; z) удовлетво-

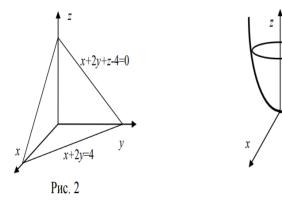
ряют уравнению z = f(x; y).

Таким образом, если графиком функции одной переменной y = f(x)является некоторая линия на плоско-

сти, например, парабола, то графиком функции двух переменных z=f(x;y) является некоторая поверхность, которая располагается в трёхмерном пространстве \mathbb{R}^3 . С элементарным примером поверхности мы

хорошо знакомы ещё из курса аналитической геометрии – это плоскость.

Например, графиком функции z=4-x-2y или x+2y+z=4,что тоже самое, является плоскость (рис.2), а графиком функции $z=x^2+y^2$ является параболоид вращения (рис. 3).



Замечание: как мы уже знаем графиком функции двух переменных, является поверхность, но иногда график функции может представлять собой, пространственную прямую, либо даже единственную точку.

Рис. 3

Задания для самостоятельного решения.

1. Найти область определения функции z = f(x; y).

_			Ī
1	z = 2 - x - y	11	$z = \sqrt{2 - x^2 - 2y^2}$
2	$z = \frac{1}{\sqrt{1 - x^2 - y^2}}$	12	$z = \ln(3x - y^2)$
3	z = ln(xy)	13	z = arcsin(2x + y)
4	$z = ln\left(1 - \frac{x^2}{4} - \frac{y^2}{9}\right)$		$z = \frac{1}{9 - 9x^2 - 9y^2}$
5	$z = \sqrt{4 - x^2 - y^2}$	15	$z = \sqrt{x^2 + y}$
6	$z=\sqrt{x^2+y^2-9};$	16	$z = \frac{1}{4 - x^2 - 4y^2}$
7	$z = \sqrt{1-x^2} - \sqrt{y^2 - 1}$	17	$z = \ln(x^2 + 2y^2 - 2)$
8	$z = \sqrt{x - y} - \sqrt{y + x}$		$z = \frac{\sqrt{x} + \sqrt{y}}{xy}$
9	$z = \sqrt{x - \sqrt{y}}$	19	$z = \frac{x+5}{\sqrt{x+y}}$
10	$z = arcsin\left(\frac{x}{y}\right)$	20	$z = \frac{x+y}{x^2 + y^2}$

Ответы:

1. вся координатная плоскость, то есть
$$(x;y) \in R^2$$
.
11. $\frac{x^2}{2} + \frac{y^2}{1} \le 1$ - внутренняя часть эллипса $\frac{x^2}{2} + \frac{y^2}{1} = 1$, включая граничные точки.

2.
$$x^2+y^2<1$$
 —все точки, лежащие внутри круга с центром в точке (0;0) радиусом единичной длины, за исключением граничной области.

12. $y^2 > 3x$ -все точки плоскости, лежащие вне параболы $y^2 = 3x$.

3.
$$x, y > 0$$
 или $x, y < 0$ все точки плоскости, лежащие в первой и третьей четверти.

13. $\frac{-1-y}{2} \le x \le \frac{1-y}{2}$ -часть области, заключённая между двумя прямыми y = 1 - 2x, y = -1 - 2x.

4.
$$\frac{x^2}{4} + \frac{y^2}{9} < 1$$
 — внутренняя часть эллип- $\operatorname{ca} \frac{x^2}{4} + \frac{y^2}{9} = 1$,с полуосями $a = 2, b = 3$, за исключением граничной области.

14. $x^2 + y^2 \neq 1$ -все точки плоскости 0xy за исключение точек, лежащих на окружности $x^2 + y^2 = 1$.

5. $x^2 + y^2 \le 4$ — точки, лежащие внутри окружности $x^2 + y^2 = 4$ и на её границе.

15. $y \ge -x^2$ -все точки плоскости0xy, лежащие на параболе и вне параболы $y = -x^2$.

6. $x^2 + y^2 \ge 9$ — точки, лежащие на границе окружности $x^2 + y^2 = 9$ и вне её.	16. $4 - x^2 - 4y^2 \neq 0$ -все точки плоскости $0xy$ за исключение точек, лежа-
	щих на эллипсе
	$\frac{x^2}{4} + \frac{y^2}{1} = 1.$
7. $\begin{cases} x \in [-1; 1] \\ y \in (-\infty; 1] \cup [1; +\infty) \end{cases}$	17. $\frac{x^2}{2} + \frac{y^2}{1} \ge 1$ -точки, лежащие на границе и вне эллипса $\frac{x^2}{2} + \frac{y^2}{1} = 1$.
$8. \begin{cases} y \le x \\ y \ge -x \end{cases}$	18. $x > 0, y > 0$ - все точки плоскости, лежащие в первой четверти.
9. $x \ge \sqrt{y}$ - все точки, лежащие правее ветви параболы $y = x^2$.	19. $y > -x$ -все точки плоскости, лежащие выше прямой $y = -x$.

10.
$$-y \le x \le y$$
 -часть области, заключённая между двумя прямыми $y = -x, y = x$.

20. $x^2 + y^2 \neq 0$ - все точки плоскости 0xy за исключение точки 0(0;0).

1.2. Линии уровня.

Пусть имеется функция z = f(x; y) график которой представляет собой некоторую поверхность. Построение графиков функций двух переменных во многих случаях весьма затруднительно. Поэтому рассмотрим возможность изображения графика функций двух переменных, основанный на сечении поверхности z = f(x; y) плоскостью z = C, где C – любое число (эта плоскость параллельна плоскости 0xy и пересекает ось z в точке z=C). Спроецируем линию пересечения этой плоскости с поверхностью z = f(x; y)на плоскость 0xy и получим так называемую линию уровня функции z = f(x; y). Таким образом, **линией уровня функции** z = f(x; y)называется множество точек (x; y)плоскости 0xy, в которых функция принимает одно и то же постоянное значение C, то есть z = C. Придавая различные значения параметру C, можно

получить множество линий уровня функции z = f(x; y).

Для лучшего понимания этого термина будем сравнивать ось 0z с высотой: чем больше значение z — тем

больше высота, чем меньше значение z – тем высота

меньше.

Образно говоря, **линии уровня** — это горизонтальные «срезы» поверхности на различных высотах. Данные сечения проводятся плоскостями $z=\mathcal{C}$, после чего

проецируются на плоскость. Таким образом, линии уровня помогают выяснить, как выглядит та или иная поверхность.

Пример 1.2. Записать уравнение семейства линий уровня функции $z = (x-2)^2 + (y-1)^2$. Выделить ли-

нию уровня, проходящую через точку $M_0(1;1)$. Иссле-

довать форму данной поверхности с помощью линий уровня.

Решение.

Исходя из определения уравнение линии уровня принимает вид $(x-2)^2+(y-1)^2=\mathcal{C}.$ Выделим линию

уровня, проходящую через точку $M_0(1;1)$, то есть

найдём значение постоянной C, при x=1,y=1:

$$(1-2)^2 + (1-1)^2 = C, C = 1;$$

Тогда уравнение линии уровня, проходящей через точку $M_0(1;1)$, принимает вид:

$$(x-2)^2 + (y-1)^2 = 1$$
 –уравнение окружности с цен-

тром в точке(2; 1), с радиусом R = 1.

Исследуем форму данной поверхности с помощью уравнений линий уровня

$$(x-2)^2 + (y-1)^2 = C$$
. Очевидно, что в данном случае

$$z=\mathcal{C}\geq 0$$
 -высота $\$ не может принимать отрицатель-

ные значения, так как сумма квадратов не может быть отрицательна. Таким образом, поверхность располагается в верхнем полупространстве.

Поскольку в условии не сказано, на каких конкретно высотах нужно «срезать» линии уровня, то мы можем выбрать несколько значений z на своё усмотрение, для

удобства возьмём z = 0,1,9,81.

Заметим, что все «срезы» проецируются на плоскость Oxy, и поэтому у точек записываются две, а не три ко-

ординаты.

Исследуем поверхность на нулевой высоте, для этого поставим значение $z={\it C}=0$ в равен-

$$CTBO(x-2)^2 + (y-1)^2 = z$$
:

$$(x-2)^2 + (y-1)^2 = C$$

$$(x-2)^2 + (y-1)^2 = 0$$

$$(x-2)^2 = 0$$
, $(y-1)^2 = 0$,

$$x-2=0, y-1=0,$$

x=2,y=1-то есть, при C=0 линия уровня представляет собой точку(2;1).

Для высоты z=1линия уровня $z=\mathit{C}$ представляет со-

бой окружность $(x-2)^2 + (y-1)^2 = 1^2$ с центром в

точке (2; 1)единичного радиуса.

Теперь выберем, например, плоскость z = 9 и «разре-

заем ей» исследуемую поверхность $(x-2)^2 + (y-1)^2 = z$ (подставляем в исходное урав-

нение z=9):

$$(x-2)^2 + (y-1)^2 = 9;$$

Таким образом, для высоты z = 9

поверхности $z = (x-2)^2 + (y-1)^2$ линия уровня

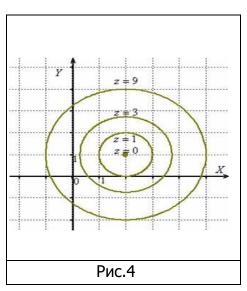
представляет собой окружность с центром в точ- κ e(2; 1), радиуса 3.

Давайте построим ещё одну линию уровня, например, для z=81 :

$$(x-2)^2 + (y-1)^2 = 81$$

– окружность с центром в точке (2; 1)и

радиуса 9. Линии уровня, располагаются на плоскости, каждая линия подписывается — какой высоте она соответствует. Изобразим то, что у нас получилось (рис.4). Нетрудно понять, что другие линии уровня



рассматриваемой поверхности тоже представляют собой окружности, при этом, чем выше мы поднимаемся (увеличиваем значение «зет») — тем больше становится радиус. Таким образом, исходная поверхность представляет собой бесконечную чашу, вершина которой расположена на плоскости z=0.

Пример 1.3. Найти линии уровня функции $z = \frac{x}{\sqrt{y}}$. Решение.

Линия уровня z = C определяется уравнением

$$\mathcal{C}=rac{x}{\sqrt{y}}$$
или $x=\mathcal{C}\sqrt{y}$ - полу парабола, расположенная в

первой четверти плоскости Oxy при C>0,во второй четверти при C<0. При C=0,получим x=0-полуось Oy(y>0, x=0).

Замечание: аналогично определяются поверхности уровня функции трех переменных u=f(x;y;z). Поверхностью уровня функции u=f(x;y;z) называется поверхность f(x;y;z), в точках которой функция принимает одно и то же значение $u=\mathcal{C}$.

Пример 1.4. Найти поверхности уровня функции $u = x^2 - y^2 + z^2$.

Решение.

Уравнение семейства поверхностей уровня имеет вид $x^2-y^2+z^2=\mathcal{C}$. Если $\mathcal{C}=0$, то получа-

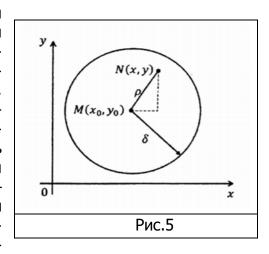
ем
$$x^2 - y^2 + z^2 = 0$$
- конус; если $C < 0$,

то $x^2 - y^2 + z^2 = C$ — семейство двуполостных гиперболоидов.

Замечание: в дальнейшем ограничимся рассмотрением функций двух переменных, так как все основные понятия и теоремы, сформулированные для функций двух переменных, легко обобщаются на случай большего числа переменных.

1.3. Предел функции двух переменных. Непрерывность функции двух переменных.

Понятия предела непрерывности функции двух переменных аналогичны случаю одной переменной. Прежде всего, введем понятие δ - окрестданной точности $K M_0(x_0; y_0).$ Пусть $M_0(x_0; y_0)$ произвольная точка плоскости, под δ – окрестностью точки $M_0(x_0; y_0)$ понимается множество всех точек плоско-



сти N(x;y), координаты которых удовлетворяют неравенству $(x-x_0)^2+(y-y_0)^2<\delta^2$. Другими словами – окрестность точки $M_0(x_0;y_0)$ – это все внутренние точки круга с центром в точке $M_0(x_0;y_0)$ и радиусом δ .

Для дальнейшего удобства введём обозначение:

$$ho=|\overline{M_0N}|=\sqrt{(x-x_0)^2+(y-y_0)^2}$$
-расстояние между точками $N(x;y)$ и $M_0(x_0;y_0)$.

Тогда для нахождения точки N(x;y) внутри круга радиуса δ будет выполняться условие $\rho < \delta$.

Пусть функция z=f(x;y)определена в некоторой окрестности точки $M_0(x_0;y_0)$ кроме, быть может, самой этой точки.

Число a называется **пределом функции**

$$z=f(x;y)$$
при $x o x_0$ и $y o y_0$ (или

 $N(x;y) \to M_0(x_0;y_0)$), если для любого чис-

ла $\varepsilon>0$ найдётся число $\delta>0$, зависящее от ε , такое,

что для всех точек N(x;y),отличных от точки $M_0(x_0;y_0)$ и отстоящих от этой точки на расстояние ρ

 $(0<\rho<\delta)$ выполняется неравенство|f(x;y)-a|<arepsilon.

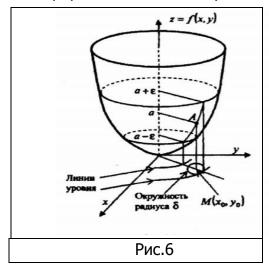
Обозначение:
$$a = \lim_{\substack{x \to x_0 \ y \to y_0}} f(x;y)$$

Геометрический смысл предела функции двух переменных.

Дадим геометрическую интерпретацию понятия преде-

ла в трехмерном пространстве.

причем $f(x_0; y_0) = a$. Спроектируем точку A, лежащую на графике функции z = f(x; y)на



плоскость $\mathcal{O}xy$. Соответствующую точку $M_0(x_0;y_0)$ на

плоскости выберем центром такого радиуса δ , все точки которого будут находится между линиями уровня. Тогда для всех точек N(x;y) этого круга, отличных от точки $M_0(x_0;y_0)$ и отстоящих от этой точки на расстояние ρ $(0<\rho<\delta)$, выполняется неравен-

СТВО
$$|f(x;y)-a| Таким образом, $a=\lim_{\substack{x o x_0\\y o y_0}}f(x;y).$$$

Другими словами, **геометрический смысл** предела функции двух переменных состоит в следующем. Каково бы ни было произвольное число $\varepsilon>0$, найдется число δ -окрестность точки $M_0(x_0;y_0)$, что во всех ее точках N(x;y), отличных от $M_0(x_0;y_0)$, аппликаты (z) соответствующих точек поверхности z=f(x;y) отличаются от числа a по модулю меньше, чем на ε .

Замечание:

1)Вычисление пределов функции двух переменных является более сложно задачей по сравнению с вычислением пределов функции одно переменной. Это связано с тем, что точка N может стремиться к точке M_0

по любому направлению на плоскости в отличие от функции одной переменной, где переменная x может

стремиться к числу $x_0(x \to x_0)$ на числовой прямой

только справа или слева. Получающиеся при этом многочисленные пределы функции двух переменных должны совпадать друг с другом. В этом случае, легче доказать отсутствие предела функции z = f(x; y)

при $N(x;y) \to M_0(x_0;y_0)$,для этого достаточно выбрать

два таких направления, движение по которым приводит к различным пределам.

2)Предел функции двух переменных обладает свойствами, аналогичными свойствам предела функции одной переменной. Это означает, что справедливы следующие утверждения: если функции f(M) и g(M)

определены на множестве D и имеют в точке

 $M_0(x_0; y_0)$ этого множества пределы a и b В соответ-

ственно, то и функции $f(M) \pm g(M), f(M) \cdot g(M)$,

 $\frac{f(M)}{g(M)}$, $(g(M) \neq 0)$ имеют в точке M_0 пределы, которые

соответственно равны

$$a \pm b, a \cdot b, \frac{a}{b} (b \neq 0).$$

Пример 1.5. Найти предел: a) $\lim_{\substack{x\to 0\\y\to 0}} \frac{x^2-y^2}{x^2+y^2}$;

6)
$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} \frac{x^3 + y^3}{x^4 + y^4}$$
; **B)** $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{2 - \sqrt{xy + 4}}{xy}$.

Решение.

а)
$$\lim_{\substack{y\to 0\\y\to 0}} \frac{x^2-y^2}{x^2+y^2} = \left[\frac{0}{0}\right]$$
-числитель и знаменатель обращается

в ноль в единственной точке(0;0),выясним существует ли там предел?

Проведём небольшое исследование. Будем приближаться к точке $\mathcal{O}(0;0)$ по прямой y=kx , где k— некоторое число. Тогда

$$\begin{split} &\lim_{\substack{x\to 0\\y\to 0}}\frac{x^2-y^2}{x^2+y^2} = \begin{bmatrix} 0\\0 \end{bmatrix} = \lim_{\substack{x\to 0\\y=kx}}\frac{x^2-y^2}{x^2+y^2} = \lim_{\substack{x\to 0\\x\to 0}}\frac{x^2-k^2x^2}{x^2+k^2x^2} = \\ &= \lim_{\substack{x\to 0\\x\to 0}}\frac{x^2(1-k^2)}{x^2(1+k^2)} = \lim_{\substack{x\to 0\\x\to 0}}\frac{1-k^2}{1+k^2} = \frac{1-k^2}{1+k^2} \,. \end{split}$$

Функция $z = \frac{x^2 - y^2}{x^2 + y^2}$ в точке O(0;0) предела не имеет, так как при разных значениях k функция имеет различные предельные значения;

$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} \frac{x^3 + y^3}{x^4 + y^4} = \left[\frac{\infty}{\infty}\right] = \lim_{\substack{x \to +\infty \\ y = kx}} \frac{x^3 + k^3 x^3}{x^4 + k^4 x^4} =$$

$$= \lim_{x \to +\infty} \frac{x^4 \left(\frac{1}{x} + \frac{k^3}{x}\right)}{x^4 \left(1 + k^4\right)} = \lim_{x \to +\infty} \frac{\frac{1}{x} + \frac{k^3}{x}}{1 + k^4} = \frac{0}{1 + k^4} = 0$$

так как при различных значениях k, функция имеет единственное предельное значение 0, то предел функции $z=\frac{x^3+y^3}{x^4+y^4}$ при $x\to +\infty, y\to +\infty$ равен нулю;

$$\begin{aligned} \mathbf{B} \mathbf{)} & \lim_{\substack{x \to 0 \\ y \to 0}} \frac{2 - \sqrt{xy + 4}}{xy} = \begin{bmatrix} \frac{0}{0} \end{bmatrix} = \lim_{\substack{x \to 0 \\ y = kx}} \frac{2 - \sqrt{kx^2 + 4}}{xy} = \\ &= \lim_{\substack{x \to 0}} \frac{2 - \sqrt{kx^2 + 4}}{kx^2} = \lim_{\substack{x \to 0}} \frac{\left(2 - \sqrt{kx^2 + 4}\right)\left(2 + \sqrt{kx^2 + 4}\right)}{kx^2(2 + \sqrt{kx^2 + 4})} = \end{aligned}$$

$$= \lim_{x \to 0} \frac{2^2 - \left(\sqrt{kx^2 + 4}\right)^2}{kx^2 \left(2 + \sqrt{kx^2 + 4}\right)} = \lim_{x \to 0} \frac{4 - kx^2 - 4}{kx^2 \left(2 + \sqrt{kx^2 + 4}\right)} =$$

$$= -\lim_{x \to 0} \frac{kx^2}{kx^2 \left(2 + \sqrt{kx^2 + 4}\right)} = -\lim_{x \to 0} \frac{1}{2 + \sqrt{kx^2 + 4}} = -\frac{1}{4}.$$

Непрерывность и точки разрыва.

Функция z = f(x; y) называется **непрерывной в точ-**

ке $M_0(x_0; y_0)$ если она определена в этой точке и

$$\lim_{\substack{x \to x_0 \\ y o y_0}} f(x;y) = f(x_0;y_0)$$
 (или $\lim_{\substack{M o M_0}} f(M) = f(M_0)$).

Функция z=f(x;y) называется непрерывной в области D , если она непрерывна в каждой точке области D .

Область непрерывности элементарной функции $z = f\left(x,y\right)$ совпадает с областью ее определения.

Точки, в которых непрерывность нарушается (не выполняется хотя бы одно из условий непрерывности функции в точке), называются точками разрыва этой функции. Точки разрыва функции z = f(x; y) могут

образовывать целые линии разрыва, а иногда и более сложные геометрические образы. Так, например, функция $z=\frac{3}{v+x}$ имеет линию разрыва y=-x .

Можно дать другое, равносильное приведенному выше, определению непрерывности функции z = f(x; y) в

точке $M_0(x_0; y_0)$. Обозначим

$$\Delta x=x-x_0$$
 , $\Delta y=y-y_0$, $\Delta z=f(x;y)-f(x_0;y_0)$. Вели

чины Δx и Δy называются приращениями аргументов x

и y , а Δz — полным приращением функции f(x;y) в точке $M_0(x_0;y_0)$.

Функция z = f(x; y) называется **непрерывной в точ-**

ке
$$M_0(x_0;y_0)$$
, если выполняется равенство $\lim_{\substack{\Delta x \to 0 \ \Delta y \to 0}} \Delta z = 0$,

то есть полное приращение функции в этой точке стремится к нулю, когда приращения ее аргументов x и y стремится к нулю.

Пример 1.6. Найти точки разрыва функции:

a)
$$z = \frac{x^3y}{x^2-y}$$
; **6)** $z = \frac{x-y}{x+y}$; **B)** $z = \frac{x^2y^2}{x^4+y^4}$.

Решение.

а) Функция потеряет смысл, если знаменатель обратится в ноль, то есть, когда $x^2-y=0$ или $y=x^2$. Сле-

довательно, данная функция имеет линией разрыва параболу $y = x^2$;

6) Функция потеряет смысл, если знаменатель обра-

тится в ноль, то есть, когда x+y=0 или y=-x. Та-

ким образом, данная функция имеет линией разрыва прямую y=-x.

в) Функция потеряет смысл, если знаменатель обратится в ноль $x^4 + y^4 = 0$, то есть при x = 0 и y = 0.

Следовательно, данная функция имеет разрыв в точке O(0;0).

Замечание: пользуясь определением непрерывности и теоремами о пределах, можно так же доказать, что арифметические операции над непрерывными функциями и построение сложной функции из непрерывных функций приводит к непрерывным функциям.

1.4. Частные производные функций нескольких переменных и их геометрический смысл.

Пусть задана функция z = f(x; y). Так как x, y - независимые переменные, то одна из них может изменяться, а другая сохранять своё значение.

Если одному из аргументов функции z = f(x; y) придать приращение, а другой аргумент не изменять, то функция получит частное приращение по одному из аргументов.

Например, дадим независимой переменной x приращение Δx , сохраняя значение y неизменным, тогда z получит приращение, которое называется частным приращением функции z по переменной x.

Обозначение:

$$d_x z = \Delta_x z = f(x + \Delta\,x;y) - f(x;y)$$
- частное приращение функции z по переменной x .

Аналогично получаем частное приращение функции z по переменной y:

$$d_{v}z = \Delta_{v}z = f(x; y + \Delta y) - f(x; y).$$

Частной производной функции нескольких переменных по одному из её аргументов называется предел отношения частного приращения функции по этому аргументу к соответствующему приращению аргумента при условии, что приращение аргумента стремится к нулю.

Обозначения:

$$\frac{\partial \mathbf{z}}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta_x \mathbf{z}}{\Delta x}$$
 -частная производная функции z по переменной x ;

$$rac{\partial z}{\partial y}=\lim_{\Delta y o 0}rac{\Delta_y z}{\Delta_y}$$
-частная производная функции z по переменнойу.

Таким образом, частные производные от функции нескольких переменных являются «производными в направлении координатных осей». Например, при нахождении $\frac{\partial z}{\partial x}$ приращение получает переменная x, изменяясь от x до $x + \Delta x$ вдоль оси ∂x .

Замечание:

1)для обозначения частных производных могут быть использованы и другие обозначения, а именно

$$rac{\partial z}{\partial x}$$
, $m{z}_x'$, $rac{\partial f}{\partial x}$, $m{f}_x'$ — частная производная функции z по пе-

ременной x;

 $rac{\partial z}{\partial y}, \mathbf{z}_y', rac{\partial f}{\partial y}, \mathbf{f}_y' - -$ частная производная функции z по переменнойy;

2)если необходимо, в скобках указывается точ-ка $(x_0; y_0)$,в которой вычислены частные производные, это записывается следующим образом: $f_x'\mid_{(x_0;y_0)}$ или $f_x'(x_0;y_0)$.

Итак, для функции двух переменных z=f(x;y) рассматриваются частные производные по переменной x и по переменной y. Из определения частных производных следует правило их нахождения: частная производная по x есть обыкновенная производная по x функции f(x;y) вычисленная при условии, что y=const, при этом используются обычные правила и формулы дифференцирования функции одной переменной, аналогично вычисляется частная производная по переменной y.

Если рассматривается функция трех переменных, например u=f(x;y;z), то u_x' вычисляют, полагая $y,z=const;u_y'$ вычисляют при $x,z=const;u_z'$ вычисляют при x,y=const.

Пример 1.7. Найти частные производные функции: **a)** $z = x^4 - 2x^2y^3 + y^5 + 1$;**6)** $z = cos\frac{x^2}{y}$; **B)** $z = arctg\frac{x+y}{x-y}$;**г)** $u = (sinx)^{yz}$.

Решение.

а) Находим частную производную функции z

по переменной x, учитывая, что y = const:

$$\frac{\partial z}{\partial x} = (x^4 - 2x^2y^3 + y^5 + 1)'_x = (x^4)'_x - 2y^3(x^2)'_x + (y^5 + 1)'_x = 4x^3 - 4xy^3;$$

Находим частную производную функции z по переменной y ,учитывая, что x = const:

$$\frac{\partial z}{\partial y} = (x^4 - 2x^2y^3 + y^5 + 1)'_y = (x^4)'_y - 2x^2(y^3)'_y + (y^5)'_y + (1)'_y = -6x^2y^2 + 5y^4;$$

6)
$$\frac{\partial z}{\partial x} = \left(\cos\frac{x^2}{y}\right)_x' = -\sin\frac{x^2}{y} \cdot \left(\frac{x^2}{y}\right)_x' =$$
$$= -\sin\frac{x^2}{y} \cdot \frac{1}{y} \cdot (x^2)_x' = -\frac{2x}{y}\sin\frac{x^2}{y};$$
$$\partial z \quad \left(x^2\right)_x' \quad x^2 \quad \left(x^2\right)_x'$$

$$\frac{\partial z}{\partial y} = \left(\cos\frac{x^2}{y}\right)_y = -\sin\frac{x^2}{y} \cdot \left(\frac{x^2}{y}\right)_y =$$

$$= -\sin\frac{x^2}{y} \cdot x^2 \cdot \left(\frac{1}{y}\right)_y = -\sin\frac{x^2}{y} \cdot x^2 \cdot (y^{-1})_y =$$

$$=-\sin\frac{x^2}{y}\cdot x^2\cdot (-y^{-2})=\left(\frac{x}{y}\right)^2\sin\frac{x^2}{y};$$

B)
$$\frac{\partial z}{\partial x} = \left(arctg \frac{x+y}{x-y}\right)_{x}' = \frac{1}{1+\left(\frac{x+y}{x-y}\right)^{2}} \cdot \left(\frac{x+y}{x-y}\right)_{x}' = \frac{1}{(x-y)^{2}+(x+y)^{2}} \cdot \frac{(x+y)'_{x}\cdot(x-y)-(x-y)'_{x}(x+y)}{(x-y)^{2}} = \frac{1}{(x-y)^{2}+(x+y)^{2}} \cdot \frac{(x+y)'_{x}\cdot(x-y)-(x-y)'_{x}(x+y)}{(x-y)^{2}+(x+y)^{2}} = \frac{1}{(x-y)^{2}+(x+y)^{2}} \cdot \frac{(x+y)'_{x}\cdot(x-y)-(x-y)'_{x}(x+y)}{(x-y)^{2}+(x+y)^{2}} = \frac{1}{(x-y)^{2}+(x+y)^{2}} \cdot \frac{(x+y)'_{x}\cdot(x-y)-(x-y)'_{x}(x-y)}{(x-y)^{2}+(x-y)^{2}} = \frac{1}{(x-y)^{2}+(x-y)^{2}} \cdot \frac{(x+y)'_{x}\cdot(x-y)-(x-y)'_{x}(x-y)}{(x-y)^{2}+(x-y)^{2}} = \frac{1}{(x-y)^{2}+(x-y)^{2}} \cdot \frac{(x+y)'_{x}\cdot(x-y)-(x-y)'_{x}(x-y)}{(x-y)^{2}+(x-y)^{2}} = \frac{1}{(x-y)^{2}+(x-y)^{2}} \cdot \frac{(x+y)'_{x}\cdot(x-y)-(x-y)}{(x-y)^{2}+(x-y)^{2}} = \frac{1}{(x-y)^{2}+(x-y)^{2}} = \frac{1}{(x-y)^{2}+(x-y)^{2}$$

$$= \frac{(x-y)^2}{(x-y)^2 + (x+y)^2} \cdot \frac{x-y-(x+y)}{(x-y)^2} =$$

$$= -\frac{2y}{2x^2 + 2y^2} = -\frac{y}{x^2 + y^2};$$

$$\frac{\partial z}{\partial y} = \left(arctg \frac{x+y}{x-y}\right)_y' = \frac{1}{1 + \left(\frac{x+y}{x-y}\right)^2} \cdot \left(\frac{x+y}{x-y}\right)_y' =$$

$$= \frac{1}{\frac{(x-y)^2 + (x+y)^2}{(x-y)^2}} \cdot \frac{(x+y)'_y \cdot (x-y) - (x-y)'_y \cdot (x+y)}{(x-y)^2} =$$

$$= \frac{(x-y)^2}{(x-y)^2 + (x+y)^2} \cdot \frac{x-y-(-1)(x+y)}{(x-y)^2} =$$

$$= \frac{2x}{2x^2 + 2y^2} = \frac{x}{x^2 + y^2}.$$

r) Находим частную производную функции u по переменной x , учитывая, что y, z = const, при фиксированном значении y, z производная функции $u = (sinx)^{yz}$ по переменной x находится как производная степенной функции $(u^n)' = nu^{n-1} \cdot u'$:

$$\frac{\partial u}{\partial x} = ((\sin x)^{yz})'_x = yz(\sin x)^{yz-1}(\sin x)'_x = yz(\sin x)^{yz-1}\cos x;$$

При фиксированном значении x,z производная функции $u = (sinx)^{yz}$ по переменной y находится как производная показательной функции $(a^u)' = a^u \cdot lna \cdot u'$:

$$\frac{\partial u}{\partial y} = ((\sin x)^{yz})'_y = (\sin x)^{yz} \cdot \ln(\sin x) \cdot (yz)'_y =$$

$$= (\sin x)^{yz} \cdot \ln(\sin x)z \cdot (y)'_y = (\sin x)^{yz} \cdot \ln(\sin x) \cdot z;$$

При фиксированном значении x,y производная функции $u=(sinx)^{yz}$ по переменной z находится как производная показательной функции $(a^u)'=a^u\cdot lna\cdot u'$:

$$\frac{\partial u}{\partial z} = ((\sin x)^{yz})'_z = (\sin x)^{yz} \cdot \ln(\sin x) \cdot (yz)'_z =$$

$$= (\sin x)^{yz} \cdot \ln(\sin x) \cdot y(z)'_z = (\sin x)^{yz} \cdot (\sin x)^{yz} \cdot y(x)'_z = (\sin x)^{yz} \cdot y(x)'_z$$

Пример 1.8. Показать, что функция

$$u = x^3 + 7x^2y + 2xz^2 - 3y^3 + 4xyz + z^3$$
 удовлетворяет

уравнению
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 3u$$
.

Решение

Находим частные производные:

$$\frac{\partial u}{\partial x} = (x^3 + 7x^2y + 2xz^2 - 3y^3 + 4xyz + z^3)'_x =$$

$$= 3x^2 + 14xy + 2z^2 + 4yz;$$

$$\frac{\partial u}{\partial y} = (x^3 + 7x^2y + 2xz^2 - 3y^3 + 4xyz + z^3)'_y =$$

$$= 7x^2 - 9y^2 + 4xz;$$

$$\frac{\partial u}{\partial z} = (x^3 + 7x^2y + 2xz^2 - 3y^3 + 4xyz + z^3)'_z =$$

$$= 4xz + 4xy + 3z^2;$$

Умножая обе части первого найденного равенства на x, второе - на y ,третьего на z и складывая их, получим:

$$x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+z\frac{\partial u}{\partial z}=x(3x^2+14xy+2z^2+4yz)+$$
 $+y(7x^2-9y^2+4xz)+z(4xz+4xy+3z^2)=$ $=3x^3+14x^2y+2xz^2+4xyz+7x^2y-9y^3+$ $+4xyz+4xz^2+4xyz+3z^3=3x^3+21x^2y+$ $+6xz^2-9y^3+12xyz+3z^3=3(x^3+7x^2y+$ $=+2xz^2-3y^3+4xyz+z^3)=3u.$ Таким образом, $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+z\frac{\partial u}{\partial z}=3u$,что и требовалось показать.

Геометрический смысл частных производных функции двух переменных z = f(x; y).

Как известно, графиком функции является некоторая поверхность. Графиком функции $z=f(x;y_0)\,$ является линия пересечения этой поверхности с плоско-

стью $y = y_0$ (плоскость параллельная плоскости Oxz) Исходя из геометрического смысла производной для функции одной переменной, заключаем,

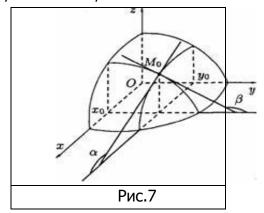
что
$$f_x'(x_0; y_0) = tg\alpha$$
 ,

где α — угол между

осью Ox и касательной,

проведенной к функции $z = f(x; y_0)$ в точке

$$M_0(x_0; y_0; f(x_0; y_0))$$
 (рис. 7).



Аналогично, $f_y'(x_0; y_0) = tg\beta$.

Задания для самостоятельного решения.

2. Найти частные производные первого порядка ФНП по каждому аргументу:

1	$z = \frac{x}{y^3} + \frac{y}{x^3} - \frac{1}{6x^2y}$	11	$z = \sqrt{x^2 + y^2}$
2	$z = \frac{xy}{x - y}$	12	$z = x^2 - 2x\sqrt{y}$
3	$z = ln\left(\frac{x}{y}\right)$	13	$u = \frac{y^3 - 2x^3}{lnz}$
4	$u = x^{\frac{y}{z}}$	14	$z = x^y + y^x$

5	z = xyln(x+y)	15	$z = e^{x^3 - 3y^2}$
6	$z = x^2 + \sin(xy)$	16	$z = \frac{x}{x^2 + y^2}$
7	$z = e^{\frac{x-4}{y-2}}$	17	z = arctgxy
8	$u = e^{x^2 + y^2} \cdot \sin^2 z$	18	$z = xe^{x-2y}$
9	$z = x^2 ctg\left(\frac{xy}{2}\right)$	19	$u = \frac{3^{x-y}}{\cos 2z}$
10	$u = 2^{x-2y+3z}$	20	$u = \arcsin \frac{xz}{\sqrt{y}}$

Ответы:

$$\mathbf{1.} z'_{x} = \frac{1}{y^{3}} - \frac{3y}{x^{4}} + \frac{1}{3x^{3}y};
z'_{y} = -\frac{3x}{y^{4}} + \frac{1}{x^{3}} + \frac{1}{6x^{2}y^{2}}.
\mathbf{2.} z'_{x} = -\frac{y^{2}}{(x-y)^{2}};
z'_{y} = \frac{x^{2}}{(x-y)^{2}}.
\mathbf{3.} z'_{x} = \frac{1}{x}; z'_{y} = -\frac{1}{y}.
\mathbf{13.} u'_{x} = -\frac{6x^{2}}{\ln z}; u'_{y} = \frac{3y^{2}}{\ln z};
u'_{z} = \frac{2x^{3} - y^{3}}{z \ln^{2} z}.$$

$4.u_x' = \frac{y}{z}x^{\frac{y}{z}-1};$	14. $z'_x = yx^{y-1} + y^x lny;$
$u_y' = \frac{1}{2} x^{\frac{y}{z}} \ln x;$	$z_y' = x^y lnx + xy^{x-1}.$
$u_z' = -\frac{y}{z^2} x^{\frac{y}{z}} lnx.$	
5. $z'_x = y ln(x+y) + \frac{xy}{x+y};$	15. $z_x' = 3x^2 e^{x^3 - 3y^2}$;
$z_y' = x ln(x+y) + \frac{xy}{x+y}.$	$z_y' = -6ye^{x^3 - 3y^2}.$
6. $z'_x = 2x + y\cos(xy);$ $z'_y = x\cos(xy).$	16. $z_x' = \frac{3x^2 + y^2}{(x^2 + y^2)^2}$;
$z_y = x\cos(xy)$.	$z_y' = -\frac{2xy}{(x^2 + y^2)^2}.$
7. $z_x' = \frac{1}{y-2}e^{\frac{x-4}{y-2}};$	17. $z_x' = \frac{y}{1+(xy)^2};$
$z_y' = \frac{4-x}{(y-2)^2} e^{\frac{x-4}{y-2}}$	$z_y' = \frac{x}{1 + (xy)^2}.$
8. $u'_x = 2xe^{x^2+y^2} \cdot \sin^2 z;$	18. $z'_x = (1+x)e^{x-2y}$;
$u'_{y} = 2ye^{x^{2}+y^{2}} \cdot \sin^{2}z;$ $u'_{z} = e^{x^{2}+y^{2}} \cdot \sin2z.$	$z_y' = -2xe^{x-2y}.$
$9.\ z_x' = 2xctg\left(\frac{xy}{2}\right) - \frac{x^2y}{2sin^2\left(\frac{xy}{2}\right)};$	19. $u_x' = \frac{3^{x-y} \ln 3}{\cos 2z}$;
$z_y' = -\frac{x^3}{2\sin^2\left(\frac{xy}{2}\right)}$	$u_y' = -\frac{3^{x-y}ln3}{cos2z};$
(2)	$u_z' = 4 \cdot 3^{x-y} \ln 3tg2z.$

10.
$$u'_{x} = 2^{x-2y+3z} \ln 2;$$
 $u'_{y} = -2^{x-2y+3z+1} \ln 2;$ $u'_{z} = 2^{x-2y+3z} \ln 2.$ **20.** $u'_{x} = \frac{z}{\sqrt{y-(xz)^{2}}};$ $u'_{y} = -\frac{xz}{2y\sqrt{y-(xz)^{2}}};$ $u'_{z} = \frac{x}{\sqrt{y-(xz)^{2}}}.$

1.5. Полное приращение и полный дифференциал функции z = f(x; y).

Рассмотрим функцию двух переменных z=f(x;y) заданную в некоторой области. Пусть $M_0(x_0;y_0)$ — точка этой области. Найдем изменение этой функции при переходе из точки $M_0(x_0;y_0)$ в точку M(x;y) той же области.

Разность значений функции в точках M и M_0 называется **полным приращением** функции z = f(x; y).

Обозначение: Δz или $\Delta f(x;y)$

Таким образом, $\Delta z = f(M) - f(M_0) = f(x; y) - f(x_0; y_0)$.

Обозначим приращения аргументов x и y при переходе из точки M_0 в точку M через Δx и Δy соответствен-

HO: $\Delta x = x - x_0$, $\Delta y = y - y_0$, OTKY-

да $x = x_0 + \Delta x$, $y = y_0 + \Delta y$,тогда

 $\Delta z = f(x_0 + \Delta x; y_0 + \Delta y) - f(x_0; y_0).$

Функция z = f(x; y) называет-

ся **дифференцируемой** в точке M(x; y),если её пол-

ное приращение в этой точке можно представить в виде:

$$\Delta z = A \cdot \Delta x + B \cdot \Delta y + \alpha \cdot \Delta x + \beta \cdot \Delta y,$$

где
$$rac{\partial z}{\partial x}=A$$
 , $rac{\partial z}{\partial y}=B$, $lpha=lpha(\Delta\,x;\Delta\,y) o 0$ и

$$\beta = \beta(\Delta x; \Delta y) \rightarrow 0$$
 при $\Delta x \rightarrow 0, \Delta y \rightarrow 0$.

Сумма первых двух слагаемых $A \cdot \Delta x + B \cdot \Delta y$ в равен-

стве
$$\Delta z = A \cdot \Delta x + B \cdot \Delta y + \alpha \cdot \Delta x + \beta \cdot \Delta y$$
 представляет

собой главную часть приращения функцииz = f(x; y)и называется полным дифференциа-

лом этой функции и обозначается

$$dz = \frac{\partial z}{\partial x} \cdot \Delta x + \frac{\partial z}{\partial y} \cdot \Delta y$$

Дифференциалы независимых переменных совпадают с их приращениями, то есть $dx = \Delta x$ и $dy = \Delta y$,

таким образом, данное равенство можно переписать в виде :

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

Полный дифференциал функции z=f(x;y)в точке $M_0(x_0;y_0)$ вычисляется по следующей формуле:

$$dz(M_0) = \frac{\partial z}{\partial x}(M_0)dx + \frac{\partial z}{\partial y}(M_0)dy$$

Замечания:

1)Аналогично вычисляется полный дифференциал

функции трех аргументов, то есть по формуле

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz;$$

2)Арифметические свойства и правила исчисления дифференциалов функции одной переменной сохраняются и для дифференциалов функции двух (и большего числа) переменных.

Теорема 1.1: для того, чтобы функция z = f(x; y) бы-

ла дифференцируемой в данной точке, достаточно, чтобы она обладала частными производными, непрерывными в этой точке.

Примем теорему 1 без доказательств.

Таким образом, функция имеет полный дифференциал в случае непрерывности её частных производных. Если функция имеет полный дифференциал, то она называется дифференцируемой.

Частный дифференциал функции — это произведение частной производной по одной из независимых переменных на дифференциал этой переменной.

Обозначение:

$$d_x z = rac{\partial z}{\partial x} dx$$
-частный дифференциал функции z по пе-

ременной x;

$$oldsymbol{d}_{y}oldsymbol{z}=rac{\partial z}{\partial y}\,oldsymbol{d}y$$
-частный дифференциал функции z по пе-

ременной y.

Таким образом, **полный дифференциал** — это сумма частных дифференциалов, то есть $dz = d_x z + d_y z$.

Пример 1.9. Для функции $f(x; y) = x^2 + xy - y^2$ найти полное приращение Δz и полный дифференциал dz.

Решение.

$$\Delta z = f(x + \Delta x; y + \Delta y) - f(x; y) = (x + \Delta x)^{2} + + (x + \Delta x) \cdot (y + \Delta y) - (y + \Delta y)^{2} - (x^{2} + xy - y^{2}) = = x^{2} + 2x\Delta x + \Delta x^{2} + xy + x\Delta y + \Delta xy + \Delta x\Delta y - y^{2} - -2y\Delta y - \Delta y^{2} - x^{2} - xy + y^{2} = [(2x + y)\Delta x + (x - 2y)\Delta y] + + (\Delta x^{2} + \Delta x\Delta y - \Delta y^{2}).$$

Итак, $\Delta z = [(2x + y)\Delta x + (x - 2y)\Delta y] + (\Delta x^2 + \Delta x\Delta y - \Delta y^2)$ - полное приращение,

 $dz = (2x + y)\Delta x + (x - 2y)\Delta y$ —полный дифференциал (главная часть приращения функции).

Пример 1.10. Найти значение полного дифференциа-

ла dz и полное приращение Δz функции $z=x^2y-y^2x$ в точке $M_0(-1;1)$ при $\Delta\,x=0.1$ и $\Delta\,y=-0.1$.

Решение.

$$\Delta z = f(x_0 + \Delta x; y_0 + \Delta y) - f(x_0; y_0)$$

- полное приращение функции z_{\cdot}

$$dz(M_0)=rac{\partial z}{\partial x}(M_0)dx+rac{\partial z}{\partial y}(M_0)dy$$
-полный

дифференциал функцииz в точке $M_0(x_0; y_0)$.

Для того, чтобы вычислить приращение функции в заданной точке

$$\Delta z = z(x_0 + \Delta x; y_0 + \Delta y) - z(x_0; y_0)$$
, найдем $z(x_0; y_0)$ и $z(x_0 + \Delta x; y_0 + \Delta y)$:

$$z(x_0; y_0) = z(-1; 1) = (-1)^2 \cdot 1 - 1^2(-1) = 2;$$

$$z(x_0 + \Delta x; y_0 + \Delta y) = z(-1 + 0.1; 1 - 0.1) =$$

$$= z(-0.9; 0.9) = (-0.9)^2 \cdot 0.9 - (0.9)^2 \cdot (-0.9) =$$

$$= 2 \cdot 0.81 \cdot 0.9 = 1.458$$
:

Таким образом, полное $\Delta z = 1,458 - 2 = -1,542$.

Чтобы вычислить полный дифференциал функции $z=x^2y-y^2x$ используем формулу $dz(M_0)=rac{\partial z}{\partial x}(M_0)\Delta\,x+rac{\partial z}{\partial y}(M_0)\Delta\,y$, для этого

найдем частные производные заданной функции $rac{\partial z}{\partial x}=z_{x}^{'}$ и $rac{\partial z}{\partial y}=z_{y}^{'}$, и определим их значения в точке M_{0} :

$$\frac{\partial z}{\partial x} = (x^2y - y^2x)'_x = y(x^2)'_x - y^2(x)'_x = 2xy - y^2;$$

$$\frac{\partial z}{\partial y} = (x^2y - y^2x)'_y = x^2 \cdot (y)'_y - x \cdot (y^2)'_y = x^2 - 2yx;$$

$$\frac{\partial z}{\partial x}(M_0) = z'_x(-1;1) = 2 \cdot (-1) \cdot 1 - 1^2 = -3;$$

$$\frac{\partial z}{\partial y}(M_0) = z'_y(-1;1) = (-1)^2 - 2 \cdot 1(-1) = 3.$$

$$dz(M_0) = -3 \cdot 0.1 + 3 \cdot (-0.1) = -0.6.$$

Пример 1.11. Найти полный дифференциал для следующих функций:

a)
$$z = xy + \frac{x}{y}$$
; **6)** $z = x\sin(x+y)$; **B)** $u = \sqrt{x^2 + y - z}$;

$$\mathbf{r)}u = \arcsin\frac{xz+1}{y^3}.$$

Решение.

а) Полный дифференциал состоит из частных произ-

водных, поэтому найдём их:

$$\frac{\partial z}{\partial x} = \left(xy + \frac{x}{y}\right)'_{x} = y \cdot (x)'_{x} + \frac{1}{y}(x)'_{x} = y + \frac{1}{y};$$

$$\frac{\partial z}{\partial y} = \left(xy + \frac{x}{y}\right)'_y = x \cdot (y)'_y + x \cdot (y^{-1})'_y = x - \frac{x}{y^2};$$

Подставляя полученные значения $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ в формулу

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$
 имеем:

$$dz = \left(y + \frac{1}{y}\right)dx + \left(x - \frac{x}{y^2}\right)dy;$$

6)
$$\frac{\partial z}{\partial x} = \left(x\sin(x+y)\right)_{x}^{'} = (x)_{x}^{'} \cdot \sin(x+y) +$$

$$+x \cdot (\sin(x+y))'_r = \sin(x+y) + x\cos(x+y)$$

$$(x+y)'_x = \sin(x+y) + x\cos(x+y);$$

$$\frac{\partial z}{\partial y} = \left(x\sin(x+y)\right)_y' = x \cdot \left(\sin(x+y)\right)_y' =$$

$$= x\cos(x+y)(x+y)_x' = x\cos(x+y);$$

$$dz = \left(\sin(x+y) + x\cos(x+y)\right)dx + \left(x\cos(x+y)\right)dy;$$

в) Запишем функцию $u=\sqrt{x^2+y-z}~$ трёх перемен-

ных в виде $u = (x^2 + y - z)^{\frac{1}{2}}$ и найдём частные произ-

водные:

$$\frac{\partial u}{\partial x} = \left((x^2 + y - z)^{\frac{1}{2}} \right)_x' = \frac{1}{2} (x^2 + y - z)^{-\frac{1}{2}} \cdot \frac{1}{2} \cdot (x^2 + y - z)_x' = \frac{1}{2 \cdot \sqrt{x^2 + y - z}} \cdot 2x = \frac{x}{\sqrt{x^2 + y - z}};$$

$$\frac{\partial u}{\partial y} = \left((x^2 + y - z)^{\frac{1}{2}} \right)_y' = \frac{1}{2} (x^2 + y - z)^{-\frac{1}{2}} \cdot \frac{1}{2} \cdot (x^2 + y - z)_y' = \frac{1}{2 \cdot \sqrt{x^2 + y - z}};$$

$$\frac{\partial u}{\partial z} = \left((x^2 + y - z)^{\frac{1}{2}} \right)'_z = \frac{1}{2} (x^2 + y - z)^{-\frac{1}{2}} \cdot (x^2 + y - z)'_z = -\frac{1}{2 \cdot \sqrt{x^2 + y - z}};$$

$$du=rac{x}{\sqrt{x^2+y-z}}dx+rac{1}{2\sqrt{x^2+y-z}}dy- \ -rac{1}{2\cdot\sqrt{x^2+y-z}}dz$$
 или $du=rac{2xdx+dy-dz}{2\sqrt{x^2+y-z}};$

$$\frac{\partial u}{\partial x} = \left(\arcsin\frac{xz+1}{y^3}\right)'_x = \frac{1}{\sqrt{1 - \left(\frac{xz+1}{y^3}\right)^2}} \cdot \left(\frac{xz+1}{y^3}\right)'_x =$$

$$= \frac{1}{\sqrt{1 - \left(\frac{xz+1}{y^3}\right)^2}} \cdot \frac{1}{y^3} (xz+1)'_x = \frac{z}{\sqrt{y^6 - (xz+1)^2}};$$

$$\frac{\partial u}{\partial y} = \left(\arcsin\frac{xz+1}{y^3}\right)'_y = \frac{1}{\sqrt{1 - \left(\frac{xz+1}{y^3}\right)^2}} \cdot \left(\frac{xz+1}{y^3}\right)'_y =$$

$$= \frac{1}{\sqrt{1 - \left(\frac{xz+1}{y^3}\right)^2}} \cdot (xz+1)(y^{-3})'_y = \frac{-3(xz+1)y^{-4}}{\sqrt{y^6 - (xz+1)^2}} =$$

$$= -\frac{3(xz+1)}{y \cdot \sqrt{y^6 - (xz+1)^2}};$$

$$\begin{split} &\frac{\partial u}{\partial z} = \left(\arcsin\frac{xz+1}{y^3}\right)_z^{'} = \frac{1}{\sqrt{1-\left(\frac{xz+1}{y^3}\right)^2}} \left(\frac{xz+1}{y^3}\right)_z^{'} = \\ &= \frac{1}{\sqrt{1-\left(\frac{xz+1}{y^3}\right)^2}} \cdot \frac{1}{y^3} (xz+1)_z^{'} = \frac{x}{\sqrt{y^6-(xz+1)^2}}; \\ &du = \frac{z}{\sqrt{y^6-(xz+1)^2}} dx - \frac{3(xz+1)}{y \cdot \sqrt{y^6-(xz+1)^2}} dy + \\ &+ \frac{x}{\sqrt{y^6-(xz+1)^2}} dz \text{ или } du = \frac{zydx-3(xz+1)dy+xydz}{y\sqrt{y^6-(xz+1)^2}}. \end{split}$$

1.6. Применение полного дифференциала функции к приближенным вычислениям.

При достаточно малых $|\Delta x|$ и $|\Delta y|$, а значит, при до-

статочно малом

$$ho=\sqrt{(x-x_0)^2+(y-y_0)^2}=\sqrt{\Delta\,x^2+\Delta\,y^2}\,\,$$
 дифференцируемой функции $z=f(x;y)$ имеет место приближенное равенство $\Delta z\approx dz$.

Полное приращение имеет вид $\Delta z = f(x + \Delta \, x; y + \Delta \, y) - f(x; y)$, следовательно, равенство $\Delta z \approx dz$ можно также переписать в следующем виде:

$$f(x + \Delta x; y + \Delta y) \approx f(x; y) + \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y$$

Данной формулой пользуются при приближённых вычислениях.

Замечание: с помощью полного дифференциала

можно найти границы абсолютной и относительной погрешностей в приближенных вычислениях, приближенное значение полного приращения функции и так далее.

Пример 1.12. Вычислить приближенно:**a)** 1, 02 ^{5,03}; **6)** 0, 98 ^{2,01}; **в)** $\sqrt{\sin^2 1,55 + 9e^{0.015}}$.

Решение.

а) Число
$$1,02^{5,03}$$
 есть частное значение функции $z=f(x;y)=x^y$, $1,02^{5,03}=(1+0,02)^{5+0,03}=(x+\Delta\,x)^{y+\Delta\,y}$, где $x=1$, $\Delta\,x=0,02$,

$$y = 5$$
, $\Delta y = 0.03$.

Воспользуемся ранее полученной формулой

$$f(x+\Delta x;y+\Delta y)pprox f(x;y)+rac{\partial z}{\partial x}\Delta x+rac{\partial z}{\partial y}\Delta y$$
,тогда

$$1,02^{5,03} = f(1+0.02;5+0.03) \approx$$

$$\approx f(1;5) + \frac{\partial z}{\partial x}(1;5) \cdot 0.02 + \frac{\partial z}{\partial y}(1;5) \cdot 0.03$$

, предварительно находим f(1;5) и $\frac{\partial z}{\partial x}(1;5)$, $\frac{\partial z}{\partial y}(1;5)$:

$$f(1;5) = 1^5 = 1,$$

$$\frac{\partial z}{\partial x} = yx^{y-1},$$

$$\frac{\partial z}{\partial x}(1;5) = 5 \cdot 1^4 = 5,$$

$$\frac{\partial z}{\partial y} = x^y lnx,$$

$$\frac{\partial z}{\partial y}(1;5) = 1^5 \cdot ln1 = 0.$$

Следовательно,

$$1.02^{5.03} \approx 1 + 5 \cdot 0.02 + 0 \cdot 0.03 = 1 + 0.1 = 1.1$$

Таким образом, $1,02^{5,03} \approx 1,1$.

Для проверки вычислите, применяя калькулятор.

б) Принимаем
$$f(x; y) = x^y$$
,

$$\begin{array}{l} 0,98^{\ 2,01}=(1-0,02)^{2+0,01}=(x+\Delta\,x)^{y+\Delta\,y}\text{ , где }x=1\text{ ,}\\ \Delta\,x=-0,02,\\ y=2,\Delta\,y=0,01.\\ \text{Воспользуемся формулой}\\ f(x+\Delta\,x;y+\Delta\,y)\approx f(x;y)+\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta y,\text{ТОГДа}\\ 0,98^{\ 2,01}=f(1-0,02;2+0,01)\approx\\ \approx f(1;2)+\frac{\partial z}{\partial x}(1;2)\cdot(-0,02)+\frac{\partial z}{\partial y}(1;2)\cdot0,01,\\ \text{, HAXOДИМ }f(1;2)\text{ M}\frac{\partial z}{\partial x}(1;2)\text{ ,}\frac{\partial z}{\partial y}(1;2):\\ f(1;2)=1^2=1,\\ \frac{\partial z}{\partial x}=yx^{y-1},\\ \frac{\partial z}{\partial y}(1;2)=2\cdot1=2,\\ \frac{\partial z}{\partial y}=x^ylnx,\\ \frac{\partial z}{\partial y}(1;2)=1^2\cdot ln1=0.\\ \text{Следовательно, }0,98^{\ 2,01}\approx1+2\cdot(-0,02)+0\cdot0,01=0,96.\\ \textbf{B}\text{)}\text{ Принимаем }f(x;y)=\sqrt{\sin^2x+9e^y}=(\sin^2x+9e^y)^{\frac{1}{2}},\\ \sqrt{\sin^20,55+9e^{0,015}}=\sqrt{\sin^2(0+0,55)+9e^{0+0,015}}=\\ =\sqrt{\sin^2(x+\Delta\,x)+9e^{y+\Delta y}}\text{ , где }x=0\text{ , }\Delta\,x=0,55,\\ y=0,\Delta\,y=0,015.\\ \text{Воспользуемся формулой }f(x+\Delta\,x;y+\Delta\,y)\approx f(x;y)+\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta y,\text{ТОГДа}\\ \sqrt{\sin^20,55+9e^{0,015}}=f(0+0,55;0+0,015)\approx\\ \approx f(0;0)+\frac{\partial z}{\partial x}(0;0)\cdot0,55+\frac{\partial z}{\partial y}(0;0)\cdot0,015,\\ \text{, HAXОДИМ }f(0;0)\text{ M}\frac{\partial z}{\partial x}(0;0),\frac{\partial z}{\partial y}(0;0):\\ f(0;0)=\sqrt{\sin^20+9e^0}=3; \end{array}$$

 $\frac{\partial z}{\partial x} = \left((\sin^2 x + 9e^y)^{\frac{1}{2}} \right)_{...}^{'} = \frac{1}{2} (\sin^2 x + 9e^y)^{-\frac{1}{2}}.$

$$\cdot (\sin^2 x + 9e^y)_x' = \frac{2 sinx cos x}{2 \sqrt{sin^2 x + 9e^y}} = \frac{sinx cos x}{\sqrt{sin^2 x + 9e^y}};$$

$$\frac{\partial z}{\partial x}(0;0) = 0;$$

$$\frac{\partial z}{\partial y} = \left((sin^2 x + 9e^y)^{\frac{1}{2}} \right)_y' = \frac{1}{2} (sin^2 x + 9e^y)^{-\frac{1}{2}} \cdot$$

$$\cdot (sin^2 x + 9e^y)_y' = \frac{9e^y}{2 \sqrt{sin^2 x + 9e^y}};$$

$$\frac{\partial z}{\partial x}(0;0) = \frac{9}{6} = \frac{3}{2} = 1,5.$$
 Следовательно,
$$\sqrt{sin^2 0,55 + 9e^{0,015}} \approx 3 + 0 \cdot 0,55 + 1,5 \cdot 0,015 = 3,0225.$$

Задания для самостоятельного решения.

3. Найти полные дифференциалы следующих функций:

1	$z = \ln\left(1 + \frac{x}{y}\right)$	11	$z = \cos\left(x^5 y^2\right)$
2	$z = x^2 y^3$	12	$z = x^5 - 2xy^2 + 3xy - x$
3	$z = \frac{x}{y^2}$	13	$z = \ln\left(x^3 + y^3\right)$
4	$z = \frac{x - y}{x + y}$	14	$z = e^x(4y - xy - y^2)$
5	$z = x^3 - 3axy + y^3$	15	$v = arctg \frac{u}{t}$
6	$z = \sqrt{x^2 - y^2}$	16	$u = x^{y^2}$
7	$u=(xy)^z$	17	$z = x\sqrt{y} + \frac{y}{\sqrt[3]{x}}$

8	$z = \ln\left(x + \sqrt{x^2 + y^2}\right)$	18	$z = \ln tg \frac{x}{y}$
9	$z = arctg \frac{y}{x}$	19	$u = \frac{x}{\sqrt{y^2 + z^2}}$
10	$u = \sin(x^2 + y^2 + z^2)$	20	$z = (5x^2y - y^3 + 7)^3$

Ответы:

$$\mathbf{1.}dz = \frac{1}{x+y} dx - \frac{x}{y^2 + xy} dy$$

$$\mathbf{2.}dz = 2xy^3 dx + 3x^2y^2dy$$

3.
$$dz = \frac{1}{y^2} dx - \frac{2x}{y^3} dy$$

$$4.dz = \frac{2(ydx - xdy)}{(x+y)^2}$$

5.
$$dz = 3((x^2 - ay) dx + (y^2 - ax) dy)$$

$$\mathbf{6.} dz = \frac{xdx - ydy}{\sqrt{x^2 - y^2}}$$

7.
$$du = yz(xy)^{z-1} dx + xz(xy)^{z-1} dy + (xy)^{z} ln(xy) dz$$

8.
$$dz = \frac{1}{\sqrt{x^2 + y^2}} dx + \frac{y}{x\sqrt{x^2 + y^2} + x^2 + y^2} dy$$

$$\mathbf{9.} \ dz = \frac{xdy - ydx}{\sqrt{x^2 + y^2}}$$

10.
$$du = 2cos(x^2 + y^2 + z^2) \cdot (xdx + ydy + zdz)$$

11.
$$dz = -x^4 y sin(x^5 y^2)(5y dx + 2x dy)$$

12.
$$dz = (5x^4 - 2y^2 + 3y - 1)dx + (-4xy + 3x)dy$$

13.
$$dz = \frac{3}{x^3 + y^3} (x^2 dx + y^2 dy)$$

14.
$$dz = e^x((3y - xy - y^2)dx + (4x + 2y - 4)dy)$$

15.
$$dv = \frac{t}{u^2 + t^2} du - \frac{u}{u^2 + t^2} dt$$

16.
$$u = y^z x^{y^z - 1} dx z y^{z - 1} x^{y^z} \ln x \, dy + y^z x^{y^z} \ln x \ln y \, dz$$

17.
$$dz = \left(\sqrt{y} - \frac{y}{3\sqrt[3]{x^4}}\right) dx + \left(\frac{x}{2\sqrt{y}} + \frac{1}{\sqrt[3]{x}}\right) dy$$

$$\mathbf{18.}dz = \frac{2}{y\sin\frac{2x}{y}}dx - \frac{2x}{y^2\sin\frac{2x}{y}}dy$$

19.
$$du = \frac{dx}{\sqrt{y^2 + z^2}} - \frac{xydy + xzdz}{\sqrt{(y^2 + z^2)^3}}$$

$$20.dz = 30xy(5x^2y - y^3 + 7)^2dx +$$

$$+3(5x^2y - y^3 + 7)^2(5x^2 - 3y^2)dy$$

1.7. Дифференцирование неявных функций.

Функция z = f(x; y) называется неявной функцией переменных x и y, если она определяется уравне-

нием F(x; y; z) = 0 , то есть уравнением неразрешённым относительно z.

Например, $z = x^2 + y^2$ -явно заданная функция двух переменныхx, y;

arctgz - (x + z)y - 5 = 0 —неявно заданная функция двух переменных (z не выражено через x,y).

Теорема 1.2: если функция F(x;y;z) дифференцируема по переменным x,y,z в некоторой пространственной области и $F_z'(x;y;z) \neq 0$, то уравнение F(x;y;z) = 0

определяет однозначную неявную дифференцируемую функцию и её частные производные, могут быть найдены по формулам:

$$z'_{x} = -\frac{F'_{x}(x;y;z)}{F'_{z}(x;y;z)}, \ z'_{y} = -\frac{F'_{y}(x;y;z)}{F'_{z}(x;y;z)}$$

Доказательство.

Найдём частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ неявной функции

z, заданной уравнением F(x; y; z) = 0.

Для этого подставим в уравнение F(x;y;z)=0 вместо z функцию f(x;y),получим следу-

ющее равенство:

$$F(x;y;f(x;y))=0,$$

Продифференцировав равенство F(x; y; f(x; y)) = 0 по переменной x получим:

$$\frac{\partial}{\partial x}F(x;y;f(x;y)) = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} = 0, y = const;$$

Выражая из полученного равенства $\frac{\partial z}{\partial x} = z_x'$, учитывая,

что
$$\frac{\partial F}{\partial x} = F_x', \frac{\partial F}{\partial z} = F_z'$$
 имеем:

$$F'_{x} + F'_{z} \cdot z'_{x} = 0$$
, отсюда $z'_{x} = -\frac{F'_{x}}{F'_{z}}$

Продифференцировав равенство F(x; y; f(x; y)) = 0 по переменной y получим:

$$\frac{\partial}{\partial y}F(x;y;f(x;y)) = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial y} = 0, x = const;$$

$$F'_y + F'_z \cdot z'_y = 0, z'_y = -\frac{F'_y}{F'_z}.$$

Итак, $z_x' = -\frac{F_x'}{F_z'} z_y' = -\frac{F_y'}{F_z'}$,что и требовалось доказать.

Пример 1.13. Найти частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$, и полный дифференциал dz функции нескольких переменных xcosy + ycosz + zcosx - 1 = 0.

Решение.

Функция z = f(x; y) задана неявно уравнением

$$F(x; y; z) = x\cos y + y\cos z + z\cos x - 1 = 0.$$

Рассмотрим два способа решения данной задачи:

<u>1 способ</u> :(по формулам,)

Для этого найдем частные производные F_x', F_y', F_z' и подставим в данные формулы:

$$F'_{x} = (x\cos y + y\cos z + z\cos x - 1)'_{x} =$$

$$= \cos y - z\sin x;$$

$$F'_{y} = (x\cos y + y\cos z + z\cos x - 1)'_{y} =$$

$$= -x\sin y + \cos z,$$

$$F'_{z} = (x\cos y + y\cos z + z\cos x - 1)'_{z} =$$

$$= cosx - ysinz.$$

$$\begin{aligned} z_x' &= -\frac{F_x'}{F_z'} = -\frac{\cos y - z \sin x}{\cos x - y \sin z} = \frac{z \sin x - \cos y}{\cos x - y \sin z}; \\ z_y' &= -\frac{F_y'}{F_z'} = -\frac{-x \sin y + \cos z}{\cos x - y \sin z} = \frac{x \sin y - \cos z}{\cos x - y \sin z}. \end{aligned}$$

Найдём полный дифференциал dz:

$$dz = z'_x dx + z'_x dx;$$

$$dz = \frac{z sinx - cosy}{cosx - y sinz} dx + \frac{x siny - cosz}{cosx - y sinz} dy.$$

2 способ:

Вычислим дифференциал от левой и правой частей уравнения F(x,y,z)=0,

учитывая, что
$$d(UV)=dU\cdot V+dV\cdot U$$
, а $F(x,y,z)=xcosy+ycosz+zcosx-1=0$ имеем:

$$d(x\cos y + y\cos z + z\cos x - 1) = d(0),$$

$$d(x\cos y) + d(y\cos z) + d(z\cos x) - d(1) = 0,$$

$$\cos ydx + xd(\cos y) + \cos zdy + yd(\cos z) +$$

$$+\cos xdz + zd(\cos x) = 0,$$

$$cosydx - xsinydy + coszdy - ysinzdz + + cosxdz - zsinxdx = 0,$$
 собирая дифференциалы получим: $(cosy - zsinx)dx + + (cosz - xsiny)dy + (cosx - ysinz)dz = 0;$ Таким образом, $\frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy + \frac{\partial F}{\partial z}dz = (cosy - zsinx)dx + + (cosz - xsiny)dy + (cosx - ysinz)dz = 0,$ $\mathsf{ГДЕ} \frac{\partial F}{\partial x} = cosy - zsinx, \frac{\partial F}{\partial y} = cosz - xsiny,$ $\frac{\partial F}{\partial z} = cosx - ysinz.$

Выражая из полученного равенства dz, определяем $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$:

$$(cosx - ysinz)dz = -(cosy - zsinx)dx - (cosz - xsiny)dy \\ dz = \frac{zsinx - cosy}{cosx - ysinz}dx + \frac{xsiny - cosz}{cosx - ysinz}dy -$$
 полный дифференциал исходной функции, следовательно
$$\frac{\partial z}{\partial x} = \frac{zsinx - cosy}{cosx - ysinz}, \frac{\partial z}{\partial y} = \frac{xsiny - cosz}{cosx - ysinz} -$$
 частные производные.

Результаты совпали, следовательно, решение найдено верно.

Пример 1.14. Найти частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$

для функции заданной неявно уравнением:

a)
$$x^2 - 2y^2 + z^2 - 4x + 2z - 5 = 0$$
;

6)
$$e^z - xyz = 0$$
; **B)** $cos2z = y^2 - xe^{\frac{y}{z}}$.

Решение.

а) Обозначим левую часть данного равенства через функцию

$$F(x;y;z)=x^2-2y^2+z^2-4x+2z-5\,$$
 и найдем её частные производные:

$$F'_x = (x^2 - 2y^2 + z^2 - 4x + 2z - 5)'_x = 2x - 4,$$

$$F'_y = (x^2 - 2y^2 + z^2 - 4x + 2z - 5)'_y = -4y,$$

$$F'_z = (x^2 - 2y^2 + z^2 - 4x + 2z - 5)'_z = 2z + 2;$$

Применив формулы $z_x' = -\frac{F_x'}{F_x'}, z_y' = -\frac{F_y'}{F_x'}$, получим:

$$z'_{x} = -\frac{F'_{x}}{F'_{z}} = -\frac{2x - 4}{2z + 2} = \frac{2 - x}{z + 1};$$

$$z'_{y} = -\frac{F'_{y}}{F'_{z}} = -\frac{-4y}{2z + 2} = \frac{2y}{z + 2}.$$

6)
$$F = e^z - xyz$$
, так как

$$F_x' = (e^z - xyz)_x' = -yz,$$

$$F_{y}'=(e^{z}-xyz)_{y}'=-xz,$$

$$F_z' = (e^z - xyz)_z' = e^z - xy;$$

Учитывая, что по условию $e^{z} - xyz = 0$ или

 $e^z = xyz$,что тоже самое, имеем:

$$z'_{x} = -\frac{F'_{x}}{F'_{z}} = -\frac{-yz}{e^{z} - xy} = \frac{yz}{xyz - xy} =$$

$$=\frac{yz}{xy(z-1)}=\frac{z}{x(z-1)};$$

$$z'_{y} = -\frac{F'_{y}}{F'_{z}} = -\frac{-xz}{e^{z} - xy} = \frac{xz}{xyz - xy} =$$

$$=\frac{xz}{xy(z-1)}=\frac{z}{y(z-1)}.$$

в) Запишем данное уравнение в виде F(x; y; z) = 0:

$$\cos 2z - y^2 + xe^{\frac{y}{z}} = 0.$$

Найдём частные производные функции F(x; y; z):

$$F'_{x} = \left(\cos 2z - y^{2} + xe^{\frac{y}{z}}\right)'_{x} = e^{\frac{y}{z}}(x)'_{x} = e^{\frac{y}{z}},$$

$$F'_{y} = \left(\cos 2z - y^{2} + xe^{\frac{y}{z}}\right)'_{y} = -2y + x\left(e^{\frac{y}{z}}\right)'_{y} =$$

$$= -2y + xe^{\frac{y}{z}}\left(\frac{y}{z}\right)'_{y} = -2y + xe^{\frac{y}{z}} \cdot \frac{1}{z}(y)'_{y} =$$

$$= -2y + xe^{\frac{y}{z}} \cdot \frac{1}{z} = \frac{-2yz + xe^{\frac{y}{z}}}{z};$$

$$F'_{z} = \left(\cos 2z - y^{2} + xe^{\frac{y}{z}}\right)'_{z} = -2\sin 2z + x\left(e^{\frac{y}{z}}\right)'_{z} =$$

$$= -2\sin 2z + xe^{\frac{y}{z}}\left(\frac{y}{z}\right)'_{z} = -2\sin 2z + xye^{\frac{y}{z}}(z^{-1})'_{z} =$$

$$= -2\sin 2z - \frac{xye^{\frac{y}{z}}}{z^{2}} = \frac{-2z^{2}\sin 2z - xye^{\frac{y}{z}}}{z^{2}};$$

$$z'_{x} = -\frac{F'_{x}}{F'_{z}} = -\frac{e^{\frac{y}{z}}}{-2z^{2}\sin 2z - xye^{\frac{y}{z}}} = \frac{z^{2}e^{\frac{y}{z}}}{2z^{2}\sin 2z + xye^{\frac{y}{z}}};$$

$$z'_{y} = -\frac{F'_{y}}{F'_{z}} = -\frac{\frac{-2yz + xe^{\frac{y}{z}}}{z}}{\frac{-2z^{2}sin2z - xye^{\frac{y}{z}}}{z^{2}}} = \frac{z\left(xe^{\frac{y}{z}} - 2yz\right)}{2z^{2}sin2z + xye^{\frac{y}{z}}}.$$

Пример 1.15. Найти полный дифференциал функции z, определяемой равенством $cos^2x + cos^2y + cos^2z = 1$.

Решение.

Учитывая, что функция z = f(x; y) задана неявно урав-

нением
$$F(x; y; z) = 0$$
,

где
$$F(x; y; z) = cos^2x + cos^2y + cos^2z - 1$$
 и полный

дифференциал вычисляется по формуле $\frac{\partial z}{\partial z}$, $\frac{\partial z}{\partial z}$,

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$
 имеем:

$$F'_x = (\cos^2 x + \cos^2 y + \cos^2 z - 1)'_x = ((\cos x)^2)'_x =$$

$$=2cosx(cosx)'_{x}=-2sinxcosx=-sin2x;$$

$$F_y' = (\cos^2 x + \cos^2 y + \cos^2 z - 1)_y' = ((\cos y)^2)_y' =$$

$$= 2\cos y(\cos y)'_{v} = -2\sin y\cos y = -\sin 2y;$$

Аналогично получим $F'_z = -sin2z$;

$$z'_{x} = -\frac{-\sin 2x}{-\sin 2z} = -\frac{\sin 2x}{\sin 2z}; \ z'_{y} = -\frac{-\sin 2y}{-\sin 2z} = -\frac{\sin 2y}{\sin 2z};$$

Найдём полный дифференциал:

$$dz=-rac{\sin 2x}{\sin 2z}dx-rac{\sin 2y}{\sin 2z}dy$$
 или $dz=-rac{\sin 2x dx+\sin 2y dy}{\sin 2z}$.

Задания для самостоятельного решения.

4. Найти частные производные функции z = f(x; y)

заданной неявно уравнением F(x; y; z) = 0:

1	$z^3 + 3xyz = a^3$	11	$zln(xy) + xe^{-2z} = 0$
2	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	12	$z^2 + \sin(yz) - x = 0$
3	$x + arctg \frac{y}{z - x} = z$	13	$\sin(3x - 2z) + x^2yz = 0$
4	$x^3y + zy^3 + z^3y = 0$	14	$z^2 - \ln 2z + xy^3 = 0$
5	$x + y + z = e^{-(x+y+z)}$	15	$x - \cos(z + y) - z^3 = 0$
6	$x^2 - 2y^2 + z^2 - 4x + 2z - 5 = 0$	16	$z - y^2 e^{xz} = 0$
7	sin(z+y) + +cos(x-z) = 0	17	$e^x + ylnz - x = 0$
8	$3x^2 - 2y^2 + z^2 - -5x + 2 = 0$	18	$x^2 + y^2 + z^2 = 16$
9	$x^3 + 3y^2 - x^3z^2 + +5z + 8 = 0$	19	$z^3 - tg(3z + x^2y^2) = 0$
10	$x - y + z + 3 = xz^2$	20	$x^2y - xy^2 + xyz^3 + 6 = 0$

Ответы:

1.
$$z'_{x} = -\frac{yz}{xy+z^{2}};$$
 $z'_{y} = -\frac{xz}{xy+z^{2}};$ $z'_{y} = -\frac{xz}{xy+z^{2}};$ $z'_{y} = \frac{z}{y(2xe^{-2z}-ln(xy))};$ $z'_{y} = \frac{z}{y(2xe^{-2z}-ln(xy))};$ $z'_{y} = -\frac{c^{2}x}{a^{2}z};$ 12. $z'_{x} = \frac{1}{2z+y\cos(yz)};$ $z'_{y} = -\frac{z\cos(yz)}{2z+y\cos(yz)};$ 3. $z'_{x} = 1;$ 13. $z'_{x} = \frac{2\cos(3x-2z)+2xyz}{2\cos(3x-2z)-x^{2}y};$ $z'_{y} = \frac{x^{2}z}{2\cos(3x-2z)-x^{2}y};$ $z'_{y} = \frac{x^{2}z}{2\cos(3x-2z)-x^{2}y};$ $z'_{y} = \frac{x^{2}z}{2\cos(3x-2z)-x^{2}y};$ $z'_{y} = -\frac{x^{3}+3zy^{2}+z^{3}}{y^{3}+3z^{2}y};$ $z'_{y} = \frac{3y^{2}x}{\frac{1}{z}-2z};$ 5. $z'_{y} = \frac{x^{2}z}{e^{z}+1};$ 15. $z'_{x} = \frac{1}{3z^{2}-\sin(y+z)};$ $z'_{y} = \frac{\sin(y+z)}{3z^{2}-\sin(y+z)};$

6.
$$z'_x = \frac{2-x}{z+1}$$
; $z'_y = \frac{2y}{z+1}$

$$z'_y = \frac{2ye^{xz}}{1-xy^2e^{xz}}$$
;
$$z'_y = \frac{2ye^{xz}}{1-xy^2e^{xz}}$$

7.
$$z'_{x} = \frac{\sin(x-z)}{\cos(z+y) + \sin(x-z)};$$

$$z'_{y} = -\frac{\cos(z+y)}{\cos(z+y) + \sin(x-z)};$$

$$z'_{y} = -\frac{1}{z} \frac{\sin(x-z)}{z};$$

$$z'_{y} = -\frac{z\ln z}{y};$$

$$z'_{y} = -\frac{z\ln z}{z};$$

$$z'_{y} = -\frac{z\ln z}{z};$$

$$z'_{y} = -\frac{z\ln z}{z};$$

$$z'_{y} = \frac{z^{2}}{3z^{2}\cos^{2}(3z+x^{2}y^{2})};$$

$$z'_{y} = \frac{2yx^{2}}{3z^{2}\cos^{2}(3z+x^{2}y^{2})};$$

$$z'_{y} = \frac{2yx^{2}}{3z^{2}\cos^{2}(3z+x^{2}y^{2})};$$

$$z'_{y} = \frac{2yx^{2}}{3z^{2}\cos^{2}(3z+x^{2}y^{2})};$$

$$z'_{y} = -\frac{z^{2}}{3z^{2}\cos^{2}(3z+x^{2}y^{2})};$$

$$z'_{y} = -\frac{z^{2}}{3z^{2}\cos^{2}(3z+x^{2}y^{2})};$$

$$z'_{y} = -\frac{z^{2}}{3z^{2}\cos^{2}(3z+x^{2}y^{2})};$$

$$z'_{y} = -\frac{z^{2}}{3z^{2}\cos^{2}(3z+x^{2}z^{2})};$$

$$z'_{y} = -\frac{z^{2}}{3z^{2}\cos^{2}(3z+x^{2}z^{2})};$$

1.8. Производная сложной функции.

1)Случай одной независимой переменной.

Пусть z=f(x;y) функция двух независимых переменных x и y, каждая из которых является функцией одной независимой переменной t: x=x(t), y=y(t), тогда

функция z=f(x(t);y(t)) является сложной функцией одной переменной t (переменные x и y промежуточные).

Теорема 1.3: если z = f(x;y) дифференцируема в точке $M(x;y) \in D$ функция и x = x(t), y = y(t)- дифференцируемыми функции независимой переменной t, то производная сложной функции z = f(x(t);y(t)) вычисляется по формуле:

$$rac{dz}{dt} = rac{\partial z}{\partial x} \cdot rac{dx}{dt} + rac{\partial z}{\partial y} \cdot rac{dy}{dt}$$
 Доказательство.

Дадим независимой переменнойt приращение Δt ,тогда функции x=x(t)и y=y(t) получат приращение Δx и Δy соответственно, они в свою очередь вызовут приращение Δz функции z=f(x;y).

Так как по условию функция z=f(x;y) дифференцируема в точке M(x;y), то её полное приращение имеет вид:

$$\Delta z=A\cdot\Delta\,x+B\cdot\Delta\,y+lpha\cdot\Delta\,x+eta\cdot\Delta\,y$$
 , где $lpha=lpha(\Delta\,x;\Delta\,y) o 0$ и $eta=eta(\Delta\,x;\Delta\,y) o 0$ при

$$\Delta x \rightarrow 0, \Delta y \rightarrow 0$$
.

Учитывая, что $\frac{dz}{dt} = \lim_{\Lambda t \to 0} \frac{\Delta z}{\Lambda t}$ разделим обе части полного приращения на Δt и переходя к пределу в обеих частях равенства имеем:

$$\begin{split} &\Delta z = \frac{\partial z}{\partial x} \cdot \Delta \ x + \frac{\partial z}{\partial y} \cdot \Delta \ y + \alpha \cdot \Delta \ x + \beta \cdot \Delta \ y|:\Delta t, \\ &\frac{\Delta z}{\Delta t} = \frac{\partial z}{\partial x} \cdot \frac{\Delta \ x}{\Delta t} + \frac{\partial z}{\partial y} \cdot \frac{\Delta \ y}{\Delta t} + \alpha \cdot \frac{\Delta \ x}{\Delta t} + \beta \cdot \frac{\Delta \ y}{\Delta t}, \\ &\lim_{\Delta t \to 0} \frac{\Delta z}{\Delta t} = \lim_{\Delta t \to 0} \left(\frac{\partial z}{\partial x} \cdot \frac{\Delta \ x}{\Delta t} + \frac{\partial z}{\partial y} \cdot \frac{\Delta \ y}{\Delta t} + \alpha \cdot \frac{\Delta \ x}{\Delta t} + \beta \cdot \frac{\Delta \ y}{\Delta t} \right), \\ &\frac{dz}{dt} = \frac{\partial z}{\partial x} \lim_{\Delta t \to 0} \frac{\Delta \ x}{\Delta t} + \frac{\partial z}{\partial y} \lim_{\Delta t \to 0} \frac{\Delta \ y}{\Delta t} + \lim_{\Delta t \to 0} \alpha \cdot \lim_{\Delta t \to 0} \frac{\Delta \ x}{\Delta t} + \\ &+ \lim_{\Delta t \to 0} \beta \cdot \lim_{\Delta t \to 0} \frac{\Delta \ y}{\Delta t} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} + 0 \cdot \frac{dx}{dt} + 0 \cdot \frac{dy}{dt} = \\ &= \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}; \\ &\text{Таким образом, } \frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}. \end{split}$$

Таким образом, $\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$.

Замечание: в частности, если z = f(x; y), y = y(x),получим z = f(x; y(x))-сложную функцию независимой переменной x.

Этот случай сводится к предыдущему заменой tна x (dx = dt),согласно формуле , имеем:

$$rac{dz}{dx}=rac{\partial z}{\partial x}\cdotrac{dx}{dx}+rac{\partial z}{\partial y}\cdotrac{dy}{dx}$$
, полная производная функции z по переменной x

будет вычисляться следующим образом:

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}$$

Формулы

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}, \frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}$$

носят названия- формулы полной производной. 2)Случай нескольких независимых переменных.

Если z = f(x; y),где x = (u; v), y = y(u; v), тогда z = f(x(u; v); y(u; v))—сложная функция двух независимых переменных u и v.

Ее частные производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ можно найти, используя формулу $\frac{dz}{dt}=\frac{\partial z}{\partial x}\cdot\frac{dx}{dt}+\frac{\partial z}{\partial y}\cdot\frac{dy}{dt}$ заменив в данной формуле t на u (t=u) получим:

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u};$$

Аналогично, заменив в данной формуле t на v получим:

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v};$$

Таким образом, частные производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$, сложной функции z = f(x(u; v); y(u; v)) можно найти, используя формулы:

$$\begin{cases} \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} \\ \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} \end{cases}$$

Таким образом, производная сложной функции z = f(x(u; v); y(u; v)) по каждой независимой переменной u и v равна сумме произведений частных производных этой функции по ее промежуточным переменным x и y на их производные по соответствующим независимым переменным u и v.

Заметим, что в данном случае справедлива формула:

$$dz = \frac{\partial z}{\partial u}du + \frac{\partial z}{\partial v}dv$$
 —полный дифференциал функ-

ции
$$z = f(x(u; v); y(u; v))$$
.

Пример 1.16. Найти производную функции:

а)
$$z = x^2y^3$$
, где $x = t$, $y = t^2$;

6)
$$z = x \cos \frac{x}{y}$$
, где $x = 1 + 3t$, $y = \sqrt{1 + t^2}$;

в)
$$z = ln(x^2 - y^2)$$
, где $y = e^x$;

г)
$$z = arctg \frac{x+1}{y}$$
,где $y = e^{(1+x)^2}$;

д)
$$z = \frac{x^2}{v}$$
 ,где $x = uv$, $y = \frac{u}{v}$;

e)
$$z = 3^{x^2} arctgy$$
,где $x = \frac{u}{v}$, $y = uv$.

Решение.

a) Так как функция $z = x^2y^3$, x = t, $y = t^2$ является сложной функцией одной переменной t. Решение может быть найдено по формуле

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt},$$
 поэтому найдём
$$\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{dx}{dt}, \frac{dy}{dt}:$$

$$\frac{\partial z}{\partial x} = (x^2y^3)_x' = y^3(x^2)_x' = 2xy^3;$$

$$\frac{\partial z}{\partial y} = (x^2y^3)_y' = x^2(y^3)_y' = 3x^2y^2;$$

$$\frac{dx}{dt} = (t)' = 1;$$

$$\frac{dy}{dt} = (t^2)' = 2t.$$

Подставим найденные значения в формулу:

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = 2xy^3 \cdot 1 + 3x^2y^2 \cdot 2t =$$

$$= 2xy^3 + 6x^2y^2t = +2t \cdot (t^2)^3 + 6t^2(t^2)^2t =$$

$$= 2t^7 + 6t^7 = 8t^7$$
:

Замечание: можно как сохранить переменные xиy так

и заменить их через t(в зависимости от того упроститься или нет выражение после подстановки); Решение можно было найти иначе, подставив значение для $x=t,y=t^2$ в формулу $z=x^2y^3=t^2\cdot(t^2)^3=t^8$ и вычислив производную $\frac{dz}{dt}=(t^8)'=8t^7$.

6) Так как исходная функция является сложной функцией одной переменной t_{\cdot} Решение может быть

найдено по формуле $\dfrac{dz}{dt}=\dfrac{\partial z}{\partial x}\cdot\dfrac{dx}{dt}+\dfrac{\partial z}{\partial y}\cdot\dfrac{dy}{dt}$, поэтому найдём $\dfrac{\partial z}{\partial x},\dfrac{\partial z}{\partial y},\dfrac{dx}{dt}$ и подставим полученные значения в формулу:

$$\frac{\partial z}{\partial x} = \left(x\cos\frac{x}{y}\right)'_{x} = (x)'_{x} \cdot \cos\frac{x}{y} + x \cdot \left(\cos\frac{x}{y}\right)'_{x} = \\
= \cos\frac{x}{y} - x \cdot \sin\frac{x}{y}\left(\frac{x}{y}\right)'_{x} = \cos\frac{x}{y} - x \cdot \sin\frac{x}{y} \cdot \frac{1}{y}(x)'_{x} = \\
= \cos\frac{x}{y} - \frac{x}{y} \cdot \sin\frac{x}{y}; \\
\frac{\partial z}{\partial y} = \left(x\cos\frac{x}{y}\right)'_{y} = x\left(\cos\frac{x}{y}\right)'_{y} = -x\sin\frac{x}{y}\left(\frac{x}{y}\right)'_{y} = \\
= -x\sin\frac{x}{y} \cdot x(y^{-1})'_{y} = -x^{2}\sin\frac{x}{y}(-y^{-2}) = \left(\frac{x}{y}\right)^{2} \cdot \sin\frac{x}{y}; \\
\frac{dx}{dt} = (1 + 3t)' = 3; \\
\frac{dy}{dt} = \left(\sqrt{1 + t^{2}}\right)' = \left((1 + t^{2})^{\frac{1}{2}}\right)' = \frac{1}{2}(1 + t^{2})^{-\frac{1}{2}} \cdot (1 + t^{2})' = \\
= \frac{1}{2\sqrt{1 + t^{2}}} \cdot 2t = \frac{t}{\sqrt{1 + t^{2}}}; \\
\frac{dz}{dt} = 3 \cdot \left(\cos\frac{x}{y} - \frac{x}{y} \cdot \sin\frac{x}{y}\right) + \left(\frac{x}{y}\right)^{2} \cdot \sin\frac{x}{y} \cdot \frac{t}{\sqrt{1 + t^{2}}};$$

в) Так как исходная функция является сложной функцией одной переменной x. Решение может быть

найдено по формуле $\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}$. Найдём частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ и полную производную $\frac{dy}{dx}$:

$$\begin{split} \frac{\partial z}{\partial x} &= \left(\ln(x^2 - y^2) \right)_x' = \frac{1}{x^2 - y^2} \cdot (x^2 - y^2)_x' = \frac{2x}{x^2 - y^2}; \\ \frac{\partial z}{\partial y} &= \left(\ln(x^2 - y^2) \right)_y' = \frac{1}{x^2 - y^2} \cdot (x^2 - y^2)_y' = -\frac{2y}{x^2 - y^2}; \\ \frac{dy}{dx} &= (e^x)' = e^x; \end{split}$$

На основании формулы $\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}$ получаем:

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx} = \frac{2x}{x^2 - y^2} - \frac{2y}{x^2 - y^2} e^x = \frac{2(x - ye^x)}{x^2 - y^2} = \frac{2(x - ye^x)}{x^2 - y^2} = \frac{2(x - e^{2x})}{x^2 - y^2};$$

г) Так как исходная функция является сложной функцией одной переменной x. Решение может быть найдено по формуле $\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}$:

$$\frac{\partial z}{\partial x} = \left(\arctan \frac{x+1}{y}\right)_{x}' = \frac{1}{1+\left(\frac{x+1}{y}\right)^{2}} \cdot \left(\frac{x+1}{y}\right)_{x}' = \frac{1}{\frac{y^{2}+(x+1)^{2}}{y^{2}}} \cdot \frac{1}{y}(x+1)_{x}' = \frac{y}{y^{2}+(x+1)^{2}};$$

$$\frac{\partial z}{\partial y} = \left(\arctan \frac{x+1}{y}\right)_{y}' = \frac{1}{1+\left(\frac{x+1}{y}\right)^{2}} \cdot \left(\frac{x+1}{y}\right)_{y}' = \frac{1}{1+\left(\frac{x+1}{y}\right)^{2}} \cdot \left(\frac{x+1}{y}\right)_{y}' = \frac{1}{1+\left(\frac{x+1}{y}\right)^{2}} \cdot \left(\frac{x+1}{y}\right)_{y}' = \frac{x+1}{1+\left(\frac{x+1}{y}\right)^{2}} \cdot \left(-\frac{1}{y^{2}}\right) = \frac{x+1}{y^{2}+(x+1)^{2}};$$

$$\frac{dy}{dx} = \left(e^{(1+x)^{2}}\right)' = e^{(1+x)^{2}}((1+x)^{2})' = 2e^{(1+x)^{2}}(1+x);$$

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx} = \frac{y}{y^2 + (x+1)^2} - \frac{2(x+1)^2 e^{(1+x)^2}}{y^2 + (x+1)^2} = \frac{y - 2(x+1)^2 e^{(1+x)^2}}{y^2 + (x+1)^2} = \frac{e^{(1+x)^2} (1 - 2(x+1)^2)}{e^{2(1+x)^2} + (x+1)^2};$$

A) Так как функция $z=\frac{x^2}{y}$,где x=uv , $y=\frac{u}{v}$ сложная функция двух независимых переменных u и v,поэтому решение может быть найдено по

формулам
$$\begin{cases} \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} \\ \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} \end{cases}$$
 для этого находим част-

ные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial x}{\partial u}$, $\frac{\partial x}{\partial v}$, $\frac{\partial y}{\partial u}$, $\frac{\partial y}{\partial v}$.

$$\frac{\partial z}{\partial x} = \left(\frac{x^2}{y}\right)'_x = \frac{1}{y} \cdot (x^2)'_x = \frac{2x}{y};$$

$$\frac{\partial z}{\partial y} = \left(\frac{x^2}{y}\right)'_y = x^2 \left(\frac{1}{y}\right)'_y = x^2 (y^{-1})'_y = -\frac{x^2}{y^2};$$

$$\frac{\partial x}{\partial u} = (uv)'_u = v(u)'_u = v;$$

$$\frac{\partial x}{\partial v} = (uv)'_v = u(v)'_v = u;$$

$$\frac{\partial x}{\partial v} = \left(\frac{u}{v}\right)'_u = \frac{1}{v}(u)'_u = \frac{1}{v};$$

$$\frac{\partial y}{\partial v} = \left(\frac{u}{v}\right)'_u = u \cdot \left(\frac{1}{v}\right)'_v = u(v^{-1})'_v = -\frac{v}{v^2}$$

Применяя вышеуказанные формулы, получим:

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} = \frac{2x}{y} \cdot v - \frac{x^2}{y^2} \cdot \frac{1}{v};$$

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} = \frac{2x}{y} u - \frac{x^2}{y^2} \cdot \left(-\frac{v}{v^2}\right).$$

$$\text{Итак,} \begin{cases} \frac{\partial z}{\partial u} = \frac{2xv}{y} - \frac{x^2}{y^2v} \\ \frac{\partial z}{\partial v} = \frac{2xu}{y} + \frac{x^2v}{(yv)^2} \end{cases};$$

е) Сложная функция двух независимых переменных u и v,поэтому решение может быть найдено по

формулам
$$\begin{cases} \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} \\ \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} \end{cases}$$

$$\frac{\partial z}{\partial x} = \left(3^{x^2} arctgy\right)'_{x} = arctgy\left(3^{x^2}\right)'_{x} =$$

$$= arctgy \cdot 3^{x^2} ln3 \cdot (x^2)'_{x} = 2ln3 \cdot 3^{x^2} xarctg \ y,$$

$$\frac{\partial z}{\partial y} = \left(3^{x^2} arctgy\right)'_{y} = 3^{x^2} (arctgy)'_{y} = \frac{3^{x^2}}{1 + y^2};$$

$$\frac{\partial x}{\partial u} = \frac{1}{v}, \quad \frac{\partial x}{\partial v} = -\frac{u}{v^2}, \quad \frac{\partial y}{\partial u} = v, \quad \frac{\partial y}{\partial v} = u;$$
Составляем суммы соответствующих произведения

Составляем суммы соответствующих произведений:

$$\frac{\partial z}{\partial u} = \frac{2 \ln 3 \cdot 3^{x^2} x \ arctg \ y}{v} + \frac{3^{x^2} v}{1 + y^2},$$

$$\frac{\partial z}{\partial v} = -\frac{2 \ln 3 \ 3^{x^2} x u arctg \ y}{v^2} + \frac{3^{x^2} u}{1 + v^2}.$$

Ответ можно оставить в такой форме или выразить через u и v:

$$\frac{\partial z}{\partial u} = 2\ln 3 \cdot 3^{\frac{u^2}{v^2}} \frac{u}{v^2} \arctan(uv) + \frac{3^{\frac{u^2}{v^2}}v}{1 + u^2v^2},$$

$$\frac{\partial z}{\partial v} = -2\frac{u^2}{v^3} \cdot 3^{\frac{u^2}{v^2}} \ln 3 \arctan(uv) + \frac{u}{1 + u^2v^2} \cdot 3^{\frac{u^2}{v^2}}.$$

Пример 1.17. Показать, что функция $z = arctg \frac{x}{z}$,

где
$$x=u+v$$
, $y=u-v$, удовлетворяет соотношению $\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=\frac{u-v}{u^2+v^2}.$

Решение.

$$\frac{\partial z}{\partial x} = \left(arct g \frac{x}{y} \right)_{x}' = \frac{1}{1 + \left(\frac{x}{y} \right)^{2}} \cdot \left(\frac{x}{y} \right)_{x}' =$$

$$= \frac{1}{1 + \left(\frac{x}{y} \right)^{2}} \cdot \frac{1}{y} (x)_{x}' = \frac{1}{\frac{x^{2} + y^{2}}{y^{2}} \cdot y} = \frac{y}{x^{2} + y^{2}};$$

$$\frac{\partial z}{\partial y} = \left(arct g \frac{x}{y} \right)_{y}' = \frac{1}{1 + \left(\frac{x}{y} \right)^{2}} \cdot \left(\frac{x}{y} \right)_{y}' =$$

$$= \frac{1}{1 + \left(\frac{x}{y} \right)^{2}} \cdot x (y^{-1})_{y}' = -\frac{x}{\frac{x^{2} + y^{2}}{y^{2}} \cdot y^{2}} = -\frac{x}{x^{2} + y^{2}};$$

$$\frac{\partial x}{\partial u} = (u + v)_{u}' = (u)_{u}' = 1;$$

$$\frac{\partial x}{\partial v} = (u + v)_{v}' = (v)_{v}' = 1;$$

$$\frac{\partial y}{\partial v} = (u - v)_{u}' = (u)_{u}' = 1;$$

$$\frac{\partial y}{\partial v} = (u - v)_{v}' = -(v)_{v}' = -1;$$
Применяя формулы
$$\begin{cases} \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} + \frac{\partial z}{\partial v} \cdot \frac{\partial y}{\partial v} \cdot \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} = \frac{y}{x^{2} + y^{2}} - \frac{x}{x^{2} + y^{2}} =$$

$$= \frac{y - x}{x^{2} + y^{2}} = \frac{u - v - (u + v)}{(u + v)^{2} + (u - v)^{2}} = -\frac{2v}{2u^{2} + 2v^{2}} =$$

$$= -\frac{v}{u^{2} + v^{2}};$$

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} = \frac{y}{x^{2} + y^{2}} + \frac{x}{x^{2} + y^{2}} = .$$

$$= \frac{y + x}{x^{2} + v^{2}} = \frac{u - v + u + v}{(u + v)^{2} + (u - v)^{2}} = \frac{2u}{2u^{2} + 2v^{2}} = .$$

$$= \frac{y + x}{x^{2} + v^{2}} = \frac{u - v + u + v}{(u + v)^{2} + (u - v)^{2}} = \frac{2u}{2u^{2} + 2v^{2}} = .$$

$$=\frac{u}{u^2+v^2};$$

Покажем, что
$$\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=\frac{u-v}{u^2+v^2}$$
, $\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=-\frac{v}{u^2+v^2}+\frac{u}{u^2+v^2}=\frac{u-v}{u^2+v^2}$ —что и требовалось доказать.

Задания для самостоятельного решения.

5. **1)-12),17)-20)** Найти производную функции; **13)-16)** Найти дифференциал функции.

-			
1	$z = x^2 + y^3 + xy,$ x = asint, y = acost	11	$z = yx^2, y = cosx$
2	$z = xy^3, \ x = \sqrt{t},$ $y = cost^2$	12	$z = ln(x^2 - y^2),$ $y = x^2$
3	$z = lnsin \frac{x}{y},$ $x = 3t^{2},$ $y = \sqrt{t^{2} + 1}$	13	$z = x^{3} + y^{3},$ $x = uv,$ $y = \frac{u}{v}$
4	$z = e^{xy} \ln(x + y),$ $x = t^3, y = 1 - t^3$	14	$z = \sqrt{x^2 - y^2},$ $x = u^v,$ $y = u \ln v$
5	z = xyarctg(xy), $x = t^2 + 1, \ y = t^3$	15	$z = e^{x - \frac{2}{y}}, x = v\cos^2 u,$ $y = u\sin^2 v$

6	$z = e^{2x-3y},$ $x = tgt, \ y = t^2 - t$	16	$z = \frac{x^2}{y}, x = u - 2v,$ $y = v + 2u$
7	$z = x^y$, $x = lnt$, $y = sint$	17	$z = vu^{2} + u, u = x + 1,$ $v = x + e^{y}$
8	$z = \sin x \ln y, x = t^3,$ $y = e^t$	18	$z = vu^{2} + v, u = x + y^{2},$ $v = lnx + e^{y}$
9	$z=xe^y,y=\varphi(x)$	19	z = arctg(x + 2y), $x = t^2, \ y = t^3$
10	$z=e^{xy},y=\varphi(x)$	20	$z = \frac{y}{x}, x = e^t,$ $y = 1 - e^{2t}$

Ответы:

$$\mathbf{1.} \frac{dz}{dt} = a^2(\sin 2t + \cos 2t - 3a\cos^2 t \sin t)$$

$$\mathbf{2.}\frac{dz}{dt} = \frac{\cos^3 t^2}{2\sqrt{t}} - 3\sqrt{t^3} \cot^2 \sin 2t^2$$

3.
$$\frac{dz}{dt} = \frac{t}{y} ctg\left(\frac{x}{y}\right) \left(6 - \frac{x}{y^2}\right)$$

$$\mathbf{4.}\frac{dz}{dt}=0$$

5.
$$\frac{dz}{dt} = (y \ arctg \ xy + \frac{xy^2}{1+x^2y^2}) \cdot 2t + (y \ arctg \ xy + \frac{x^2y}{1+x^2y^2}) \cdot 3t^2$$

6.
$$\frac{dz}{dt} = 2e^{2x-3y} \frac{1}{\cos^2 t} - 3e^{2x-3y} (2t-1)$$

$$7.\frac{dz}{dt} = yx^{y-1}\frac{1}{t} + x^y \ln x \cos t$$

8.
$$\frac{dz}{dt} = t\cos(t^3) + \sin(t^3)$$

$$\mathbf{9.}\frac{dz}{dx} = e^y + xe^y \varphi'(x)$$

$$\mathbf{10.} \frac{dz}{dx} = ye^{xy} + xe^{xy}\varphi'(x)$$

11.
$$\frac{dz}{dx} = x(2\cos x - x\sin x)$$

12.
$$\frac{dz}{dx} = \frac{2(1-2x^2)}{x(1-x^2)}$$

13.

$$dz = 3v^{2}(v^{3} + \frac{1}{v^{3}})du + 3u^{3}(v^{2} - \frac{1}{v^{4}})dv$$

14.
$$dz = \left(\frac{x}{\sqrt{x^2 - y^2}} v u^{v-1} - \frac{y}{\sqrt{x^2 - y^2}} \ln v\right) du + \left(\frac{x u^v \ln u}{\sqrt{x^2 - y^2}} - \frac{y u}{v \sqrt{x^2 - y^2}}\right) dv$$

15.
$$dz = e^{x - \frac{2}{y}} \left(\frac{2}{y^2} \sin^2 v - v \sin^2 u \right) du + e^{x - \frac{2}{y}} \left(\cos^2 v + \frac{2}{y^2} u \sin^2 v \right) dv^3 -$$

16.
$$dz = \frac{x}{y} \left(2 \left(1 - \frac{x}{y} \right) du - \left(4 + \frac{x}{y} \right) dv \right)$$

17.
$$\frac{\partial z}{\partial x} = u^2 + 2uv$$
, $\frac{\partial z}{\partial y} = u^2 e^y$

18.
$$\frac{\partial z}{\partial x} = \frac{u^2 + 1}{x} + 2uv + 1,$$
$$\frac{\partial z}{\partial y} = (2uv + 1) \cdot 2y + (u^2 + 1)e^y$$

19.
$$\frac{dz}{dt} = \frac{2t(3t+1)}{1+t^4(1+2t)^2}$$

20.
$$\frac{dz}{dt} = -(e^{-t} + e^t)$$

1.9. Градиент функции и производная по направлению.

Градиент функции.

Рассмотрим функцию двух переменных n=2, z=f(x;y).

Градиентом функции нескольких переменных в данной точке называется вектор, координаты которого равны частным производным по соответствующим аргументам, вычисленным в данной точке M(x;y).

Обозначение:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$$

Аналогично вычисляется градиент для функции трёх переменных u = f(x; y; z), то есть

$$gradu|_{M} = (u'_{x}|_{M}; u'_{z}|_{M}; u'_{z}|_{M}).$$

Физический смысл градиента.

Градиент функции, то есть вектор $gradz|_{M}$ указывает направление, в котором функция z в точке M возрастает с максимальной скоростью. При этом, максимальная величина скорости равна:

$$|gradz|_{M}| = \sqrt{(z'_{x}|_{M})^{2} + \left(z'_{y}|_{M}\right)^{2}};$$

Пример 1.18. Найти градиент функции $z = x^2y$ в точке M(1; 2), вычислить величину градиента.

Решение.

Вычислим частные производные и их значения в точке M:

$$\begin{aligned}
\frac{\partial z}{\partial x} &= (x^2 y)_x' = y \cdot (x^2)_x' = 2xy; \\
\frac{\partial z}{\partial y} &= (x^2 y)_y' = x^2 (y)_y' = x^2; \\
\frac{\partial z}{\partial x}\Big|_M &= z_x'\Big|_M = (2xy)\Big|_M = 2 \cdot 1 \cdot 2 = 4; \\
\frac{\partial z}{\partial y}\Big|_M &= z_y'\Big|_M = (x^2)\Big|_M = 1.
\end{aligned}$$

Таким образом, $gradz|_{M}=\left(z'_{x}|_{M};z'_{y}|_{M}\right)=(4;1)$ -градиент функции $z=x^{2}y$ в точке M(1;2), то есть вектор, в направлении которого функция $z=x^{2}y$ возрастает в точке M(1;2).

 $|gradu|_{M}|=\sqrt{4^{2}+1^{2}}=\sqrt{17}$ —величина градиента-максимальная величина скорости возрастания.

Пример 1.19. Найти градиент функции $u = 2^{x+2y-z}$ в точке M(1; 0; 1).

Решение

$$\frac{\partial u}{\partial x} = (2^{x+2y+z})'_{x} = 2^{x+2y-z} \ln 2(x+2y-z)'_{x} = 2^{x+2y-z} \ln 2;$$

$$\frac{\partial u}{\partial y} = (2^{x+2y-z})'_{y} = 2^{x+2y-z} \ln 2 \cdot (x+2y-z)'_{y} = 2^{x+2y-z} \ln 2 \cdot 2 = 2^{x+2y-z} \ln 2;$$

$$\frac{\partial u}{\partial z} = (2^{x+2y-z})'_{z} = 2^{x+2y-z+1} \ln 2;$$

$$\frac{\partial u}{\partial z} = (2^{x+2y-z})'_{z} = 2^{x+2y-z} \ln 2 \cdot (x+2y-z)'_{z} = 2^{x+2y-z} \ln 2 \cdot 2 = 2^{x+2y-z} \ln 2 = 2^{x+2y-z} \ln$$

$$\begin{split} &= -2^{x+2y+3z} ln2; \\ &\frac{\partial u}{\partial x}\Big|_{M} = (2^{x+2y-z} ln2)|_{M} = 2^{1+2\cdot 0-1} ln2 = ln2; \\ &\frac{\partial u}{\partial y}\Big|_{M} = (2^{x+2y-z+1} ln2)|_{M} = 2^{1+2\cdot 0-1+1} ln2 = 2ln2; \\ &\frac{\partial u}{\partial z}\Big|_{M_{0}} = (2^{x+2y-z} ln2)|_{M} = 2^{1+2\cdot 0-1} ln2 = ln2. \end{split}$$

Таким образом, $gradu|_{M} = (ln2; 2ln2; ln2).$

Пример 1.20. Найти точки, в которых модуль градиента функции $z=(x^2+y^2)^{\frac{3}{2}}$ равен 2.

Решение.

Поскольку $gradz=\left(z_x';z_y'\right)$, то $|gradz|=\sqrt{{z_x'}^2+{z_y'}^2}$, найдём точки, где|gradz|=2, для этого вычислим частные производные исходной функции:

$$\begin{split} z_x' &= \left(\, (x^2 + y^2)^{\frac{3}{2}} \right)_x' = \frac{3}{2} \, (x^2 + y^2)^{\frac{1}{2}} (x^2 + y^2)_x' = \\ &= 3x \cdot \sqrt{x^2 + y^2}; \\ z_y' &= \left(\, (x^2 + y^2)^{\frac{3}{2}} \right)_y' = \frac{3}{2} \, (x^2 + y^2)^{\frac{1}{2}} (x^2 + y^2)_y' = \\ &= 3y \cdot \sqrt{x^2 + y^2}; \\ &\text{Если } |gradz| = 2, \text{то} \\ &\sqrt{\left(3x\sqrt{x^2 + y^2}\right)^2 + \left(3y\sqrt{x^2 + y^2}\right)^2} = 2, \\ &\sqrt{9x^2(x^2 + y^2) + 9y^2(x^2 + y^2)} = 2, \\ &\sqrt{9(x^2 + y^2)(x^2 + y^2)} = 2, \\ &\sqrt{\left(3(x^2 + y^2)\right)^2} = 2, \\ &3(x^2 + y^2) = 2, \text{ то есть } x^2 + y^2 = \frac{2}{3}. \end{split}$$

Таким образом точки, в которых модуль градиента функции $z = (x^2 + y^2)^{\frac{3}{2}} \text{ равен 2, это}$

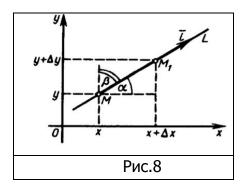
все точки, лежащие на окружности $x^2+y^2=\frac{2}{3}$ —окружность с центром в начале коор-

динат и радиусом
$$R = \sqrt{\frac{2}{3}}$$
.

Производная по направлению.

Рассмотрим функцию z = f(x; y) определённую и

дифференцируемую в некоторой окрестности точки M(x;y)и произвольный вектор \bar{l} - некоторое направление (вектор с началом в точке M(x;y)), α,β -углы, образованные вектором \bar{l} с осями координат



(рис.8), $\bar{l}^0=(coslpha;coseta)$ -орт этого направления.Для

характеристики скорости изменения функции z в точке M(x;y)в направлении вектора \bar{l} введём понятие производной по направлению.

Для этого проведём через точку M(x;y) прямую L, чтобы она совпала с вектором \bar{l} , и возьмём на прямой некоторую точку $M_1(x+\Delta x;y+\Delta y)$ и найдём скорость изменения функции при движении точки M. Направление движения точки M(x;y) будет показывать вектор $\overline{MM_1}=\bar{l}$, через Δl обозначим длину отрезка $|\overline{MM_1}|(|\overline{MM_1}|=\Delta l)$. Приращение функции z возникающее при переходе от точки M к точке M_1 в направлении вектора \bar{l} определя- ется следующим образом:

$$\Delta z = z(M_1) - z(M) = f(x + \Delta x; y + \Delta y) - f(x; y),$$

Предел отношения $\frac{\Delta z}{\Delta l}$ при $\Delta l \to 0(M_1 \to M)$ если он существует, называется производной функции z=f(x;y) в точке M в направлении вектора \bar{l} .

Обозначение:

$$\frac{\partial z}{\partial l} = \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l} = \lim_{M_1 \to M} \frac{z(M_1) - z(M)}{|\overline{M}\overline{M}_1|}$$

Предположим, что функция z=f(x;y) дифференцируема в точке M(x;y). Тогда её приращение можно записать в виде:

$$\Delta z = \frac{\partial z}{\partial x} \cdot \Delta x + \frac{\partial z}{\partial y} \cdot \Delta y + \alpha_1 \cdot \Delta x + \beta_1 \cdot \Delta y,$$

где
$$\alpha_1=\alpha_1(\Delta\,x;\Delta\,y) o 0$$
 и $\beta_1=\beta_1(\Delta\,x;\Delta\,y) o 0$ при

$$\Delta x \rightarrow 0, \Delta y \rightarrow 0.$$

Разделив обе части равенства на Δl и учитывая, что $cos\alpha = \frac{\Delta x}{\Delta l}, cos\beta = \frac{\Delta y}{\Delta l},$ имеем:

$$\frac{\Delta z}{\Delta l} = \frac{\partial z}{\partial x} \cdot \frac{\Delta x}{\Delta l} + \frac{\partial z}{\partial y} \cdot \frac{\Delta y}{\Delta l} + \alpha_1 \cdot \frac{\Delta x}{\Delta l} + \beta_1 \cdot \frac{\Delta y}{\Delta l},$$

$$\frac{\Delta z}{\Delta l} = \frac{\partial z}{\partial x} \cdot \cos\alpha + \frac{\partial z}{\partial y} \cdot \cos\beta + \alpha_1 \cdot \cos\alpha + \beta_1 \cdot \cos\beta .$$

Переходя к пределу в этом равенстве при $\Delta l \to 0$,

учитывая, что
$$\frac{\partial z}{\partial l}=\lim_{\Lambda l \to 0} \frac{\Delta z}{\Delta l}$$
 и α_1 , β_1 —бесконечно малые

функции при $\Delta l \rightarrow 0$ получим:

$$\lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l} = \lim_{\Delta l \to 0} \left(\frac{\partial z}{\partial x} \cdot \cos \alpha + \frac{\partial z}{\partial y} \cdot \cos \beta + \alpha_1 \cdot \cos \alpha + \beta_1 \cdot \cos \beta \right),$$

$$rac{\partial z}{\partial l} = rac{\partial z}{\partial x} \cdot coslpha + rac{\partial z}{\partial y} \cdot coseta$$
 - производная функции z в направлении вектора $ar{l}$.

Замечание: используя понятие градиента функции $gradz = \left(\frac{\partial z}{\partial x}; \frac{\partial z}{\partial y}\right)$ и учитывая, что орт вектора \bar{l} (единичный вектор \bar{l}^0) имеет координаты $\bar{l}^0 = (cos\alpha; cos\beta)$ ($\bar{l}^0 = \frac{\bar{l}}{|\bar{l}|}$) представим полученную формулу в виде скалярного произведения векторов gradz и \bar{l}^0 , то есть

$$\frac{\partial z}{\partial l} = gradz \cdot \bar{l}^{0} = (gradz, \bar{l}^{0})$$

Замечание: для функции трёх переменных u=f(x;y;z) производная по направлению определяется аналогично, то есть по формуле $\frac{\partial u}{\partial l} = \frac{\partial u}{\partial x} \cdot cos\alpha + \frac{\partial u}{\partial y} \cdot cos\beta + \frac{\partial u}{\partial z} \cdot cos\gamma$

Физический смысл производной по направлению.

Производная $\frac{\partial z}{\partial l}\Big|_{M}$ характеризует скорость изменения функции z в точке M в направлении данного вектора $ar{l}$. Если $\frac{\partial z}{\partial l}\Big|_{M}>0$,то функция возрастает в направлении вектора $ar{l}$ со скоростью $\Big|\frac{\partial z}{\partial l}\Big|_{M}\Big|_{M}$, ес-

 $\left. \operatorname{Diag}_{\overline{\partial l}} \right|_{M} < 0$, то функция убывает в направлении вектора \overline{l} со скоростью $\left| \frac{\partial z}{\partial l} \right|_{M} \right|$.

Пример 1.21. Найти градиент и производную функции $u=x^3y+xz^2+z^3y$ в точке M(-1;0;2) в направлении вектора $\overline{MM_1}=\bar{\iota}-\bar{\jmath}+\bar{k}$.

Решение.

Поскольку $\frac{\partial u}{\partial l}\Big|_{M}=gradu|_{M}\cdot \bar{l}^{0}$, то решение данной задачи будет состоять из двух этапов:

1)Найдём $gradu|_{M}$,для этого вычислим частные производные данной функции и их значения в точке M :

$$u'_{x} = (x^{3}y + xz^{2} + z^{3}y)'_{x} = y \cdot (x^{3})'_{x} + z^{2}(x)'_{x} =$$

$$= 3yx^{2} + z^{2};$$

$$u'_{y} = (x^{3}y + xz^{2} + z^{3}y)'_{y} = x^{3}(y)'_{y} + z^{3}(y)'_{y} =$$

$$= x^{3} + z^{3};$$

$$u'_{z} = (x^{3}y + xz^{2} + z^{3}y)'_{z} = x(z^{2})'_{z} + y(z^{3})'_{z} =$$

$$= 2xz + 3vz^{2};$$

Найдём значение частных производных в точке $M_{:}$

$$\frac{\partial u}{\partial x}\Big|_{M} = (3yx^{2} + z^{2})\Big|_{M} = 3 \cdot 0 \cdot (-1)^{2} + 2^{2} = 4;$$

$$\frac{\partial u}{\partial y}\Big|_{M} = (x^{3} + z^{3})\Big|_{M} = (-1)^{3} + 2^{3} = 7;$$

$$\frac{\partial u}{\partial z}\Big|_{M} = (2xz + 3yz^{2})|_{M} = 2 \cdot (-1) \cdot 2 + 3 \cdot 0 \cdot 2^{2} = -4.$$

Таким образом, $gradu|_{M} = (4; 7; -4);$

2)Находим единичный вектор \bar{l}^0 имеющий данное направление $\overline{MM_1}=\bar{\iota}-\bar{\jmath}+\bar{k}=(1;-1;1),$

$$\bar{l}^0 = \frac{\overline{MM_1}}{|\overline{MM_1}|} = \frac{(1;-1;1)}{\sqrt{1^2 + (-1)^2 + 1^2}} = \frac{(1;-1;1)}{\sqrt{3}} =$$

$$=\left(rac{1}{\sqrt{3}};rac{-1}{\sqrt{3}};rac{1}{\sqrt{3}}
ight)=\left(rac{\sqrt{3}}{3};-rac{\sqrt{3}}{3};rac{\sqrt{3}}{3}
ight);$$
3)Находим $\left.rac{\partial u}{\partial l}
ight|_{M}$:

$$\frac{\partial u}{\partial l}\Big|_{M} = gradu \cdot \bar{l}^{0} = 4 \cdot \frac{\sqrt{3}}{3} + 7 \cdot \left(-\frac{\sqrt{3}}{3}\right) + (-4) \cdot \frac{\sqrt{3}}{3} =$$

$$=rac{4\sqrt{3}-7\sqrt{3}-4\sqrt{3}}{3}=-rac{7\sqrt{3}}{3}<0$$
-функция убывает в направлении вектора $ar{l}=\overline{MM_1}$ со скоростью $\left|-rac{7\sqrt{3}}{3}
ight|=rac{7\sqrt{3}}{3}.$

Пример 1.22. Найти производную функции $z = ln(e^x + e^y)$ в начале координат в направлении луча, образующего с осью абсцисс угол 45^0 .

Решение.

1)Найдём $gradz|_{\mathcal{O}}$,для этого вычислим частные производные данной функции и их значения в начале координат $\mathcal{O}(0;0)$:

$$\frac{\partial z}{\partial x} = (\ln(e^x + e^y))'_x = \frac{1}{e^x + e^y}(e^x + e^y)'_x = \frac{e^x}{e^x + e^y};$$

$$\frac{\partial z}{\partial y} = (\ln(e^x + e^y))'_y = \frac{1}{e^x + e^y}(e^x + e^y)'_y = \frac{e^y}{e^x + e^y};$$

Найдём значение частных производных в точке O(0; 0):

$$\frac{\partial z}{\partial x}\Big|_{0} = \left(\frac{e^{x}}{e^{x} + e^{y}}\right)\Big|_{0} = \frac{e^{0}}{e^{0} + e^{0}} = \frac{1}{2};$$

$$\frac{\partial z}{\partial y}\Big|_{0} = \left(\frac{e^{x}}{e^{x} + e^{y}}\right)\Big|_{0} = \frac{e^{0}}{e^{0} + e^{0}} = \frac{1}{2};$$

Таким образом, $gradz|_{0} = \left(\frac{1}{2}; \frac{1}{2}\right)$.

2)Находим орт вектора, в направлении которого будем искать производную, то есть вектор единичной длины, образующего с осью абсцисс угол 45° :

$$\bar{l}^0 = (\cos\alpha; \cos\beta) = (\cos 45^0; \cos 45^0) = \left(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$$

3)Находим
$$\frac{\partial z}{\partial l}\Big|_{O}$$
:

$$\frac{\partial z}{\partial l}\Big|_{Q} = gradz\Big|_{Q} \cdot \overline{l}^{0} = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{2\sqrt{2}}{4} = \frac{\sqrt{2}}{2}$$

Задания для самостоятельного решения.

6. Вычислить градиент и производную ФНП в точке M в направлении вектора \bar{l} .

1	u = xyz, M(3; -1; 2), $\bar{l} = (0; 1; 3).$	11	$u = x^{3}y + xz^{2} + z^{3}y,$ M(-1; 0; 2), $\bar{l} = (1; -1; 1).$
2	$z = \frac{xy}{x^2 + y^2 + 1},$ M(0; 3), $\bar{l} = (3; 4).$	12	$u = y^{x} - z^{3},$ M(0; e; -1), $\bar{l} = (1; 2; -2).$

3	$u = arctg(xy^2z),$ $M(2; 1; 0), \bar{l} = 3\bar{\iota} + 4\bar{k}.$	13	$u = x^3y + xz^2 + z^3y$, $M(0; 1; 2), \bar{l} = (2; 2; 1)$.
4	$z = e^{\frac{2x}{x^2 + y^2}}, M(1; 1),$ $\bar{l} = (-3; 1).$	14	$z = xy^2 + 4x^3y$, $M(2; 3), \bar{l} = (3; 4)$.
5	$u = x^{2} + 2xz + y^{2},$ M(1; 2; -1), $\bar{l} = (1; 2; -2).$	15	$u = ln(x^2 + y^2 + z^2),$ $M(2; -3; 1), \bar{l} = (3; -4; 2).$
6	$z = 2x^2 + xy$, $M(-1; 2), \bar{l} = (3; 4)$.	16	$u = \frac{xyz}{x + y + z}, M(2; 1; 3),$ $\bar{l} = (-2; 1; 2)$
7	$u = ln(e^{x} + e^{y} + e^{z}),$ M(0; 0; 0), $\bar{l} = (1; -2; 2).$	17	$z = x^2 - xy + 3y^3$, $M(1; 1), \bar{l} = (-5; 12)$.
8	$z = x^{2} - xy + y^{3},$ M(1; -1), $\bar{l} = (3; -4).$	18	$z = 3x^2 + 5y^2, M(1; -1),$ $\bar{l} = (1; 2).$
9	$z = 3x^4 - xy + y^3,$ $M(1; 2), \bar{l} = (3; -4).$	19	$u = xy^2z^3$, $M(3; 2; 1)$, $\bar{l} = (2; 2; 1)$.
10	z = ln(2x + 3y), $M(1; 3), \bar{l} = (5; 12).$	20	$u = xy^2 + z^2 - xyz,$ $M(1; 2; 3), \bar{l} = (1; -2; 2).$

Ответы:

$$\begin{array}{c|c} \textbf{1.} gradu|_{M} = (-2; 6; -3), & \textbf{11.} & gradu|_{M} = (4; 7; -4), \\ \frac{\partial u}{\partial l}\Big|_{M} = -\frac{3\sqrt{10}}{10}, & \frac{\partial u}{\partial l}\Big|_{M} = -\frac{7\sqrt{3}}{3}. \end{array}$$

$$\begin{aligned}
& \left. \begin{array}{l} \mathbf{6.} gradz \right|_{M} = (-2; 3), \\
& \left. \frac{\partial z}{\partial l} \right|_{M} = \frac{6}{5} \\
& \left. \begin{array}{l} \partial u \\ \partial l \end{array} \right|_{M} = \frac{1}{6} \\
& \left. \begin{array}{l} \partial u \\ \partial l \end{array} \right|_{M} = \frac{1}{6} \\
& \left. \begin{array}{l} \partial u \\ \partial l \end{array} \right|_{M} = \frac{1}{6} \\
& \left. \begin{array}{l} \partial u \\ \partial l \end{array} \right|_{M} = \frac{1}{6} \\
& \left. \begin{array}{l} \partial u \\ \partial l \end{array} \right|_{M} = (1; 8), \\
& \left. \begin{array}{l} \partial z \\ \partial l \end{array} \right|_{M} = 7 \\
& \left. \begin{array}{l} \partial z \\ \partial l \end{array} \right|_{M} = 7 \\
& \left. \begin{array}{l} \partial z \\ \partial l \end{array} \right|_{M} = (6; -10), \\
& \left. \begin{array}{l} \partial z \\ \partial l \end{array} \right|_{M} = -\frac{14}{\sqrt{5}} \\
& \left. \begin{array}{l} \partial z \\ \partial l \end{array} \right|_{M} = -\frac{14}{\sqrt{5}} \\
& \left. \begin{array}{l} \partial z \\ \partial l \end{array} \right|_{M} = (2; 36), \\
& \left. \begin{array}{l} \partial z \\ \partial l \end{array} \right|_{M} = (2; 36), \\
& \left. \begin{array}{l} \partial z \\ \partial l \end{array} \right|_{M} = 22 \frac{2}{3} \\
& \left. \begin{array}{l} \partial z \\ \partial l \end{array} \right|_{M} = \frac{46}{143} \\
& \left. \begin{array}{l} \partial z \\ \partial l \end{array} \right|_{M} = \frac{4}{3} \\
& \left. \begin{array}{l} \partial z \\ \partial l \end{array} \right|_{M} = \frac{4}{3} \end{aligned}$$

1.10. Уравнение касательной плоскости и нормали к поверхности.

Уравнение касательной плоскости и нормали к поверхности заданной неявно.

Пусть уравнение F(x; y; z) = 0 определяет

функцию z=f(x;y) , заданную неявно на некотором множестве точек $(x,y)\in D$. Совокупность точек M(x;y;f(x;y)), где $(x,y)\in D$, в пространстве R^3 образует некоторую поверхность S, которая называется графиком функции z=f(x;y).Пусть $M_0(x_0;y_0;z_0)$ —

Касательной плоскостью к поверхности z = f(x; y)

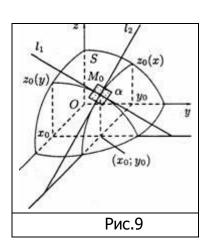
в точке $M_0(x_0; y_0; z_0)$, называ-

точка поверхности S.

ется плоскость, содержащие все касательные к поверхности, проведённые в точке M_0 (см.рис.9).Прямые l_1 и

 l_2 определяют плоскость α ,

которая называется **касательной плоскостью** к поверхности в точке M_0 .



Прямая, проходящая через точку M_0 перпендикулярно к касательной плоскости, называется **нормалью** к поверхности.

Уравнение касательной плоскости к поверхности

в точке

 $M_0(x_0; y_0; z_0)$ имеет вид:

$$F'_{x}(M_{0})(x-x_{0})+F'_{y}(M_{0})(y-y_{0})+F'_{z}(M_{0})(z-z_{0})=0$$

Уравнение нормали к поверхности в точке M_0 :

$$\frac{x - x_0}{F_x'(M_0)} = \frac{y - y_0}{F_y'(M_0)} = \frac{z - z_0}{F_z'(M_0)}$$

Замечание: если поверхность задана явно уравнениемz = f(x; y), то уравнения касательной плоскости имеет вид

$$f'_{x}(M_{0})(x-x_{0})+f'_{y}(M_{0})(y-y_{0})-(z-z_{0})=0$$

и уравнения нормали определяется равенством

$$\frac{x-x_0}{f_x'(M_0)} = \frac{y-y_0}{f_y'(M_0)} = \frac{z-z_0}{-1}$$

Алгоритм нахождения касательной плоскости и нормали к поверхности:

- **1)**найти частные производные функции, которой задана поверхность;
- **2)**найти значения найденных частных производных в точке M_0 ;
- **3)**найденные значения частных производных и координаты точки M_0 подставить в уравнения касательной

плоскости и нормали к поверхности.

Пример 1.23. Написать уравнения касательной плоскости и нормали к поверхности в точке M_0 :

a)
$$z = \frac{3x}{x^2 - y^2}$$
, $M_0(1; 0; 3)$;

6)
$$\sqrt{x^2+y^2}-\frac{xy}{z}=11, M_0(3;-4;2);$$

B)
$$e^{xyz} - 5z + x^2y - e^z = 4$$
, $M_0(2; 1; 0)$.

Решение.

а) Поскольку поверхность задана явно уравнением $z = \frac{3x}{x^2 - y^2}$, то для нахождения

касательной плоскости и нормали к поверхности воспользуемся формулами:

$$z - z_0 = f_x'(x_0; y_0)(x - x_0) + f_y'(x_0; y_0)(y - y_0)$$
 - ypashe-

ние касательной плоскости;

и
$$\frac{x-x_0}{f_x'(x_0;y_0)} = \frac{y-y_0}{f_y'(x_0;y_0)} = \frac{z-z_0}{-1}$$
 – уравнение нормали.

Для этого найдем частные производные данной функции и их значения в точке M_0 :

$$f_x' = \left(\frac{3x}{x^2 - y^2}\right)_x' = 3\left(\frac{x}{x^2 - y^2}\right)_x' =$$

$$=3\frac{(x)'_x(x^2-y^2)-x(x^2-y^2)'_x}{(x^2-y^2)^2}=$$

$$=3\cdot\frac{x^2-y^2-2x^2}{(x^2-y^2)^2}=-\frac{3(x^2+y^2)}{(x^2-y^2)^2};$$

$$f_y' = \left(\frac{3x}{x^2 - y^2}\right)_y' = 3x((x^2 - y^2)^{-1})_y' =$$

$$=-3x(x^2-y^2)^{-2}\cdot(x^2-y^2)'_y=\frac{6xy}{(x^2-y^2)^2};$$

$$f_x'(1;0) = -\frac{3(1^2 + 0^2)}{(1^2 - 0^2)^2} = -3,$$

$$f_y'(1;0) = \frac{6 \cdot 1 \cdot 0}{(1^2 - 0^2)^2} = 0.$$

Найденные значения частных производных и координаты точки M_0 подставить в уравнения касательной

плоскости и нормали:

$$z - 3 = -3(x - 1) + 0(y - 0),$$

$$z - 3 = -3x + 3$$
 или

3x + z - 6 = 0 — уравнение касательной плоскости;

$$\frac{x-1}{x-3} = \frac{y-0}{0} = \frac{z-3}{x-1}$$
—уравнения нормали;

6) Поверхность задана неявно уравнением $\sqrt{x^2 + y^2} - \frac{xy}{z} = 11$ или

$$\sqrt{x^2+y^2}-rac{xy}{x}-11=0$$
,поэтому в дальнейшем, для

нахождения касательной плоскости и нормали будем использовать следующие формулы

$$F_x'(x_0;y_0;z_0)(x-x_0)+F_y'(x_0;y_0;z_0)(y-y_0)+F_z'(x_0;y_0;z_0)(z-z_0)=0$$
-уравнение касательной плос-

кости;

$$rac{x-x_0}{F_z'(x_0;y_0;z_0)}=rac{y-y_0}{F_y'(x_0;y_0;z_0)}=rac{z-z_0}{F_z'(x_0;y_0;z_0)}$$
 -уравнение нормали.

Обозначив через F(x; y; z)левую часть уравнения, име-

$$\mathsf{em}F(x;y;z) = \sqrt{x^2 + y^2} - \frac{xy}{z} - 11 = 0.$$

Найдем частные производные и их значения в точке $M_0(3; -4; 2)$:

$$F_{x}' = \left((x^{2} + y^{2})^{\frac{1}{2}} - \frac{xy}{z} - 11 \right)_{x}' =$$

$$= \frac{1}{2} (x^{2} + y^{2})^{-\frac{1}{2}} \cdot (x^{2} + y^{2})_{x}' - \frac{y}{z} (x)_{x}' =$$

$$= \frac{x}{\sqrt{x^{2} + y^{2}}} - \frac{y}{z};$$

$$F_{y}' = \left((x^{2} + y^{2})^{\frac{1}{2}} - \frac{xy}{z} - 11 \right)_{y}' =$$

$$= \frac{1}{2} (x^{2} + y^{2})^{-\frac{1}{2}} \cdot (x^{2} + y^{2})_{y}' - \frac{x}{z} (y)_{y}' =$$

$$= \frac{y}{\sqrt{x^{2} + y^{2}}} - \frac{x}{z};$$

$$F_z' = \left((x^2 + y^2)^{\frac{1}{2}} - \frac{xy}{z} - 11 \right)_z' =$$

$$= -xy \left(\frac{1}{z} \right)_z' = -xy(z^{-1})_z' =$$

$$= -xy(-z^{-2}) = \frac{xy}{z^2};$$

$$F_x'(3; -4; 2) = \frac{3}{\sqrt{3^2 + (-4)^2}} - \frac{(-4)}{2} =$$

$$= \frac{3}{5} + 2 = \frac{13}{5} = 2,6;$$

$$F_y'(3; -4; 2) = \frac{-4}{\sqrt{3^2 + (-4)^2}} - \frac{3}{2} = -\frac{4}{5} - \frac{3}{2} =$$

$$= -\frac{14}{10} = -1,4;$$

$$F_z'(3; -4; 2) = \frac{3 \cdot (-4)}{3^2} = -3;$$

Найденные значения частных производных и координаты точки M_0 подставить в уравнения касательной

плоскости и нормали:

$$\frac{13}{5}(x-3) - \frac{14}{10}(y+4) - 3(z-2) = 0 | \cdot 5,$$

$$13(x-3) - 7(y+4) - 15(z-2) = 0,$$

$$13x - 7y - 15z - 34 = 0$$
— уравнение касательной

плоскости,

$$\frac{x-3}{2.6} = \frac{y+4}{-1.4} = \frac{z-2}{-3}$$
 — уравнение нормали.

в) Поверхность задана неявно уравнением $e^{xyz} - 5z + x^2y - e^z = 4$ или

$$e^{xyz} + x^2y - 5z - 4 = 0$$
,то есть

$$F(x; y; z) = e^{xyz} + x^2y - 5z - 4 = 0$$

Найдем частные производные и их значения в точке $M_0(1;1;0)$:

$$F'_{x} = (e^{xyz} + x^{2}y - 5z - 4)'_{x} = e^{xyz}yz(x)'_{x} + y(x^{2})'_{x} =$$

$$= e^{xyz}yz + 2xy;$$

$$F_y' = (e^{xyz} + x^2y - 5z - 4)_y' = e^{xyz}xz(y)_y' + x^2(y)_y' =$$

$$=e^{xyz}xz+x^2;$$

$$F'_z = (e^{xyz} + x^2y - 5z - 4)'_z = e^{xyz}xy - 5;$$

$$F_x'(1;1;0) = e^{1\cdot 1\cdot 0} \cdot 1\cdot 0 + 2\cdot 1\cdot 1 = 2;$$

$$F_{\nu}'(1;1;0) = e^{1\cdot 1\cdot 0} \cdot 1\cdot 0 + 1^2 = 1;$$

$$F_z'(1;1;0) = e^{1\cdot 1\cdot 0} \cdot 1\cdot 0 - 5 = -5;$$

Подставляем полученные значения в формулы, получим:

$$2(x-1) + 1(y-1) - 5(z-0) = 0,$$

2x + y - 5z - 3 = 0— уравнение касательной плоскости,

$$\frac{x-1}{2} = \frac{y-1}{1} = \frac{z}{-5}$$
 — уравнение нормали.

Задания для самостоятельного решения.

7. Составить уравнения касательной плоскости и

нормали к поверхности в данной точке M_0 .

1
$$x(y+z)(xy-z) + 8 = 0, M_0(2; 1; 3)$$

2 $x^3y + xz^3 - 3xy + 4x^2 = 0, M_0(0; -1; 2)$
3 $e^z - z + xy = 3, M_0(2; 1; 0)$
4 $x^2 + y^2 + z^2 = 14, M_0(1; 2; 3)$
5 $xyz^2 + 2y^2 + 3yz + 4 = 0, M_0(0; 2; -2)$
6 $z = x^2 + \sin xy + 2\sqrt{y}, M_0(0; 1; 2)$
7 $z = \sin x \cos y, M_0\left(\frac{\pi}{4}; \frac{\pi}{4}; \frac{1}{2}\right)$
8 $x^2 + y^2 - 2z^2 - 10 = 0, M_0(1; -1; 2)$

9
$$z = (x - y)arcsiny + (x - y)^2, M_0(1; 0; 1)$$

10 $z = xy, M_0(1; 1; 1)$
11 $z = \sqrt{x^2 + y^2} - xy, M_0(3; 4; -7)$
12 $z = arctg\frac{y}{x}, M_0\left(1; 1; \frac{\pi}{4}\right)$
13 $(z^2 - x^2)xyz - y^5 = 5, M_0(1; 1; 2)$
14 $x^3 + y^3 + z^3 + xyz - 6 = 0, M_0(1; 2; -1)$
15 $z = 2x^2 - 4y^2, M_0(2; 1; 4)$
16 $z = x^2 - 4xy + y^2, M_0(-2; 1; 13)$
17 $2^{\frac{x}{2}} + 2^{\frac{y}{2}} = 8, M_0(2; 2; 1)$
18 $z = x^2 + y^2, M_0(1; 2; 5)$
19 $x^2 + 3y^2 - 4z^2 = 15, M_0(2; -3; 2)$
20 $z = \frac{x^3 - 3axy + y^3}{a^2}, M_0(a; a; -a)$

Ответы:

1.
$$2x + 7y - 5z + 4 = 0$$
,
 $x - 2 y - 1 z - 3$

11.
$$17x + 11y + 5z - 60 = 0$$
,

$$\frac{x-2}{4} = \frac{y-1}{14} = \frac{z-3}{-10}$$

$$\frac{x-2}{4} = \frac{y-1}{14} = \frac{z-3}{-10} \qquad \qquad \frac{x-3}{17} = \frac{y-1}{11} = \frac{z-3}{5}$$

2.
$$x = 0, \frac{x}{14} = \frac{y+1}{0} = \frac{z-2}{0}$$
 12. $x - y + 2z - \frac{\pi}{2} = 0,$

12.
$$x - y + 2z - \frac{\pi}{2} = 0$$
,

$$\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z - \frac{\pi}{2}}{2}$$

3.
$$x + 2y - 4 = 0$$
,

$$\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{0}$$

13.
$$2x + y + 11z - 25 = 0$$
,

$$\frac{x-1}{2} = \frac{y-1}{1} = \frac{z-2}{11}$$

4.
$$x + 2y + 3z - 14 = 0$$
,

4.
$$x + 2y + 3z - 14 = 0$$
, **14.** $x + 11y + 5z - 18 = 0$, $\frac{x - 1}{2} = \frac{y - 2}{4} = \frac{z - 3}{6}$ $\frac{x - 1}{1} = \frac{y - 2}{11} = \frac{z + 1}{5}$

14.
$$x + 11y + 5z - 18 = 0$$
,

$$\frac{x-1}{1} = \frac{y-2}{11} = \frac{z+1}{5}$$

5.
$$4x + y + 3z + 4 = 0$$
,

$$\frac{x}{4} = \frac{y-2}{1} = \frac{z+2}{3}$$

$$15.8x - 8y - z - 4 = 0,$$

$$\frac{x-2}{8} = \frac{y-1}{-8} = \frac{z-4}{-1}$$

6.
$$x + y - z + 1 = 0$$
, $\frac{x}{1} = \frac{y-1}{1} = \frac{z-2}{-1}$ $\frac{x+2}{8} = \frac{y-1}{-10} = \frac{z-13}{1}$

7. $\frac{x-y-2z-1=0}{1} = \frac{z-\frac{1}{2}}{-1}$ $\frac{x-2}{1} = \frac{y-\frac{\pi}{4}}{1} = \frac{z-\frac{1}{2}}{-1}$

8. $x-y-4z+6=0$, $\frac{x-1}{2} = \frac{y+1}{-2} = \frac{z-2}{-8}$ $\frac{x-1}{2} = \frac{y-2}{4} = \frac{z-5}{-1}$

9. $2x-y-z-1=0$, $\frac{x-1}{2} = \frac{y}{-1} = \frac{z-1}{-1}$ $\frac{x-2}{2} = \frac{y+3}{-9} = \frac{z-2}{-8}$

10. $x+y-z-1=0$, $\frac{x-2}{2} = \frac{y+3}{-9} = \frac{z-2}{-8}$

10. $x+y-z-1=0$, $\frac{x-2}{1} = \frac{y+3}{-1} = \frac{z-2}{-1}$ $\frac{x-2}{1} = \frac{y+3}{0} = \frac{z-2}{1}$

ГЛАВА 2. ЧАСТНЫЕ ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ

2.1. Частные производные высших порядков

Частные производные второго порядка и выше называются частными производными высших порядков.

Предположим, что функция z=f(x;y) имеет частные производные первого порядка $\frac{\partial z}{\partial x}=f_x'(x;y), \frac{\partial z}{\partial y}=f_y'(x;y)$, которые являются функциями двух переменных. Предположим, что они дифференцируемы.

Частные производные от частных производных первого порядка называются **частными производными второго порядка.**

Существует четыре вида частных производных второго порядка:

$$z''_{xx} = (z'_x)'_x; \ z''_{yy} = (z'_y)'_y; z''_{xy} = (z'_x)'_y; z''_{yx} = (z'_y)'_x.$$

Для них применяются следующие обозначения:

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial x^2} = f''_{xx}(x; y) = z''_{xx};$$

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial y^2} = f''_{yy}(x; y) = z''_{yy};$$

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial x \partial y} = f''_{xy}(x; y) = z''_{xy} = (z'_x)'_y;$$

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial y \partial x} = f''_{yx}(x; y) = z''_{yx} = (z'_y)'_x.$$

Если полученные функции являются дифференцируемыми, то частные производные от них называются частными производными третьего порядка. Например, $z_{yxx}^{\prime\prime\prime}=\left(z_{yx}^{\prime\prime}\right)_{x}^{\prime}$.

Частная производная высшего порядка, взятая по различным переменным, называется **смешанной частной** производной. Такими являются производные: $z_{xy}^{\prime\prime}, z_{yx}^{\prime\prime\prime}, z_{yxy}^{\prime\prime\prime}$ и так далее.

Теорема 2.1.(Шварца): если смешанные частные производные второго порядка непрерывны, то они равны между собой:

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$$

Примем без доказательств.

Таким образом, результат смешанного дифференцирования не зависит от порядка дифференцирования.

Замечание: аналогично определяются смешанные частные производные высших порядков, например, $z_{vxx}^{\prime\prime\prime}=z_{xvx}^{\prime\prime\prime}$.

Таким образом, если частные производные, подлежащие вычислению, непрерывны, то результат многократного дифференцирования не зависит от порядка дифференцирования.

Пример 2.1. Найти частные производные второго порядка от функции:

a)
$$z = y \ln x$$
; **6)** $z = e^{2x+3y}$; **B)** $z = (x^2 + y^2) \ln 2x$;

$$\mathbf{r)} z = x^2 \sin \sqrt{y}.$$

Решение.

а) Найдем для начала частные производные первого порядка:

$$\frac{\partial z}{\partial x} = (y \ln x)_x' = y(\ln x)_x' = \frac{y}{x};$$

$$\frac{\partial z}{\partial y} = (y \ln x)'_{y} = \ln x(y)'_{y} = \ln x;$$

Теперь дифференцируем вторично:

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{y}{x} \right) = \left(\frac{y}{x} \right)_x' = y \left(\frac{1}{x} \right)_x'$$

6) Найдем частные производные первого порядка:

$$\frac{\partial z}{\partial x} = (e^{2x+3y})'_x = e^{2x+3y}(2x+3y)'_x = 2e^{2x+3y};$$

$$\frac{\partial z}{\partial y} = (e^{2x+3y})'_y = e^{2x+3y}(2x+3y)'_y = 3e^{2x+3y};$$

Находим частные производные второго порядка:

$$\frac{\partial^{2}z}{\partial x^{2}} = 2(e^{2x+3y})'_{x} = 2e^{2x+3y}(2x+3y)'_{x} = 4e^{2x+3y};$$

$$\frac{\partial^{2}z}{\partial y^{2}} = 2(e^{2x+3y})'_{y} = 2e^{2x+3y}(2x+3y)'_{y} = 6e^{2x+3y};$$

$$\frac{\partial^{2}z}{\partial x \partial y} = 2(e^{2x+3y})'_{y} = 2e^{2x+3y}(2x+3y)'_{y} = 6e^{2x+3y};$$

$$\mathbf{B})\frac{\partial z}{\partial x} = \left((x^{2}+y^{2})\ln 2x\right)'_{x} = (x^{2}+y^{2})'_{x} \cdot \ln 2x + \left(\ln 2x\right)'_{x} \cdot (x^{2}+y^{2}) = 2x\ln 2x + \frac{1}{2x}(2x)'_{x} \cdot \left(x^{2}+y^{2}\right) = 2x\ln 2x + \frac{1}{x} \cdot (x^{2}+y^{2}) = 2x\ln 2x + x + \frac{y^{2}}{x};$$

$$\frac{\partial z}{\partial y} = \left((x^{2}+y^{2})\ln 2x\right)'_{y} = \ln 2x(x^{2}+y^{2})'_{y} = 2y\ln 2x;$$

$$\frac{\partial^{2}z}{\partial x^{2}} = \left(2x\ln 2x + x + \frac{y^{2}}{x}\right)'_{x} = 2\ln 2x + 2x\frac{1}{2x}(2x)'_{x} + 1 + y^{2}(x^{-1})'_{x} = 2\ln 2x + 3 - \left(\frac{y}{x}\right)^{2};$$

$$\frac{\partial^{2}z}{\partial y^{2}} = (2y\ln 2x)'_{y} = 2\ln 2x(y)'_{y} = 2\ln 2x;$$

$$\frac{\partial^{2}z}{\partial y^{2}} = \frac{\partial^{2}z}{\partial y \partial x} = \frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right) = (2y\ln 2x)'_{x} = 2y(\ln 2x)'_{x} = 2y$$

г) Найдем частные производные первого порядка:

$$\frac{\partial z}{\partial x} = \left(x^2 \sin \sqrt{y}\right)_x' = \sin \sqrt{y}(x^2)_x' = 2x \sin \sqrt{y};$$

$$\begin{split} &\frac{\partial z}{\partial y} = \left(x^2 \sin \sqrt{y}\right)_y' = x^2 \left(\sin \left(y^{\frac{1}{2}}\right)\right)_y' = x^2 \cos \left(y^{\frac{1}{2}}\right) \left(y^{\frac{1}{2}}\right)_y' = \\ &= x^2 \cos \left(y^{\frac{1}{2}}\right) \frac{1}{2} y^{-\frac{1}{2}} = \frac{x^2 \cos \left(\sqrt{y}\right)}{2\sqrt{y}}; \end{split}$$

Находим вторые производные:
$$\frac{\partial^2 z}{\partial x^2} = \left(2x\sin\sqrt{y}\right)_x' = 2\sin\sqrt{y}(x)_x' = 2\sin\sqrt{y};$$

$$\frac{\partial^2 z}{\partial y^2} = \left(x^2\cos\left(y^{\frac{1}{2}}\right)\frac{1}{2}y^{-\frac{1}{2}}\right)_y' = \frac{x^2}{2}\left(\cos\left(y^{\frac{1}{2}}\right)\cdot y^{-\frac{1}{2}}\right)_y' =$$

$$= \frac{x^2}{2}\left(\left(\cos\left(y^{\frac{1}{2}}\right)\right)_y' \cdot y^{-\frac{1}{2}} + \left(y^{-\frac{1}{2}}\right)_y' \cdot \cos\left(y^{\frac{1}{2}}\right)\right) =$$

$$= \frac{x^2}{2}\left(-\sin\left(y^{\frac{1}{2}}\right)\cdot\frac{1}{2}y^{-\frac{1}{2}}\cdot y^{-\frac{1}{2}} - \frac{1}{2}y^{-\frac{3}{2}}\cos\left(y^{\frac{1}{2}}\right)\right) =$$

$$= \frac{x^2}{2}\left(-\frac{\sin\left(y^{\frac{1}{2}}\right)\cdot 2y^{-\frac{1}{2}}\cdot y^{-\frac{1}{2}} - \frac{1}{2}y^{-\frac{3}{2}}\cos\left(y^{\frac{1}{2}}\right)\right) =$$

$$= \frac{x^2}{2}\left(-\frac{\sin\left(y^{\frac{1}{2}}\right)\cdot 2y^{\frac{1}{2}}\cdot y^{-\frac{1}{2}}} - \frac{x^2}{4y}\left(\sin\left(y^{\frac{1}{2}}\right)\cdot y^{-\frac{1}{2}}\right)\right) =$$

$$= \frac{x^2}{2}\left(-\frac{\sin\left(y^{\frac{1}{2}}\right)\cdot y^{-\frac{1}{2}}\cdot y^{-\frac{1}{2}}} - \frac{x^2}{4y}\left(\sin\left(y^{\frac{1}{2}}\right)\cdot y^{-\frac{1}{2}}\right)\right) =$$

$$= \frac{x^2}{2}\left(-\frac{\sin\left(y^{\frac{1}{2}}\right)\cdot y^{-\frac{1}{2}}\cdot y^{-\frac{1}{2}}} - \frac{x^2}{4y}\left(\sin\left(y^{\frac{1}{2}}\right)\cdot y^{-\frac{1}{2}}\right)\right) =$$

$$= \frac{x^2}{2}\left($$

2.2. Дифференциалы высших порядков.

Введём понятие дифференциала высшего порядка. Полный дифференциал $dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy$ функцииz=f(x;y) называют также дифференциалом первого порядка. Пусть функция z=f(x;y)имеет непре-

рывные производные второго порядка. Дифференциалом второго порядка функции z=f(x;y) называется дифференциал от дифференциала первого порядка этой функции, то есть

$$d^2z=d(dz).$$

Найдём его:

$$d^{2}z = d(dz) = d\left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right) =$$

$$= \left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right)'_{x}dx + \left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right)'_{y}dy =$$

$$= \left(\frac{\partial^{2}z}{\partial x^{2}}dx + \frac{\partial^{2}z}{\partial y\partial x}dy\right)dx + \left(\frac{\partial^{2}z}{\partial x\partial y}dx + \frac{\partial^{2}z}{\partial y^{2}}dy\right)dy =$$

$$= \frac{\partial^{2}z}{\partial x^{2}}dx^{2} + 2\frac{\partial^{2}z}{\partial x\partial y}dxdy + \frac{\partial^{2}z}{\partial y^{2}}dy^{2};$$

Итак, если z = f(x;y), где x и y — независимые переменные, то **дифференциал второго порядка** функции вычисляется по формуле

$$d^2z = \frac{\partial^2 z}{\partial x^2} dx^2 + 2 \frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} dy^2$$

Аналогично определяются дифференциалы функции z более высокого порядка, то есть

$$d^3z = d(d^2z), ..., d^nz = d(d^{n-1}z).$$

Таким образом, справедлива формула:

$$d^n z = \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^n \cdot z$$

Посмотрим, как она работает, например, при n=3 имеем:

$$d^3z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^3 \cdot z = \frac{\partial^3z}{\partial x^3}dx^3 + 3\frac{\partial^3z}{\partial x^2\partial y}dx^2dy + \\ + 3\frac{\partial^3z}{\partial x\partial y^2}dxdy^2 + \frac{\partial^3z}{\partial y^3}dy^3$$
-дифференциал третьего порядка.

Пример 2.2. Найти полный дифференциал функции второго и третьего порядка для функции:

a)
$$z = \frac{x}{y}$$
; **6)** $z = x^2y$; **B)** $z = xy + \sin(2x - 3y)$.

Решение.

а) Найдем частные производные первого порядка:

$$\frac{\partial z}{\partial x} = \left(\frac{x}{y}\right)'_{x} = \frac{1}{y}(x)'_{x} = \frac{1}{y};$$

$$\frac{\partial z}{\partial y} = \left(\frac{x}{y}\right)'_{y} = x(y^{-1})'_{y} = -\frac{x}{y^{2}};$$

Для того, чтобы найти дифференциал второго порядка, найдем частные производные второго порядка:

$$\frac{\partial^2 z}{\partial x^2} = \left(\frac{1}{y}\right)_x' = 0;$$

$$\frac{\partial^2 z}{\partial y^2} = \left(-\frac{x}{y^2}\right)_y' = -x(y^{-2})_y' = \frac{2x}{y^3};$$

$$\frac{\partial^2 z}{\partial x \partial y} = \left(\frac{1}{y}\right)_y' = (y^{-1})_y' = -\frac{1}{y^2}.$$

Таким образом, дифференциал второго порядка имеет вид:

$$d^2z = 0dx^2 - \frac{2}{y^2}dxdy + \frac{2x}{y^3}dy^2;$$

Найдём дифференциал третьего порядка, для этого вычислим частные производные третьего порядка:

$$\frac{\partial^3 z}{\partial x^3} = \frac{\partial}{\partial x} \left(\frac{\partial^2 z}{\partial x^2} \right) = \frac{\partial}{\partial x} (0) = 0;$$

$$\frac{\partial^3 z}{\partial y^3} = \frac{\partial}{\partial y} \left(\frac{\partial^2 z}{\partial y^2} \right) = \left(\frac{2x}{y^3} \right)'_y = 2x(y^{-3})'_y = -\frac{6x}{y^4};$$

$$\frac{\partial^3 z}{\partial x \partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial^2 z}{\partial x \partial y} \right) = \left(-\frac{1}{y^2} \right)_y' = -(y^{-2})_y' = \frac{2}{y^3}.$$

Следовательно, дифференциал третьего порядка имеет вид:

$$d^3z = 0dx^3 + 0dx^2dy + \frac{6}{y^3}dxdy^2 - \frac{6x}{y^4}dy^3.$$

6) Найдем частные производные первого порядка:

$$\frac{\partial z}{\partial x} = (x^2 y)'_x = y(x^2)'_x = 2xy;$$

$$\frac{\partial z}{\partial y} = (x^2 y)'_y = x^2(y)'_y = x^2;$$

Найдём дифференциал второго порядка, для этого вычислим частные производные второго порядка:

$$\frac{\partial^2 z}{\partial x^2} = (2xy)'_x = 2y(x)'_x = 2y;$$

$$\frac{\partial^2 z}{\partial y^2} = (x^2)'_y = 0;$$

$$\frac{\partial^2 z}{\partial x \partial y} = (2xy)'_y = 2x(y)'_y = 2x.$$

Таким образом, дифференциал второго порядка имеет вид:

$$d^2z = 2ydx^2 + 4xdxdy + 0dy^2;$$

Найдём дифференциал третьего порядка, для этого вычислим частные производные третьего порядка:

$$\frac{\partial^3 z}{\partial x^3} = (2y)'_x = 0;$$

$$\frac{\partial^3 z}{\partial y^3} = (0)'_y = 0;$$

$$\frac{\partial^3 z}{\partial x^2 \partial y} = (2y)'_y = 2;$$

$$\dfrac{\partial^3 z}{\partial x \partial y^2} = (2x)_y' = 0;$$
 $d^3 z = 0 dx^3 + 2 dx^2 dy + 0 dx dy^2 + 0 dy^3 - \qquad$ дифференциал третьего порядка.

в) Найдем частные производные первого порядка:

$$\frac{\partial z}{\partial x} = \left(xy + \sin(2x - 3y)\right)_{x}' = y(x)_{x}' + \cos(2x - 3y) \cdot (2x - 3y)_{x}' = y + 2\cos(2x - 3y);$$

$$\frac{\partial z}{\partial y} = \left(xy + \sin(2x - 3y)\right)_{y}' = x(y)_{y}' + \cos(2x - 3y) \cdot (2x - 3y)_{y}' = x - 3\cos(2x - 3y);$$
Найдём дифференциал второго порядка, для этого вычислим частные производные второго порядка:

$$\frac{\partial^2 z}{\partial x^2} = (y + 2\cos(2x - 3y))'_x = -2\sin(2x - 3y)(2x - 3y)'_x =$$

$$= -4\sin(2x - 3y);$$

$$\frac{\partial^2 z}{\partial y^2} = (x - 3\cos(2x - 3y))'_y = 3\sin(2x - 3y)(2x - 3y)'_y =$$

$$= -9\sin(2x - 3y);$$

$$\frac{\partial^2 z}{\partial x \partial y} = (y + 2\cos(2x - 3y))'_y = 1 - 2\sin(2x - 3y) \cdot$$

$$\cdot (2x - 3y)'_y = 1 + 6\sin(2x - 3y);$$

Таким образом, дифференциал второго порядка имеет вид:

$$d^{2}z = -4\sin(2x - 3y)dx^{2} + 2(1 + 6\sin(2x - 3y))dxdy + -9\sin(2x - 3y)dy^{2};$$

Найдём дифференциал третьего порядка, для этого вычислим частные производные третьего порядка:

$$\frac{\partial^3 z}{\partial x^3} = -4 \left(\sin(2x - 3y) \right)_x' = -4 \cos(2x - 3y) (2x - 3y)_x' =$$

$$= -8 \cos(2x - 3y);$$

$$\frac{\partial^3 z}{\partial y^3} = -9 \left(\sin(2x - 3y) \right)_y' = -9 \cos(2x - 3y) (2x - 3y)_y' =$$

$$= 27 \cos(2x - 3y);$$

$$\frac{\partial^3 z}{\partial x^2 \partial y} = -4 \left(\sin(2x - 3y) \right)_y' = -4 \cos(2x - 3y) \cdot$$

$$\cdot (2x - 3y)_y' = 12 \cos(2x - 3y);$$

$$\frac{\partial^3 z}{\partial x \partial y^2} = \left(1 + 6 \sin(2x - 3y) \right)_y' = 6 \cos(2x - 3y) \cdot$$

$$\cdot (2x - 3y)_y' = -18 \cos(2x - 3y);$$

$$\frac{\partial^3 z}{\partial x \partial y^2} = -18 \cos(2x - 3y);$$

$$\frac{\partial^3 z}{\partial x \partial y^2} = -18 \cos(2x - 3y) + 3 \cos(2x - 3y) + 3$$

ренциал третьего порядка.

Пример 2.3. Показать, что $\frac{\partial^2 u}{\partial x^2}+2\frac{\partial^2 u}{\partial x\partial t}=0$,если u=arctg(2x-t)

Решение.

$$\frac{\partial u}{\partial x} = \left(arctg(2x - t)\right)_{x}' = \frac{1}{1 + (2x - t)^{2}}(2x - t)_{x}' =$$

$$= \frac{2}{1 + (2x - t)^{2}};$$

$$\frac{\partial u}{\partial t} = \left(arctg(2x - t)\right)_{t}' = \frac{1}{1 + (2x - t)^{2}}(2x - t)_{t}' =$$

$$= -\frac{1}{1 + (2x - t)^{2}};$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \left(\frac{2}{1 + (2x - t)^{2}}\right)_{x}' = 2((1 + (2x - t)^{2})^{-1})_{x}' =$$

$$= -2(1 + (2x - t)^{2})^{-2} \cdot (1 + (2x - t)^{2})'_{x} =$$

$$= -\frac{2}{(1 + (2x - t)^{2})^{2}} \cdot 2(2x - t)(2x - t)'_{x} =$$

$$= -\frac{8(2x - t)}{(1 + (2x - t)^{2})^{2}};$$

$$\frac{\partial^{2} u}{\partial x \partial t} = \left(\frac{2}{1 + (2x - t)^{2}}\right)'_{t} = 2((1 + (2x - t)^{2})^{-1})'_{t} =$$

$$= -2(1 + (2x - t)^{2})^{-2} \cdot (1 + (2x - t)^{2})'_{t} =$$

$$= -2(1 + (2x - t)^{2})^{-2} \cdot 2 \cdot (2x - t) \cdot (2x - t)'_{t} =$$

$$= \frac{4(2x - t)}{(1 + (2x - t)^{2})^{2}};$$

Покажем, что $\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial t} = 0$, для этого подставим полученные значения $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial x \partial t}$ в данное равенство:

$$-rac{8(2x-t)}{(1+(2x-t)^2)^2}+rac{8(2x-t)}{(1+(2x-t)^2)^2}=0$$
 —что и требовалось показать.

Задания для самостоятельного решения.

8.Найти частные производные и дифференциалы второго порядка $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y \partial x}$ для следующих функций:

	Here.		
1	$z = x^3 + 2x^2y^2 + y^5$	11	$z = e^{4x - y}$
2	$z = y^2 e^x + x^2 y^3 + 1$	12	z = x sin(x + y)
3	$z = y^3 + x^2 y$	13	$z = arctg \frac{x + y}{x}$
4	$z = e^x(cosy + xsiny)$	14	$z = \frac{1}{3x - y^3}$
5	$z = \frac{x^2}{1 - y}$		$z = ye^{\frac{x}{y}}$

6	$z = \ln(x - 2y)$	16	$z = \cos(x^5 y^2)$
7	$z = \frac{x^2}{y^2}$	17	$z = x^2 + x \ln y$
8	$z = x^2 cos \sqrt{y}$	18	z = sinxsiny
9	$z = x^{2y}$	19	$z = e^{x^2 y^2}$
10	$z = xe^y$	20	$z = (x+y)\cos(x-2y)$

Ответы

1.
$$\frac{\partial^2 z}{\partial x^2} = 6x + 4y^2, \frac{\partial^2 z}{\partial y^2} = 4x^2 + 20y^3, \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = 8xy,$$
$$d^2 z = (6x + 4y^2)dx^2 + 16xydxdy + (4x^2 + 20y^3)dy^2.$$

$$\mathbf{2.} \frac{\partial^{2} z}{\partial x^{2}} = (e^{x} + 2y)y^{2}, \frac{\partial^{2} z}{\partial y^{2}} = 2(e^{x} + 3yx^{2}),
\frac{\partial^{2} z}{\partial x \partial y} = \frac{\partial^{2} z}{\partial y \partial x} = 2y(e^{x} + 3xy), d^{2} z = (e^{x} + 2y)y^{2} dx^{2} + y(e^{x} + 3xy) dx dy + 2(e^{x} + 3yx^{2}) dy^{2}.$$

3.
$$\frac{\partial^2 z}{\partial x^2} = 2y$$
, $\frac{\partial^2 z}{\partial y^2} = 6y$, $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = 2x$, $d^2 z = 2y dx^2 + 4x dx dy + 6y dy^2$.

$$\mathbf{4.} \frac{\partial^2 z}{\partial x^2} = e^x \left(\cos y + \sin y (1+x) \right)_{\partial y^2}^{\partial z} = -e^x (\cos y + x \sin y),$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = e^x \left(\cos y (1+x) - \sin y \right),$$

$$d^2 z = e^x \left(\cos y + \sin y (1+x) \right) dx^2 +$$

$$+ 2e^x \left(\cos y (1+x) - \sin y \right) dx dy - e^x \left(\cos y + x \sin y \right) dy^2.$$

5.
$$\frac{\partial^2 z}{\partial x^2} = \frac{2}{1-y}, \frac{\partial^2 z}{\partial y^2} = \frac{2x^2}{(1-y)^3}, \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = \frac{2x}{(1-y)^2}$$

$$d^2 z = \frac{2}{1-y} dx^2 - \frac{4x}{(1-y)^2} dx dy - \frac{2x^2}{(1-y)^3} dy^2.$$

$$\mathbf{6.}\frac{\partial^{2}z}{\partial x^{2}} = -\frac{1}{(x-2y)^{2}}, \frac{\partial^{2}z}{\partial y^{2}} = -\frac{4}{(x-2y)^{2}}, \frac{\partial^{2}z}{\partial x \partial y} = \frac{\partial^{2}z}{\partial y \partial x} = \frac{2}{(x-2y)^{2}},$$

$$d^{2}z = -\frac{1}{(x-2y)^{2}}dx^{2} + \frac{4}{(x-2y)^{2}}dxdy - \frac{4}{(x-2y)^{2}}dy^{2}.$$

7.
$$\frac{\partial^2 z}{\partial x^2} = \frac{2}{y^2}, \frac{\partial^2 z}{\partial y^2} = \frac{6x^2}{y^4}, \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = -\frac{4x}{y^3},$$
$$d^2 z = \frac{2}{y^2} dx^2 - \frac{8x}{y^3} dx dy + \frac{6x^2}{y^4} dy^2.$$

$$\frac{\partial^2 z}{\partial x^2} = 2cos\sqrt{y}, \frac{\partial^2 z}{\partial y^2} = \frac{x^2}{4y} \left(\frac{sin\sqrt{y}}{\sqrt{y}} - cos\sqrt{y}\right), \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = \frac{xcos\sqrt{y}}{\sqrt{y}},$$

9.
$$\frac{\partial^2 z}{\partial x^2} = 2y(2y-1)x^{2y-2}$$

9.
$$\frac{\partial^2 z}{\partial x^2} = 2y(2y - 1)x^{2y - 2},$$
$$\frac{\partial^2 z}{\partial y^2} = x^{2y} \ln^2 x, \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = x^{2y - 1} (y + 4y \ln x),$$

$$d^2z = 2\cos\sqrt{y}dx^2 + \frac{2x\cos\sqrt{y}}{\sqrt{y}}dxdy + \frac{x^2}{4y}\left(\frac{\sin\sqrt{y}}{\sqrt{y}} - \cos\sqrt{y}\right)dy^2.$$

$$\mathbf{10.} \frac{\partial^2 z}{\partial x^2} = 0, \frac{\partial^2 z}{\partial y^2} = x e^y, \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = e^y,$$
$$d^2 z = 0 dx^2 + 2 e^y dx dy x e^y + x e^y dy^2.$$

$$d^2z = 0dx^2 + 2e^y dx dy x e^y + x e^y dy^2.$$

11.
$$\frac{\partial^2 z}{\partial x^2} = 16e^{4x-y}, \frac{\partial^2 z}{\partial y^2} = e^{4x-y}, \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = -4e^{4x-y},$$
$$d^2 z = 16e^{4x-y}dx^2 - 8e^{4x-y}dxdy + e^{4x-y}dy^2.$$

$$d^{2}z = 16e^{4x-y}dx^{2} - 8e^{4x-y}dxdy + e^{4x-y}dy^{2}$$

$$\mathbf{12.} \frac{\partial^2 z}{\partial x^2} = 2\cos(x+y) - x\sin(x+y), \frac{\partial^2 z}{\partial y^2} = -x\sin(x+y),$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = \cos(x+y) - x\sin(x+y),$$

$$d^2 z = \left(2\cos(x+y) - x\sin(x+y)\right)dx^2 +$$

$$+2\left(\cos(x+y) - x\sin(x+y)\right)dxdy - x\sin(x+y)dy^2.$$

13.
$$\frac{\partial^2 z}{\partial x^2} = \frac{y(4x+2y)}{(2x^2+2xy+y^2)^2}, \frac{\partial^2 z}{\partial y^2} = -\frac{2x^2+2xy}{(2x^2+2xy+y^2)^2},$$
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = -\frac{2x^2-y^2}{(2x^2+2xy+y^2)^2},$$

$$d^2z = \frac{y(4x+2y)}{(2x^2+2xy+y^2)^2}dx^2 - \frac{2(2x^2-y^2)}{(2x^2+2xy+y^2)^2}dxdy - \frac{2x^2+2xy}{(2x^2+2xy+y^2)^2}dy^2.$$

14.
$$\frac{\partial^2 z}{\partial x^2} = \frac{18}{(3x - y^3)^3}, \frac{\partial^2 z}{\partial y^2} = \frac{6y(3x + 2y^3)}{(3x - y^3)^3}, \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = -\frac{18y^2}{(3x - y^3)^3},$$
$$d^2 z = \frac{18}{(3x - y^3)^3} dx^2 - \frac{36y^2}{(3x - y^3)^3} dx dy + \frac{6y(3x + 2y^3)}{(3x - y^3)^3} dy^2.$$

15.
$$\frac{\partial^2 z}{\partial x^2} = \frac{1}{y} e^{\frac{x}{y}}, \frac{\partial^2 z}{\partial y^2} = -\frac{1}{y^2} e^{\frac{x}{y}}, \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = \frac{x^2}{y^3} e^{\frac{x}{y}},$$
$$d^2 z = \frac{1}{y} e^{\frac{x}{y}} dx^2 + 2 \frac{x^2}{y^3} e^{\frac{x}{y}} dx dy - \frac{1}{y^2} e^{\frac{x}{y}} dy^2.$$

$$\begin{aligned} \mathbf{16.} & \frac{\partial^2 z}{\partial x^2} = -20x^3y^2sin(x^5y^2) - 25x^8y^4cos(x^5y^2), \\ & \frac{\partial^2 z}{\partial y^2} = -2x^5sin(x^5y^2) - 4x^{10}y^2cos(x^5y^2), \\ & \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = -10x^4ysin(x^5y^2) - 10x^9y^3cos(x^5y^2), \\ & d^2z = \left(-20x^3y^2sin(x^5y^2) - 25x^8y^4cos(x^5y^2)\right)dx^2 - \\ & -\left(20x^4ysin(x^5y^2) + 20x^9y^3cos(x^5y^2)\right)dxdy + e^{4x-y}dy^2. \end{aligned}$$

17.
$$\frac{\partial^2 z}{\partial x^2} = 2, \frac{\partial^2 z}{\partial y^2} = -\frac{x}{y^2}, \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = \frac{1}{y},$$
$$d^2 z = 2dx^2 + \frac{2}{y}dxdy - \frac{x}{y^2}dy^2.$$

18.

$$\begin{split} &\frac{\partial^2 z}{\partial x^2} = -sinxsiny, \\ &\frac{\partial^2 z}{\partial y^2} = sinxsiny, \\ &\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = cosxcosy, \\ &d^2 z = -sinxsinydx^2 + cosxcosydxdy + sinxsinydy^2. \end{split}$$

$$\mathbf{19.} \frac{\partial^2 z}{\partial x^2} = 2y^2 e^{x^2 y^2} (2x^2 + 1), \frac{\partial^2 z}{\partial y^2} = 2x^2 e^{x^2 y^2} (2x^2 y^2 + 1),$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = 4xy e^{x^2 y^2} (x^2 y^2 + 1),$$

$$d^2 z = 2y^2 e^{x^2 y^2} (2x^2 + 1) dx^2 + 4xy e^{x^2 y^2} (x^2 y^2 + 1) dx dy +$$

$$+2x^2 e^{x^2 y^2} (2x^2 y^2 + 1) dy^2.$$

$$20.\frac{\partial^{2}z}{\partial x^{2}} = -2\sin(x - 2y) - (x + y)\cos(x - 2y),$$

$$\frac{\partial^{2}z}{\partial y^{2}} = 4\sin(x - 2y) - 4(x + y)\cos(x - 2y),$$

$$\frac{\partial^{2}z}{\partial x\partial y} = \frac{\partial^{2}z}{\partial y\partial x} = \sin(x - 2y) + 2(x + y)\cos(x - 2y),$$

$$d^{2}z = (-2\sin(x - 2y) - (x + y)\cos(x - 2y))dx^{2} + (\sin(x - 2y) + 2(x + y)\cos(x - 2y))dx^{2} + (4\sin(x - 2y) - 4(x + y)\cos(x - 2y))dy^{2}.$$

2.3. Экстремумы функции нескольких переменных.

Определение экстремума функции.

Понятие максимума, минимума, экстремума функции двух переменных аналогичны соответствующим понятиям функции одной независимой переменной. Функция z = f(x; y) имеет максимум в точке

$$M_0(x_0; y_0)$$
, если $f(x_0; y_0) > f(x; y)$ для всех точек $(x; y)$

достаточно близких к точке $(x_0; y_0)$ и отличных от неё.

Аналогично определяется точка минимума функции:

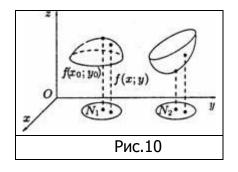
для всех точек (x;y), отличных от $(x_0;y_0)$, из окрестности точки $(x_0;y_0)$, выполняется неравенство $f(x_0;y_0) < f(x;y)$.

.

На рис.10: N_1 — точка максимума, а N_2 — точка

минимума функции z = f(x; y).

Аналогично определяется экстремум функции трех и большего числа переменных. Значение функции в точке максимума (минимума) называется максимумом (минимумом) функции.



Максимум и минимум функции называют ее **экстремумами.**

В области D функция может иметь несколько экстре-

мумов или не иметь ни одного.

Замечание: в силу определения, точка экстремума функции лежит внутри области определения функции z = f(x; y),поэтому перед тем, как найти экстремум

необходимо найти область определения функции.

Необходимые условия экстремума.

Теорема 2.2. (необходимые условия экстремума): если функция z = f(x; y) имеет в точ-

ке $M_0(x_0; y_0)$ экстремум и имеет в точке M_0 частные

производные первого порядка, то в этой точке частные производные равны нулю или не существует, то есть имеет место следующая система:

$$\begin{cases} \frac{\partial z}{\partial x}(x_0; y_0) = 0\\ \frac{\partial z}{\partial y}(x_0; y_0) = 0 \end{cases}$$

Примем теорему без доказательства.

Замечание: равенство нулю частных производных является необходимым, но не достаточным условием существования экстремума.

Точки, в которых выполняется необходимое условие, будем называть точками возможного экстремума.

Точки, в которых частные производные первого порядка функции равны

нулю, то есть
$$\frac{\partial z}{\partial x}=0$$
, $\frac{\partial z}{\partial y}=0$, называют-

ся **стационарными точками** функции z.

Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками.

Система
$$\begin{cases} \frac{\partial z}{\partial x}(x_0;y_0)=0 \\ \frac{\partial z}{\partial y}(x_0;y_0)=0 \end{cases}$$
 эквивалентна одному уравне-

нию
$$dz(x_0; y_0) = 0$$
.

Достаточные условия экстремума.

Не всякая критическая точка будет точкой экстремума.

Если $M_0(x_0; y_0)$ —стационарная точка функ-

ции
$$z = f(x; y) (df(x_0; y_0) = 0)$$
 и

если в некоторой окрестности этой точки второй дифференциал

$$d^{2}f(x_{0};y_{0}) = \frac{\partial^{2}z}{\partial x^{2}}(x_{0};y_{0})(dx)^{2} + 2\frac{\partial^{2}z}{\partial x\partial y}(x_{0};y_{0})dxdy +$$

$$+rac{\partial^{2}z}{\partial y^{2}}(x_{0};y_{0})(dy)^{2}$$
- сохраняет знак при любых значени-

ях dxиdy,не равных нулю одновременно, то функция

в точке $M_0(x_0; y_0)$ имеет экстремум.

При этом если $d^2f\left(x_0;y_0\right)>0$,то этот экстремум -

минимум, если $d^2f(x_0; y_0) < 0$ –максимум.

Теорема 2.3. (достаточные условия экстремума): если в точке $M_0(x_0; y_0)$ возможного экстремума и неко-

торой её окрестности функция z = f(x; y) имеет непре-

рывные частные производные второго порядка

$$A = \frac{\partial^2 z}{\partial x^2}(x_0; y_0), B = \frac{\partial^2 z}{\partial x \partial y}(x_0; y_0),$$

$$C = \frac{\partial^2 z}{\partial y^2}(x_0; y_0), \Delta = \begin{vmatrix} A & B \\ B & C \end{vmatrix};$$

Тогда:

а) если $\Delta > 0$, то в точке $M_0(x_0; y_0)$ функция имеет экс-

тремум, причём при $A < 0, M_0(x_0; y_0)$ —точка

максимума; приA>0, $M_0(x_0;y_0)$ —точка минимума;

- **б)** $\Delta < 0$,в точке $M_0(x_0; y_0)$ экстремума нет;
- **в)** $\Delta = 0$,то в точке $M_0(x_0; y_0)$ экстремум может быть или

не быть, требуется дополнительное исследование. Примем теорему без доказательств.

Схема исследования функции на экстремум.

- 1)Найти область определения функции;
- **2)**Найти частные производные первого порядка $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

и определить критические точки (стационарные точки-точки, в которых частные производные равны ну-

лю
$$\begin{cases} \frac{\partial z}{\partial x}=0 \\ \frac{\partial z}{\partial y}=0 \end{cases}$$
 и точки, в которых хотя бы одна частная

производная не существует);

3)Исследовать характер каждой критической точки при помощи достаточных условий экстремума функции.

Пример 2.4. Исследовать на экстремум функцию:

a)
$$z = x^2 + xy + y^2 - 2x - 3y$$
;

6)
$$z = x^3 + y^3 - 9xy - 4$$
;

B)
$$z = 2x^2 + 2y^2 - lnx - lny;$$

r)
$$z = e^x(4y - xy - y^2).$$

Решение.

а) Областью определения данной функции являются

все точки плоскости, то есть $(x; y) \in \mathbb{R}^2$.

Для того, чтобы найти стационарные точки, найдём частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ и решим систему $\begin{cases} \frac{\partial z}{\partial x} = 0 \\ \frac{\partial z}{\partial y} = 0 \end{cases}$:

$$\frac{\partial z}{\partial x} = (x^2 + xy + y^2 - 2x - 3y)_x' = 2x + y - 2;$$

$$\frac{\partial z}{\partial y} = (x^2 + xy + y^2 - 2x - 3y)'_y = x + 2y - 3;$$

$$\begin{cases} 2x+y-2=0 \ x+2y-3=0 \end{cases}$$
, $x=rac{1}{3}$, $y=rac{4}{3}$, следовательно,

 $M\left(\frac{1}{3}; \frac{4}{3}\right)$ — стационарная точка (точка возможного экстремума);

Исследуем характер стационарной точки, для этого находим $\Delta = AC - B^2$:

$$A = \frac{\partial^2 z}{\partial x^2} = (2x + y - 2)'_x = 2;$$

$$C = \frac{\partial^2 z}{\partial y^2} = (x + 2y - 3)'_y = 2;$$

$$B = \frac{\partial^2 z}{\partial x \partial y} = (2x + y - 2)'_y = 1;$$

 $\Delta = AC - B^2 = 2 \cdot 2 - 1 = 3 > 0$, A > 0, следовательно, $M\left(\frac{1}{3}; \frac{4}{3}\right)$ — точка минимума, найдём значение функции в этой точке:

$$z_{min} = z \left(\frac{1}{3}; \frac{4}{3}\right) = \left(\frac{1}{3}\right)^2 + \frac{1}{3} \cdot \frac{4}{3} + \left(\frac{4}{3}\right)^2 - 2 \cdot \frac{1}{3} - 3 \cdot \frac{4}{3} =$$

$$= \frac{1}{9} + \frac{4}{9} + \frac{16}{9} - \frac{6}{9} - 4 = \frac{15}{9} - 4 = \frac{5}{3} - 4 = -\frac{7}{3}.$$

6) Областью определения данной функции являются

все точки плоскости, то есть $(x; y) \in \mathbb{R}^2$.

Найдём стационарные точки:

$$\frac{\partial z}{\partial x} = (x^3 + y^3 - 9xy - 4)'_x = 3x^2 - 9y;$$

$$\frac{\partial z}{\partial y} = (x^3 + y^3 - 9xy - 4)'_y = 3y^2 - 9x;$$

$$\int \frac{\partial z}{\partial x} = 0 \quad (3x^2 - 9y = 0) : 3 \quad (x^2 - 3y = 0)$$

$$\begin{cases} \frac{\partial z}{\partial x} = 0 \\ \frac{\partial z}{\partial y} = 0 \end{cases}; \begin{cases} 3x^2 - 9y = 0 | : 3 \\ 3y^2 - 9x = 0 | : 3 \end{cases}; \begin{cases} x^2 - 3y = 0 \\ y^2 - 3x = 0 \end{cases};$$

$$\begin{cases} y = \frac{x^2}{3} \\ y^2 - 3x = 0 \end{cases}$$
 (1), подставляя (1) в (2)имеем:

$$\left(\frac{x^2}{3}\right)^2 - 3x = 0,$$

$$\frac{x^4}{9} - 3x = 0|:9,$$

$$x^4 - 27x = 0$$
.

$$x(x^3-27)=0$$

$$x_1 = 0$$
, $x_2 = 3$, тогда, $y_1 = 0$, $y_2 = 3$,следователь-

но,
$$M_1(0;0)$$
, $M_2(3;3)$ —стационарные точки;

Исследуем характер стационарных точек, для этого найдём $\Delta = AC - B^2$:

$$A=rac{\partial^2 z}{\partial x^2}=(3x^2-9y)_x'=6x;$$
 $C=rac{\partial^2 z}{\partial y^2}=(3y^2-9x)_y'=6y;$
 $B=rac{\partial^2 z}{\partial x\partial y}=(3x^2-9y)_y'=-9;$
 $\Delta=AC-B^2=6x\cdot 6y-(-9)^2=36xy-81,$
 $\Delta_1=\Delta|_{M_1}=(36xy-81)|_{M_1}=36\cdot 0\cdot 0-81=-81<0,$
следовательно, в точке M_1 нет экстремума;

$$\Delta_2 = \Delta |_{M_2} = (36xy - 81)|_{M_2} = 36 \cdot 3 \cdot 3 - 81 > 0,$$

 $A = A|_{M_2} = (6x)|_{M_2} = 18 > 0.$

Следовательно, M_2 —точка минимума, $z_{min}=z(3;3)=3^3+3^3-9\cdot 3\cdot 3-4=-31$.

в) Областью определения данной функции являются точки, для которыхx > 0, y > 0-точки, лежащие в пер-

вой четверти.

область определения.

Найдём стационарные точки:

$$\frac{\partial z}{\partial x} = (2x^2 + 2y^2 - \ln x - \ln y)'_x = 4x - \frac{1}{x};$$

$$\frac{\partial z}{\partial y} = (2x^2 + 2y^2 - \ln x - \ln y)'_y = 4y - \frac{1}{y}.$$

Заметим, что частные производные не существуют при x=0,y=0, то есть в точке o(0;0), но она не является точкой подозрительной на экстремум, так как не входит в область определения функции.

$$\begin{cases} \frac{\partial z}{\partial x} = 0 \\ \frac{\partial z}{\partial y} = 0 \end{cases} \begin{cases} 4x - \frac{1}{x} = 0 | \cdot x \\ 4y - \frac{1}{y} = 0 | \cdot y \end{cases}; \begin{cases} 4x^2 - 1 = 0 \\ 4y^2 - 1 = 0 \end{cases}; \\ x_{1,2} = \pm \frac{1}{2}, y_{1,2} = \pm \frac{1}{2}, x = -\frac{1}{2}, y = -\frac{1}{2} \text{-He} \quad \text{входят} \end{cases}$$

Следовательно, $M\left(\frac{1}{2}; \frac{1}{2}\right)$ — стационарная точка.

Исследуем характер стационарных точек, для этого найдём частные производные второго порядка:

$$A = rac{\partial^2 z}{\partial x^2} = \left(4x - rac{1}{x}
ight)_x' = 4 + rac{1}{x^2};$$
 $C = rac{\partial^2 z}{\partial y^2} = \left(4y - rac{1}{y}
ight)_y' = 4 + rac{1}{y^2};$
 $B = rac{\partial^2 z}{\partial x \partial y} = \left(4x - rac{1}{x}
ight)_y' = 0.$
Тогда $\Delta|_M = (AC - B^2)|_M = \left(4 + rac{1}{x^2}
ight)\left(4 + rac{1}{y^2}
ight)|_M = \left(4 + rac{1}{y^2}
ight$

следовательно, в точке $\it M$ функция имеет минимум.

Найдём значение функции в данной точке (минимум функции):

$$z_{min}\left(\frac{1}{2};\frac{1}{2}\right) = 2\cdot\left(\frac{1}{2}\right)^2 + 2\cdot\left(\frac{1}{2}\right)^2 - \ln\frac{1}{2} - \ln\frac{1}{2} = 1 + 2\ln 2$$

г) Найдём стационарные точки:

$$\frac{\partial z}{\partial x} = \left(e^x (4y - xy - y^2) \right)_x' = \left(e^x \right)_x' \cdot (4y - xy - y^2) + \\
+ \left((4y - xy - y^2) \right)_x' \cdot e^x = e^x (4y - xy - y^2) + e^x (-y) = \\
= e^x (3y - xy - y^2); \\
\frac{\partial z}{\partial y} = \left(e^x (4y - xy - y^2) \right)_y' = e^x (4y - xy - y^2)_y' = \\
= e^x (4 - x - 2y);$$

Решим систему
$$\begin{cases} \frac{\partial z}{\partial x} = 0 \\ \frac{\partial z}{\partial y} = 0 \end{cases}$$

$$\begin{cases} e^x(3y - xy - y^2) = 0 | : e^x \\ e^x(4 - x - 2y) = 0 | : e^x \end{cases}$$

$$\begin{cases} 3y - xy - y^2 = 0 \cdot (y(3 - x - y)) = 0 \\ 4 - x - 2y = 0 \end{cases}$$

$$\begin{cases} 4 - x - 2y = 0 \end{cases} (4 - x - 2y = 0 \end{cases}$$
 Эта система имеет решение, если
$$\begin{cases} y = 0 & (3 - x - y) = 0 \\ 4 - x - 2y = 0 \end{cases} (4 - x - 2y) = 0 \end{cases}$$
 то
$$\begin{cases} y = 0 & (3 - x - y) = 0 \\ 4 - x - 2y = 0 \end{cases} (4 - x - 2y) = 0 \end{cases}$$

$$\begin{cases} x = 3 - y & (x = 3 - y) \\ x = 4 \end{cases} (4 - x - 2y) = 0 \end{cases}$$

$$\begin{cases} x = 3 - y & (x = 3 - y) \\ x = 3 - y & (x = 2) \\ 1 - y = 0 \end{cases} (y = 1)$$

Таким образом, функция z имеет две стационарные точки M_1 (4; 0), M_2 (2; 1).

Используя достаточные условия экстремума, исследуем характер стационарных точек,

, для этого найдём частные производные функции z второго порядка:

$$A = \frac{\partial^2 z}{\partial x^2} = \left(e^x(3y - xy - y^2)\right)_x' = (e^x)_x' \cdot (3y - xy - y^2) + \left((3y - xy - y^2)\right)_x' \cdot e^x = e^x(3y - xy - y^2) + e^x(-y) = e^x(2y - xy - y^2);$$

$$C = \frac{\partial^2 z}{\partial y^2} = \left(e^x(4 - x - 2y)\right)_y' = \left(e^x(4 - x - 2y)\right)_y' = e^x(-2) = -2e^x;$$

$$B = \frac{\partial^2 z}{\partial x \partial y} = \left(e^x(3y - xy - y^2)\right)_y' = e^x(3 - x - 2y).$$
Тогда
$$\Delta = AC - B^2 = e^x(2y - xy - y^2)(-2e^x) - \left(e^x(3 - x - 2y)^2\right) = 2e^{2x}(y^2 + xy - 2y) - \left(e^x(3 - x - 2y)^2\right) = 2e^{2x}(2y^2 + 2xy - 4y - (3 - x - 2y)^2);$$

$$\begin{array}{l} \Delta_1 = \Delta|_{M_1} = \left(e^{2x}(2y^2+2xy-4y-(3-x-2y)^2)\right)\big|_{M_1} = \\ = e^{2\cdot 4}(2\cdot 0^2+2\cdot 4\cdot 0-4\cdot 0-(3-4-2\cdot 0)^2) = -e^8 < 0, \\ \text{ следовательно, в точке } M_1 \text{ нет экстремума;} \\ \Delta_2 = \Delta|_{M_2} = \left(e^{2x}(2y^2+2xy-4y-(3-x-2y)^2)\right)\big|_{M_2} = \\ = e^{2\cdot 1}(2\cdot 1^2+2\cdot 2\cdot 1-4\cdot 1-(3-2-2\cdot 1)^2) = e^2 > 0 - \\ \text{в точке } M_2 \text{ функция имеет экстремум, так как} \\ A|_{M_2} = \left(e^x(2y-xy-y^2)\right)\big|_{M_2} = -e^2 < 0 \text{ , то это точка максимума.} \end{array}$$

Найдём значение функции в данной точке (максимум функции):

$$z_{max} = z(2;1) = e^{2}(4 \cdot 1 - 2 \cdot 1 - 1) = e^{2}$$

Задания для самостоятельного решения.

9. Исследовать на экстремум функцию z = f(x; y) .

1	$z = 2x^3 + xy^2 + 5x^2 + y^2$
2	$z = x^3 + 8y^3 - 6xy + 1$
3	$z = x^2 + xy + y^2 - 3x - 6y$
4	$z = x^2 + xy + y^2 - 2x - y$
5	$z = (x-1)^2 - 2y^2$
6	$z = 3x^2 - x^3 + 3y^2 + 4y$
7	$z = 2x^3 + y^3 - 6x - 12y + 3$
8	$z = x^2y^2 + \frac{1}{2}x^2 + \frac{1}{2}y^2 + xy + 1$

9	$z = \sqrt{xy} - y^2 - x + 6y$	
10	$z = x^2 + y^2 - 2y + 1$	
11	$z = x^2 + y^2 + xy - 4x - 5y$	
12	z = xy(1 - x - y)	
13	$z = 4x^2y + 24xy + y^2 + 32y - 6$	
14	$z = x^2 + xy + y^2 - 2x - 3y + 5\frac{2}{3}$	
15	$z = -x^2 + xy - y^2 - 9x + +3y - 20$	
16	$z = e^{x^2 - y} \cdot (5 - 2x + y)$	
17	$z = x^4 + y^4 - 2xy - y^2 - x^2$	
18	$z = 3x^2y + y^3 - 12x - 15y + 3$	
19	$z = x^2 - (y - 1)^2$	
20	$z = x^3 + y^3 - 3xy$	

Ответы:

$$\mathbf{1.}z_{min}=z(0;0)=0$$
, $z_{max}=z\left(-rac{5}{3};0
ight)=rac{125}{27}$, в остальных точках экстремумов нет.

$2.z_{min}=z\left(1;\frac{1}{2}\right)=0$	12. экстремумов нет	
3. $z_{min} = z(0;3) = -9$	13. $z_{min} = z(-3; 2) = -10$	
$4.z_{min} = z(1;0) = -1$	14. $z_{min} = z\left(\frac{1}{2}; \frac{4}{3}\right) = \frac{10}{3}$	
5. экстремумов нет	15. $z_{max} = z(-5; -1) = 1$	
$6.z_{min}=z\left(0;-\frac{2}{3}\right)=$	16. экстремумов	нет
$=-\frac{4}{3}$		
$egin{aligned} {m 7.} & & & & & & & & & & & & & & & & & & &$	17. $z_{min} = z(1;1) =$ = $z(-1;-1) = -2$	
точках экстремумов		
нет		
$z_{min}=z(0;0)=1$	18. $z_{min} = z(1; 2) = -25$,	
8.	$z_{max} = z(-1; -2) = 31$	
9. $z_{max} = z(4;4) = 12$	19. экстремумов	нет

$$z_{min} = z(0;1) = 0$$
 20. $z_{min} = z(1;1) = -1$

2.4. Формула Тейлора для функции нескольких переменных.

Пусть функция z=f(x;y)- имеет в окрестности точки $M_0(x_0;y_0)$ непрерывные частные производные всех порядков до (n+1)-го включительно, тогда её можно разложить в многочлен n —ой степени(формула Тейлора) в окрестности этой точки:

$$f(x;y)=f(x_0;y_0)+rac{df(x_0;y_0)}{1!}+rac{d^2f(x_0;y_0)}{2!}+\cdots+rac{d^nf(x_0;y_0)}{n!}+R_n$$
 где R_n — остаточный член,

$$df(x_0;y_0)=f_x'(x_0;y_0)dx+f_y'(x_0;y_0)dy pprox f_x'(x_0;y_0)(x-x_0)+f_y'(x_0;y_0)(y-y_0)-$$
 дифференциал первого порядка,
$$d^2f(x_0;y_0)=f_{xx}''(x_0;y_0)dx^2+2f_{xy}''(x_0;y_0)dxdy+\cdots+f_{yy}''(x_0;y_0)dy^2pprox f_{xx}''(x_0;y_0)(x-x_0)^2+\cdots+2f_{xy}''(x_0;y_0)(x-x_0)(y-y_0)+f_{yy}''(x_0;y_0)(y-y_0)^2-\cdots$$

дифференциал второго порядка и так далее.

Замечание: чем больше слагаемых мы берём, тем большую точность даёт формула Тейлора.

Пример 2.5. Найти несколько первых членов разложения функцию $z = e^x siny$ в ряд Тейлора в окрестности точки (0;0).

Решение.

Найдём первые три слагаемых разложения функции $z=e^x siny$ в ряд Тейлора, то есть формула приобретает вид:

$$f(x;y) = f(x_0;y_0) + \frac{df(x_0;y_0)}{1!} + \frac{d^2f(x_0;y_0)}{2!} + r_2;$$

1)Найдем значение функции z = f(x; y) в точке (0; 0) :

$$f(0;0) = e^0 \sin 0 = 0;$$

2)Считаем первый дифференциал в точке (0;0), df(0;0):

$$df(0;0) = f'_x(0;0)(x-0) + f'_y(0;0)(y-0),$$

$$f'_x = (e^x \sin y)'_x = \sin y(e^x)'_x = e^x \sin y,$$

$$f'_y = (e^x \sin y)'_y = e^x (\sin y)'_y = e^x \cos y,$$

$$f'_x(0;0) = e^0 \sin 0 = 0, f'_y(0;0) = e^0 \cos 0 = 1,$$

Следовательно,

$$df(0;0) = 0 \cdot (x-0) + 1 \cdot (y-0) = y;$$

3)Вычисляем второй дифференциал в точке $(0;0),d^2f(0;0)$:

$$d^{2}f(0;0) = f_{xx}''(0;0)(x-0)^{2} + 2f_{xy}''(0;0)(x-0)(y-0) + f_{yy}''(0;0)(y-0)^{2};$$

$$f_{xx}'' = (e^x \sin y)_x' = \sin y (e^x)_x' = e^x \sin y,$$

$$f_{xy}'' = (e^x \sin y)_y' = e^x (\sin y)_y' = e^x \cos y,$$

$$f_{yy}'' = (e^x \cos y)_y' = e^x (\cos y)_y' = -e^x \sin y,$$

$$f_{xx}''(0; 0) = e^0 \sin 0 = 0,$$

$$f_{xy}''(0; 0) = e^0 \cos 0 = 1,$$

 $f_{yy}^{i\prime}(0;0) = -e^{0}sin0 = 0.$ Получаем:

$$d^2f(0;0) = 0 \cdot (x-0)^2 + 1 \cdot (x-0) \cdot (y-0) + +0 \cdot (y-0)^2 = xy;$$

Итак, разложения функцию $z=e^x siny$ в ряд Тейлора в окрестности точки (0; 0) имеет

вид: $f(x; y) = 0 + y + \frac{xy}{2!} = y + \frac{xy}{2}$.

Пример 2.6. Разложить функцию $z=3x^5y^2-2x^4y^3+5y$ в ряд Тейлора в окрестно-

сти в точке $M_0(1;1)$ до третьего порядка включительно.

Решение.

Для разложения исходной функции в ряд Тейлора воспользуемся соответствующей формулой:

$$f(x;y) = f(x_0;y_0) + \frac{df(x_0;y_0)}{1!} + \frac{d^2f(x_0;y_0)}{2!} + \frac{d^3f(x_0;y_0)}{3!} + r_3;$$

1)Найдем значение функции z в точке $M_0(1;1)$:

$$z(M_0) = f(1; 1) = 3 - 2 + 5 = 6;$$

2)Вычислим первый дифференциал в точке $M_0(1;1), df(1;1)$:

$$df(1;1)=f_x'(1;1)(x-1)+f_y'(1;1)(y-1),$$
 $f_x'=(3x^5y^2-2x^4y^3+5y)_x'=15x^4y^2-8x^3y^3,$ $f_y'=(3x^5y^2-2x^4y^3+5y)_y'=6x^5y-6x^4y^2+5,$ $f_x'(1;1)=15-8=7, f_y'(1;1)=6-6+5=5.$ Получаем:

$$df(1;1) = 7(x-1) + 5(y-1)$$

3)Вычислим второй дифференциал $d^2 f(1;1)$:

$$d^2f(1;1)=f_{xx}^{\prime\prime\prime}(1;1)(x-1)^2+2f_{xy}^{\prime\prime\prime}(1;1)(x-1)(y-1)+$$
 $+f_{yy}^{\prime\prime}(1;1)(y-1)^2,$
 $f_{xx}^{\prime\prime\prime}=(15x^4y^2-8x^3y^3)_x^{\prime}=60x^3y^2-24x^2y^3,$
 $f_{xy}^{\prime\prime\prime}=(15x^4y^2-8x^3y^3)_y^{\prime}=30x^4y-24x^3y^2,$
 $f_{yy}^{\prime\prime\prime}=(6x^5y-6x^4y^2+5)_y^{\prime}=6x^5-12x^4y,$
 $f_{xx}^{\prime\prime\prime}(1;1)=60-24=36,$
 $f_{xy}^{\prime\prime\prime}(1;1)=30-24=6,$
 $f_{yy}^{\prime\prime\prime}(1;1)=36(x-1)^2+12(x-1)(y-1)-6(y-1)^2;$

4)Вычисляем дифференциал третьего порядка в точке $M_0(1;1)$, $d^3f(1;1)$:

$$d^3f(1;1)=f_{xxx}^{\prime\prime\prime}(1;1)(x-1)^3+3f_{xxy}^{\prime\prime\prime}(1;1)\cdot \cdot (x-1)^2(y-1)+3f_{xyy}^{\prime\prime\prime}(1;1)(x-1)(y-1)^2+ +f_{yyy}^{\prime\prime\prime}(1;1)(y-1)^3,$$
 $f_{xxx}^{\prime\prime\prime}=(60x^3y^2-24x^2y^3)_x^\prime=180x^2y^2-48xy^3,$
 $f_{xxy}^{\prime\prime\prime}(1;1)=180-48=132,$
 $f_{xxy}^{\prime\prime\prime}=(60x^3y^2-24x^2y^3)_y^\prime=120x^3y-72(xy)^2,$
 $f_{xxy}^{\prime\prime\prime}(1;1)=120-72=48,$
 $f_{xyy}^{\prime\prime\prime}=(30x^4y-24x^3y^2)_y^\prime=30x^4-48x^3y,$
 $f_{xyy}^{\prime\prime\prime}(1;1)=-18,$
 $f_{yyy}^{\prime\prime\prime}=(6x^5-12x^4y)_y^\prime=-12x^4,$
 $f_{yyy}^{\prime\prime\prime}(1;1)=-12.$
Следовательно,
$$d^3f(1;1)=132(x-1)^3+3\cdot48(x-1)^2(y-1)+ +3\cdot(-18)(x-1)(y-1)^2+(-12)(y-1)^3= =132(x-1)^3+144(x-1)^2(y-1)- -54(x-1)(y-1)^2-12(y-1)^3;$$

Итак, разложение исходной функции в ряд Тейлора в окрестности точки M_0 имеет вид:

$$f(x; y) = 6 + 7(x - 1) + 5(y - 1) + 18(x - 1)^{2} + 6(x - 1)(y - 1) - 3(y - 1)^{2} + 22(x - 1)^{3} + 24(x - 1)^{2}(y - 1) - 9(x - 1)(y - 1)^{2} - 2(y - 1)^{3} + r_{3}.$$

ЛИТЕРАТУРА

- 1. Б.В.Соболь, Н.Т. Мишняков, В.М. Поркшеян, Практикум по высшей математике .3-е изд. Ростов н \ Д :Феникс, 2010.
- 2. Д.Т.Письменный, Конспект лекций по высшей математике (полный курс). 2-е изд. Москва: «Айриспресс», 2014.
- 3. Данко П.Е., Попов, А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. М.: Высш. шк., 2002.