

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

Кафедра «Прикладная математика»

Учебное пособие

«Определенный интеграл» по дисциплине

«Математика»

Авторы
Рябых Г. Ю.,
Ворович Е. И.,
Тукодова О. М.,
Фролова Н. В.,
Пристинская О. В.

Ростов-на-Дону, 2021

Аннотация

Учебное пособие предназначено для аудиторной и самостоятельной работы при различных видах обучения: очном, заочном и дистанционном. Для студентов всех направлений и специальностей.

Авторы

канд.физ.-мат. наук, доцент кафедры «Прикладная математика» Рябых Г.Ю., канд.физ.-мат. наук, доцент кафедры «Высшая математика» Ворович Е.И., канд.физ.-мат. наук, доцент кафедры «Высшая математика» Тукодова О.М., ст. преподаватель кафедры «Прикладная математика» Фролова Н.В., ст. преподаватель кафедры «Прикладная математика» Пристинская О.В.

Оглавление

6 8
.11 . 18
.19 .22
25
.25 .29 .32
.38 .41 . 43

1. ЗАДАЧА О ПЛОЩАДИ КРИВОЛИНЕЙНОЙ ТРАПЕЦИИ

Пусть на отрезке $\begin{bmatrix} a,b \end{bmatrix}$ задана непрерывная функция y=f(x), причем $f(x)\!\ge\!0$ на этом отрезке. Построим график функции на $\begin{bmatrix} a,b \end{bmatrix}$ и концы графика обозначим точками A и B (см. рис. 1).

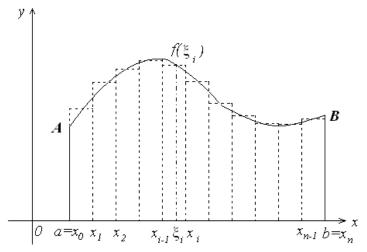


Рис.1

Определение 1: Криволинейной трапецией называется фигура, ограниченная кривой y = f(x), прямыми x = a, x = b и частью оси Ox([a,b] - основание трапеции).

Ставится задача: найти площадь криволинейной трапеции aABb . Для приближенного решения поставленной задачи

разобьём отрезок $\begin{bmatrix} a,b \end{bmatrix}$ на n частей точками $x_1,x_2,...,x_n$; где $a=x_0$, $b=x_n$. В результате криволинейная трапеция разобьётся на узкие полоски, которые в общем случае также являются криволинейными трапециями. Но чем меньше ширина полоски, тем меньше эта трапеция отличается от прямоугольника.

Рассмотрим произвольный отрезок $\left[x_{i-1},x_i\right]$ длины $\Delta x_i = x_i - x_{i-1}$, где i=1,2,...n. На каждом отрезке выберем произвольную точку $\boldsymbol{\xi}_i$, то есть $\boldsymbol{\xi}_i \in \left[x_{i-1},x_i\right]$, и подсчитаем значение функции в этой точке $f(\boldsymbol{\xi}_i)$. Заменим i — ю криволинейную трапецию на прямоугольник с тем же основанием и высотой, равной $f(\boldsymbol{\xi}_i)$. Сделав такую замену на всех n отрезках, получим некоторую ступенчатую фигуру, площадь которой S_n может быть подсчитана по формуле:

$$S_{n} = \sum_{i=1}^{n} f\left(\boldsymbol{\xi}_{i}\right) \cdot \Delta x_{i}$$

Полученную площадь ступенчатой фигуры можно принять за приближенное значение искомой площади криволинейной трапеции

$$S_n \approx S_{aABb}$$

Увеличивая число точек разбиения отрезка и одновременно уменьшая длины всех элементарных отрезков, в пределе получим площадь криволинейной трапеции

$$S_{aABb} = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_i) \cdot \Delta x_i$$
,

где $max \Delta x_i \rightarrow 0$ при $n \rightarrow \infty$.

1.1 Интегральная сумма. Определенный интеграл

Пусть на отрезке $\begin{bmatrix} a,b \end{bmatrix}$ задана непрерывная функция $y=f\left(x\right)$ (см. рисунок 1).

Рассмотрим разбиение R_n отрезка $\left[a,b\right]$ на n частей (не обязательно одинаковых) точками $x_1,x_2,...,x_n$, то есть $a=x_0< x_1<...< x_n=b$. Длина каждого элементарного отрезка $\Delta x_i=x_i-x_{i-1}$.

На каждом из полученных отрезков выберем произвольную точку $m{\xi}_i$ и вычислим значение функции в этой точке: $f\left(m{\xi}_i\right).$ Найдем произведение $f\left(m{\xi}_i\right)\cdot \Delta x_i$.

Составим сумму S_{R_n} всех таких произведений:

$$S_{R_n} = \sum_{i=1}^n f\left(\boldsymbol{\xi}_i\right) \cdot \Delta x_i \tag{1}$$

Определение 2: Сумма (1) называется интегральной суммой для функции f(x) на отрезке [a,b].

Очевидно, что сумма S_{R_n} зависит от способа разбиения отрезка igl[a,b igr] на элементар- ные и от выбора на них точек

 $oldsymbol{\xi}_i$. Пусть число n точек разбиения отрезка $\left[a,b\right]$ неограниченно растет, причем $\max \Delta x_i o 0$.

Определение 3: Если существует предел интегральной суммы S_{R_n} при $n \to \infty$ и $max \Delta x_i \to 0$, независящий ни от способа разбиения R_n отрезка $\begin{bmatrix} a,b \end{bmatrix}$ на элементарные, ни от выбора точек $\mathbf{\xi}_i$, то этот предел называется определенным интегралом от функции $f\left(x\right)$ на отрезке $\begin{bmatrix} a,b \end{bmatrix}$ и обозначается

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x_{i}$$
 (2)

Здесь f(x)- подынтегральная функция, f(x)dxподынтегральное выражение, a и b- соответственно нижний и верхний пределы интегрирования. Функция f(x) называется интегрируемой на отрезке[a,b].

Другими словами, определенный интеграл есть число, равное пределу, к которому стремится интегральная сумма, когда шаг разбиения стремится к нулю.

Замечание 1. Определенный интеграл вводится как предел интегральной суммы, т.е. мы имеем некоторое обобщенное суммирование на отрезке [a,b].

Замечание 2. После введения понятия и обозначения определенного интеграла для рассмотренной задачи о площади

криволинейной трапеции можно записать:

$$S_{aABb} = \int_{a}^{b} f(x) dx,$$

где
$$f(x) \ge 0$$
 на отрезке $[a,b]$.

Таким образом, определенный интеграл от неотрицательной функции численно равен площади криволинейной трапеции. В этом заключен геометрический смысл определенного интеграла.

Теорема: (теорема существования): Если функция f(x) непрерывна на отрезке [a,b], то она интегрируема на этом отрезке.

1.2 Свойства определенного интеграла

1) Постоянный множитель может быть вынесен за знак интеграла:

$$\int_{a}^{b} Af(x)dx = A \int_{a}^{b} f(x)dx;$$
 где A=const.

2) Интеграл от алгебраической суммы функций равен алгебраической

сумме интегралов от слагаемых:

$$\int_{a}^{b} (f_{1}(x) \pm f_{2}(x)) dx = \int_{a}^{b} f_{1}(x) dx \pm \int_{a}^{b} f_{2}(x) dx$$

Замечание. Свойства 1 и 2 называются свойством линейности определенного интеграла.

3) При перестановке пределов интегрирования определенный интеграл меняет знак:

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

4) Для любых трех чисел a,b,c справедливо равенство

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx,$$

если только все три интеграла существуют. Это свойство называется свойством аддитивности.

5) Если на отрезке $\left[a,b\right]$ выполняется неравенство

$$f(x) \ge 0$$
 , to $\int_a^b f(x) dx \ge 0$

6) Если функции $f\left(x\right)$ и $\phi(x)$ интегрируемы на отрезке $\left[a,b\right]$ и для любого $x\!\in\!\left[a,b\right]$, где $a\!<\!b$, справедливо

неравенство
$$f(x) \le \varphi(x)$$
, то $\int_a^b f(x) dx \le \int_a^b \varphi(x) dx$.

Доказательство свойств 1) - 6) проводится с использованием формулы (2).

7) Оценка определенного интеграла. Теорема о среднем.

Теорема: Если m и M – соответственно наименьшее и наибольшее значения функции $f\left(x\right)$ на отрезке [a,b], то:

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a)$$
, где $a < b$.

Теорема о среднем: Если функция f(x) непрерывна на отрезке [a,b], то на этом отрезке существует точка ξ такая, что

$$\int_{a}^{b} f(x)dx = (b-a)f(\xi)$$
 (3)

Доказательство: В соответствии с предыдущей теоремой

$$m \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le M.$$

Обозначим

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = \mu, \tag{4}$$

где μ - некоторое число, удовлетворяющее неравенствам, где $m \leq \mu \leq M$. Так как функция f(x) непрерывна на отрезке [a,b], то она принимает на этом отрезке все значения от m до M. Другими словами, на отрезке [a,b] найдется такая точка ξ , для которой $f(\xi) = \mu$. Тогда из равенства (4) получаем

$$\int_{a}^{b} f(x) dx = (b-a) f(\xi).$$

Теорема доказана.

Замечание. Значение функции в точке ξ , определяемое из равенства (3)

$$f(\xi) = \frac{\int_{a}^{b} f(x) dx}{b - a},$$

называется средним значением функции на отрезке $\llbracket a,b
rbracket$.

1.3 Вычисление определенного интеграла

Интеграл с переменным верхним пределом

Пусть на отрезке $\begin{bmatrix} a,b \end{bmatrix}$ задана непрерывная функция $y=f\left(x
ight)$. Выберем на отрезке любое значение $x\in \begin{bmatrix} a,b \end{bmatrix}$ и рассмотрим интеграл в пределах от a до $x:\int\limits_a^x f\left(t
ight)dt$ (см. рис. 2).

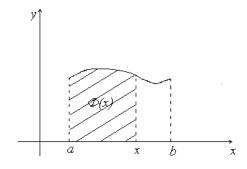


Рис. 2

Очевидно, что если изменяется верхний предел, то изменяется и значение интеграла, так как определенный интеграл – это число, связанное с пределами интегрирования.

Обозначим
$$\int_{a}^{x} f(t)dt = \Phi(x).$$

<u>Определение:</u> Функция $\Phi(x)$ называется определенным интегралом с переменным верхним пределом.

Теорема: Если функция $y=f\left(x\right)$ непрерывна на отрезке $\begin{bmatrix} a,b\end{bmatrix}$ и $\Phi(x)=\int\limits_a^x f(t)dt$, то справедливо равен-

ство:
$$\Phi'(x) = f(x)$$
 или $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$.

Аналогичную теорему можно доказать для случая переменного нижнего предела.

Замечание. Таким образом, можно утверждать, что всякая непрерывная на отрезке [a,b] функция $y=f\left(x\right)$ имеет на этом отрезке первообразные, одной из которых является функция $\Phi(x)$.

Теорема Ньютона-Лейбница

Теорема: Если функция F(x) – какая- либо первообразная от непрерывной функции f(x), то

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
 (5)

Это выражение известно под названием формулы Ньютона – Лейбница.

Доказательство: Пусть $F\left(x\right)$ – первообразная функции $f\left(x\right)$. Тогда в соответствии с приведенной выше теоремой,

функция
$$\int\limits_{a}^{x}f(t)dt$$
 - первообразная функция от $f\left(x\right) .$ Но

так как функция может иметь бесконечно много первообразных, которые отличаются друг от друга только на некоторое постоянное число C, то можно записать

$$\int_{a}^{x} f(t)dt = F(x) + C.$$

Это равенство справедливо для любого x из рассматриваемого интервала. Положим x=a :

$$\int_{a}^{a} f(t)dt = F(a) + C.$$

Следовательно, 0 = F(|a|) + C , то есть C = -F(|a|). Тогда можно записать

$$\int_{a}^{x} f(t)dt = F(x) - F(a).$$

Полагая в этом равенстве x = b, получим:

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

Заменив переменную t на переменную x , получаем формулу Ньютона – Лейбница:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Теорема доказана.

Иногда применяют обозначение двойной подстановки

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

При вычислении определенных интегралов используются те же приемы и методы, которые были изучены при нахождении неопределенных интегралов.

Примеры. Вычислить следующие интегралы:

1.
$$\int_{0}^{1} (x+1)^{3} dx = \frac{(x+1)^{4}}{4} \Big|_{0}^{1} = \frac{1}{4} (2^{4} - 1^{4}) = \frac{15}{4}$$

2.
$$\int_{0}^{\pi/2} \sin 2x dx = -\frac{1}{2} \cos 2x \Big|_{0}^{\frac{\pi}{2}} = -\frac{1}{2} (\cos \pi - \cos 0) = -\frac{1}{2} (-1 - 1) = 1$$

3.
$$\int_{0}^{1} \frac{x dx}{\sqrt{1+x^2}} = \frac{1}{2} \cdot 2\sqrt{1+x^2} \Big|_{0}^{1} = \sqrt{2} - 1$$

4.
$$\int_{-1}^{2} e^{-x} dx = -e^{-x} \Big|_{-1}^{2} = -(e^{-2} - e) = e - \frac{1}{e^{2}}$$

Замена переменной в определенном интеграле

Теорема: Пусть дан интеграл $\int\limits_a^b f(x)dx$, где функция

 $f\left(x
ight)$ непрерывна на отрезке $\left[a,b
ight]$. Введем новую переменную t по формуле $x=\phi(t)$. Если при этом:

- 1) $\varphi(\alpha)=a$, $\varphi(\beta)=b$ (т.е. при изменении $\alpha\leq t\leq \beta$ значения функции $\varphi(t)$ не выходят за интервал $\begin{bmatrix} a,b\end{bmatrix}$),
 - 2) $\varphi(t)$ и $\varphi'(t)$ непрерывны на отрезке [α , β],
- 3) сложная функция $f(\varphi(t))$ определена и непрерывна на отрезке $[\alpha,\ \beta]$, то

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f[\varphi(t)]\varphi'(t)dt$$
 (6)

Тогда

$$\int_{\alpha}^{\beta} f[\varphi(t)]\varphi'(t)dt = F[\varphi(t)]\Big|_{\alpha}^{\beta} = F[\varphi(\beta)] - F[\varphi(\alpha)] = F(b) - F(a)$$

Замечание 1. При вычислении определенного интеграла по формуле (6) не надо возвращаться к старой переменной, т.к. уже получено числовое значение интеграла.

Пример.

$$\int_{1}^{\sqrt{3}} \frac{dx}{x^{2}\sqrt{4-x^{2}}} = \begin{cases} x = 2\sin t & npu \ x = 1, \quad t = \frac{\pi}{6} \\ dx = 2\cos t dt & npu \ x = \sqrt{3}, \quad t = \frac{\pi}{3} \end{cases} = =$$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{2\cos tdt}{4\sin^2 t \cdot 2\cos t} = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dt}{4\sin^2 t} = -\frac{1}{4}ctgt\Big|_{\frac{\pi}{6}}^{\frac{\pi}{3}} = -\frac{1}{4}\left(\frac{\sqrt{3}}{3} - \sqrt{3}\right) = \frac{\sqrt{3}}{6}$$

Замечание 2. При замене переменной в определенном интеграле следует следить за непрерывностью вводимой функции на рассматриваемом отрезке интегрирования. В противном случае формальное применение формулы приводит к абсурду.

Например,

$$\int_{0}^{\pi} dx = x \Big|_{0}^{\pi} = \pi$$

Применим к этому интегралу тригонометрическую подстановку, получим

$$\int_{0}^{\pi} dx = \int_{0}^{\pi} \frac{dx}{\sin^{2} x + \cos^{2} x} = \int_{0}^{\pi} \frac{dx}{\cos^{2} x (1 + tg^{2} x)} = \{tgx = t\} = \int_{0}^{0} \frac{dt}{1 + t^{2}} = 0$$

Таким образом, два способа нахождения интеграла дают различные результаты. Это произошло из-за того, что введенная функция tgx имеет на отрезке интегрирования разрыв (в точке $x=\pi/2$). Поэтому в данном случае такая подстановка неприменима.

<u>Интегрирование по частям в определенном</u> интеграле

Если функции $u=u\left(x\right)$ и $v=v\left(x\right)$ непрерывны на отрезке $\left[a,b\right]$ и имеют на этом отрезке непрерывные производные, то справедлива формула интегрирования по ча-

стям:

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du. \tag{7}$$

Пример.

$$\int_{1}^{e} \ln^{2} x \cdot dx = \begin{cases} u = \ln^{2} x & du = 2 \ln x \frac{dx}{x} \\ dv = dx & v = x \end{cases} = x \ln^{2} x \Big|_{1}^{e} - 2 \int_{1}^{e} \ln x \cdot dx = 1 \\ = \begin{cases} u = \ln x & du = \frac{dx}{x} \\ dv = dx & v = x \end{cases} = e - 2 \left(x \ln x \Big|_{1}^{e} - \int_{1}^{e} dx \right) = 1 \\ = e - 2 \left(e - (e - 1) \right) = e - 2 \end{cases}$$

<u>Интегрирование четных и нечетных функций на отрез-</u> <u>ке, симметричном относительно нуля</u>

Теорема. Определенный интеграл с противоположными пределами интегрирования от непрерывной нечетной функции равен нулю, т.е.

$$\int_{-a}^{a} f(x) dx = 0.$$

Доказательство. Пусть $y=f\left(x
ight)$ - непрерывная нечетная функция, определенная на отрезке $\left[-a,a\right]$. Вычислим интеграл

$$I = \int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx$$

В первом из интегралов сделаем замену переменных, положив x=-t . Тогда, учитывая нечетность функции $f\left(x\right)$, получим

$$I = \int_{a}^{0} f(-t)(-dt) + \int_{0}^{a} f(x)dx = \int_{a}^{0} f(t)dt + \int_{0}^{a} f(x)dx = -\int_{0}^{a} f(x)dx + \int_{0}^{a} f(x)dx = 0$$

Теорема. Определенный интеграл с противоположными пределами интегрирования от непрерывной четной функции равен удвоенному интегралу от этой функции, взятому по правой (левой) половине отрезка интегрирования, т.е.

$$\int_{a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx.$$

Доказательство теоремы аналогично предыдущему.

2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

Рассматривается расширение понятия определенного интеграла по двум направлениям:

- 1) пределы интегрирования уходят в бесконечность;
- 2) интегрирование на конечном отрезке функций, имеющих разрыв 2-го рода.

2.1. Интегралы с бесконечными пределами интегрирования

Пусть функция $f\left(x\right)$ определена и непрерывна при всех значениях x из интервала $\left[a,\infty\right)$.

Рассмотрим интеграл $\int\limits_{a}^{n}f\left(x\right) dx$, где n -любое число,

лежащее правее a , т.е. $n \in (a, \infty)$. Будем n все время увеличивать и наблюдать, что происходит с интегралом.

Определение: Если существует конечный предел $\lim_{n\to\infty}\int\limits_a^n f(x)dx \, , \, \, \text{то этот предел называется} \quad \text{несобственным}$

интегралом от функции f(x) на интервале $[a,\infty)$.

Обозначение:
$$\lim_{n\to\infty}\int\limits_a^n f(x)dx=\int\limits_a^\infty f(x)dx$$
 .

Если этот предел существует и конечен, то говорят, что несобственный интеграл сходится. Если предел не существует или равен бесконечности, то говорят, что несобственный интеграл расходится.

Аналогично вводится несобственный интеграл

$$\int_{-\infty}^{b} f(x)dx = \lim_{n \to -\infty} \int_{n}^{b} f(x)dx$$

для функции f(x), непрерывной на интервале

$$(-\infty,b]$$
.

Если функции непрерывна на всей числовой оси, то можно рассмотреть интеграл

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx,$$

где $\, {\it C} \, - \,$ любое конечное число. Интеграл, стоящий слева, сходится тогда и только тогда, когда сходятся оба интеграла, стоящие справа.

Пример 1.

$$\int\limits_0^\infty \cos x dx = \lim\limits_{n \to \infty} \int\limits_0^n \cos x dx = \lim\limits_{n \to \infty} \sin x \Big|_0^n = \lim\limits_{n \to \infty} (\sin n - \sin 0) = \lim\limits_{n \to \infty} \sin n$$
- He существует.

Следовательно, несобственный интеграл расходится.

Пример 2.

$$\int_{0}^{\infty} xe^{-x^{2}} dx = \lim_{n \to \infty} \int_{0}^{n} xe^{-x^{2}} dx = \begin{cases} d(-x^{2}) = -2x dx \\ x dx = -\frac{1}{2} d(-x^{2}) \end{cases} =$$

$$= -\frac{1}{2} \lim_{n \to \infty} \int e^{-x^{2}} d(-x^{2}) = -\frac{1}{2} \lim_{n \to \infty} e^{-x^{2}} \Big|_{x=0}^{n} = -\frac{1}{2} \lim_{n \to \infty} \left(e^{-n^{2}} - 1 \right) =$$

$$=\frac{1}{2}$$
.

Интеграл сходится.

Замечание. Для несобственных интегралов с бесконечными пределами интегрирования отсутствует понятие инте-

гральной суммы, т.к. нельзя разбить бесконечный отрезок интегрирования на конечное число элементарных отрезков, имеющих конечную длину Δx_i . В этом случае несобственный интеграл является не пределом интегральных сумм, а пределом определенного интеграла с переменным пределом интегрирования.

<u>Оценка несобственных интегралов с бесконечными пре</u> <u>делами интегрирования</u>

Во многих практических случаях достаточно установить сходится или расходится данный интеграл и как-либо оценить его.

Теорема: Если для всех $x\in [a,\infty)$ выполняется условие $0\leq f(x)\leq \phi(x)$ и интеграл $\int\limits_a^\infty \phi(x)dx$ сходится, то $\int\limits_a^\infty f(x)dx$ тоже сходится, причем $\int\limits_a^\infty f(x)dx\leq \int\limits_a^\infty \phi(x)dx$.

Теорема: Если для всех $x\in [a,\infty)$ выполняется условие $0\leq \phi(x)\leq f(x)$ и интеграл $\int\limits_a^\infty \phi(x)dx$ расходится,

то
$$\int_{a}^{\infty} f(x)dx$$
 тоже расходится.

Теорема: Если $\int\limits_{a}^{\infty} |f(x)| dx$ сходится, то сходится и

интеграл $\int\limits_a^\infty f(x)dx$, который в этом случае называется абсолютно сходящимся.

2.2. Интеграл от разрывной функции

Если функция $f\left(x\right)$ на отрезке $\left[a,b\right]$ имеет конечное число точек разрыва 1-го рода, то отрезок разбивается на конечное число интервалов, где функция непрерывна и интеграл равен сумме интегралов, вычисленных на интервалах непрерывности функции.

Пусть $f\left(x\right)$ определена и непрерывна при $a \leq x < b$, а при x = b терпит разрыв 2-го рода, т.е. $\lim_{x \to b = 0} f\left(x\right) = \infty$ (см. рис. 3).

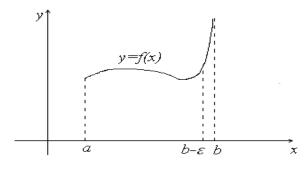


Рис.3.

В этом случае интегральную сумму построить можно, но она может принимать произвольно большие числовые значения в силу неограниченности $f\left(\xi_i\right)$ и, следовательно, не имеет предела. Поэтому построить определенный интеграл обычным способом нельзя.

Рассмотрим интеграл
$$\int\limits_{a}^{b-\varepsilon}f\left(x\right)dx$$
 , где $\,\, \varepsilon > 0\,.$

Определение. Если существует конечный предел $\lim_{\epsilon\to 0}\int_a^{b-\epsilon}f\left(x\right)dx\, \text{, то он называется несобственным интегралом}$ от функции $f\left(x\right)$ в пределах от a до b .

Обозначение:
$$\int_{a}^{b} f(x) dx = \lim_{\epsilon \to 0} \int_{a}^{b-\epsilon} f(x) dx$$
.

Аналогично определяется несобственный интеграл для функции $y = f\left(x\right)$, непрерывной на интервале $\left(a,b\right]$:

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x)dx.$$

Если функция $y = f\left(x\right)$ имеет разрыв 2-го рода в некоторой точке x = c , где a < c < b , то несобственный интеграл запишется в виде

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

Исходный интеграл сходится, если сходятся оба интеграла, стоящие справа.

Теорема. Если первообразная F(x) для функции f(x) имеет конечный предел при $x \! o \! b \! - \! 0$, т.е.

$$\lim_{x \to b-0} F(x) = F(b)$$
, то несобственный интеграл $\int_a^b f(x) dx$

сходится и вычисляется по формуле Ньютона-Лейбница.

Доказательство. Рассмотрим интеграл

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x)dx = \lim_{x \to b-0} \left(F(x) - F(a)\right) = F(b) - F(a)$$
, ч.т.д.

Пример.

$$\int_{0}^{1} \frac{dx}{\sqrt{1-x}} = \lim_{\varepsilon \to 0} \int_{0}^{1-\varepsilon} \frac{dx}{\sqrt{1-x}} =$$

$$= \lim_{\varepsilon \to 0} \left(-2\sqrt{1-x} \right) \Big|_{0}^{1-\varepsilon} = -\lim_{\varepsilon \to 0} \left(2\sqrt{\varepsilon} - 2 \right) = 2.$$

Интеграл сходится.

Оценка несобственных интегралов от разрывных функ-

ций

Теорема. Если на отрезке $\begin{bmatrix} a,b \end{bmatrix}$ функции f(x) и $\phi(x)$ имеют разрыв 2-го рода только в точке x=b , причем во всех точках этого отрезка выполняются неравенства $0 \le f(x) \le \phi(x)$ и интеграл $\int_a^b \phi(x) dx$ сходится, то схо-

дится интеграл $\int\limits_a^b f\left(x\right)dx$, и справедливо неравенство

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} \varphi(x) dx.$$

Теорема. Если на отрезке $\begin{bmatrix} a,b \end{bmatrix}$ функции f(x) и $\phi(x)$ имеют разрыв 2-го рода только в точке x=b , причем во всех точках этого отрезка выполняются неравенства $0\!\leq\!\phi(x)\!\leq\!f(x)$ и интеграл $\int\limits_a^b\phi(x)dx$ расходится, то расходится и интеграл $\int\limits_a^bf(x)dx$.

Теорема. Если знакопеременная на отрезке $\begin{bmatrix} a,b \end{bmatrix}$ функция f(x) имеет разрыв 2-го рода только в точке x=b и несобственный интеграл $\int\limits_a^b \left| f(x) \right| dx$ от абсолютной величины этой функции сходится, то сходится также интеграл $\int\limits_a^b f(x) dx$ от самой функции. В этом случае он называется абсолютно сходящимся.

3. ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

3.1. Вычисление площадей плоских фигур

Вычисление площади в декартовой системе координат.

Если на отрезке $\begin{bmatrix} a,b \end{bmatrix}$ непрерывная функция $y=f\left(x\right) \geq 0$, то определенный интеграл на этом отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции $y=f\left(x\right)$, т.е. $S=\int\limits_a^b f\left(x\right)dx$ (см. рис. 4).

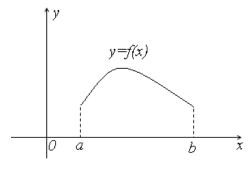


Рис.4.

Если график расположен ниже оси Ox , т.е. $f\left(x\right)$ <0, то $\int_{a}^{b}f\left(x\right)dx<0$ и для площади можно записать: $S=-\int_{a}^{b}f\left(x\right)dx$ (см. рис. 5).

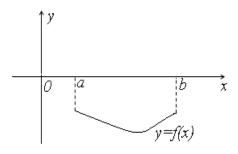


Рис. 5.

Объединяя обе формулы, получим:
$$S = \left|\int\limits_a^b f(x) dx\right|$$
 .

Пример. Найти площадь фигуры, ограниченной линия- ми $y = x^2 - 4; \quad y = x + 2$.

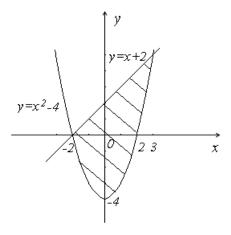


Рис. 6

Искомая площадь (заштрихована на рисунке 6) может быть найдена по формуле:

$$S = \int_{-2}^{3} (x+2) dx - \int_{-2}^{3} (x^{2} - 4) dx =$$

$$\int_{-2}^{3} \left(-x^2 + x + 6 \right) dx = \left(-\frac{x^3}{3} + \frac{x^2}{2} + 6x \right) \Big|_{-2}^{3} = \frac{125}{6}$$
 (кв.ед).

Вычисление площади в случае, когда кривая задана параметрическими уравнениями

Пусть кривая $\,L\,$ задана параметрическими уравнениями

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
, где $t_1 \le t \le t_2$, и $x(t_1) = a$, $x(t_2) = b$.

Построив кривую в декартовой системе координат для вычисления пло

щади запишем формулу

$$S = \int_a^b f(x)dx = \int_a^b ydx = \left\{ \begin{aligned} x &= x(t) \\ y &= y(t) \end{aligned} \right\} = \int_{t_1}^{t_2} y(t)x'(t)dt.$$

Вычисление площади в полярной системе координат

Для нахождения площади криволинейного сектора введем полярную систему координат. Уравнение кривой, ограничивающей сектор в этой системе координат, имеет вид $\rho = f\left(\phi\right)$, где ρ - длина радиус–вектора, соединяющего полюс с произвольной точкой кривой, а ϕ - угол наклона этого радиус–вектора к полярной оси (см. рис.7).

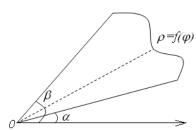


Рис. 7.

Площадь криволинейного сектора может быть найдена по формуле

$$S = \frac{1}{2} \int_{\alpha}^{\beta} f^2(\varphi) d\varphi$$

Пример. Найти площадь круга, ограниченного окружностью $\rho = 2R\cos\phi$ (см. рис.8).

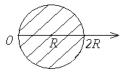


Рис.8

$$S = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2R\cos\varphi)^2 d\varphi = 2R^2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2\varphi d\varphi =$$

$$=4R^2\int_{0}^{\frac{\pi}{2}}\frac{1+\cos 2\varphi}{2}d\varphi=\pi R^2.$$

3.2 Вычисление длины дуги кривой

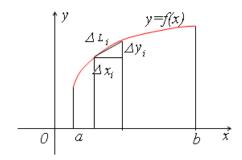


Рис. 9

Определение. Длиной L дуги AB называется предел, к которому стремится периметр вписанной в эту дугу ломаной, когда число ее звеньев неограниченно растет, а наибольшая из длин звеньев стремится к нулю.

Длина ломаной линии, которая соответствует дуге, мо-

жет быть найдена как $L_n = \sum_{i=1}^n \Delta L_i$ (см. рис.9). Тогда длина

дуги равна
$$L = \lim_{\max \Delta L_i o 0} \sum_{i=1}^n \Delta L_i$$
 .

Из геометрических соображений имеем:

$$\Delta L_i = \sqrt{\left(\Delta x_i\right)^2 + \left(\Delta y_i\right)^2} = \sqrt{1 + \left(\frac{\Delta y_i}{\Delta x_i}\right)^2} \cdot \Delta x_i.$$

Переходя к пределу, получим

$$L = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n \Delta L_i = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx.$$

Окончательно можно записать

$$L = \int_a^b \sqrt{1 + \left(f'(x)\right)^2} dx.$$

Если уравнение кривой задано параметрически, то с учетом правил вычисления производной параметрически заданной функции получаем

$$L = \int_{\alpha}^{\beta} \sqrt{\left[\varphi'(t)\right]^2 + \left[\psi'(t)\right]^2} dt,$$

где
$$x = \varphi(t)$$
, $y = \psi(t)$.

Если задана пространственная кривая, где $x= \phi(t), \ y=\psi(t), \ z=\tau(t)$, то

$$L = \int_{\alpha}^{\beta} \sqrt{\left[\varphi'(t)\right]^2 + \left[\psi'(t)\right]^2 + \left[\tau'(t)\right]^2} dt$$

Если кривая задана в полярных координатах, то

$$L = \int_{\alpha}^{\beta} \sqrt{\rho'^2 + \rho^2} d\varphi, \ \rho = f(\varphi).$$

Пример. Найти длину окружности, заданной уравнени- ем $x^2 + y^2 = r^2$ (см. рис. 10).

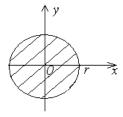


Рис. 10

Запишем данное уравнение в полярной системе координат, положив $x=\rho\cos\phi,\ y=\rho\sin\phi$.

Тогда получим: $\rho^2\cos^2\phi + \rho^2\sin^2\phi = r^2$. Т.е. функция $\rho = f\left(\phi\right) = r$, $\rho' = 0$ и для длины окружности можно записать:

$$L = \int_{0}^{2\pi} \sqrt{0 + r^2} d\varphi = r \int_{0}^{2\pi} d\varphi = 2\pi r$$

3.3. Вычисление объемов тел

Вычисление объема тела по известным площадям его параллельных сечений

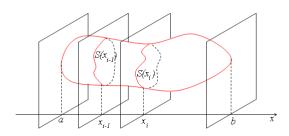


Рис. 11.

Пусть имеется тело объема V. Площадь любого поперечного сечения тела S известна как непрерывная функция S = S(x). Разобьем тело на "слои" поперечными сечениями, проходящими через точки x_i разбиения отрезка [a, b] (см. рис. 11). Так как на каком- либо промежуточном отрезке разбиения $[x_{i-1}, x_i]$ функция S(x) непрерывна, то принимает на нем наибольшее и наименьшее значения. Обозначим их соответственно M_i и m_i .

Если на этих наибольшем и наименьшем сечениях построить цилиндры с образующими, параллельными оси x, то объемы этих цилиндров будут соответственно равны $M_i \triangle x_i$ и $m_i \triangle x_i$, при этом $\triangle x_i = x_i - x_{i-1}$.

Произведя такие построения для всех отрезков разбиения, получим цилиндры, объемы которых равны соответственно

$$\sum_{i=1}^n M_i \Delta x_i \quad \text{N} \quad \sum_{i=1}^n m_i \Delta x_i \ .$$

При стремлении к нулю шага разбиения λ , эти суммы имеют общий предел:

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} M_i \Delta x_i = \lim_{\lambda \to 0} \sum_{i=1}^{n} m_i \Delta x_i = \int_a^b S(x) dx$$

Таким образом, объем тела может быть найден по формуле:

$$V = \int_{a}^{b} S(x) dx$$

Недостатком этой формулы является то, что для нахождения объема необходимо знать функцию S(x), что весьма проблематично для сложных тел.

Пример. Найти объем шара радиуса R.

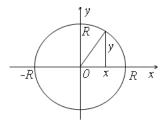


Рис. 12.

В поперечных сечениях шара получаются окружности переменного радиуса y. В зависимости от текущей координаты x этот радиус выражается по формуле $\sqrt{R^2-x^2}$ (см. рис. 12).

Тогда функция площадей сечений имеет вид: $S\!(x) = \pi \left(R^2 - x^2\right)$.

Получаем объем шара:

$$V = \int_{-R}^{R} \pi (R^2 - x^2) dx = \pi (R^2 x - \frac{x^3}{3}) \Big|_{-R}^{R} = \pi \left(R^3 - \frac{R^3}{3} \right) - \pi \left(-R^3 + \frac{R^3}{3} \right) = \frac{4\pi R^3}{3}$$

Объем тел вращения

Рассмотрим кривую, заданную уравнением y = f(x). Предположим, что функция f(x) непрерывна на отрезке [a,b]. Если соответствующую ей криволинейную трапецию с основанием ab вращать вокруг оси Ox, то получим так называемое тело вращения.

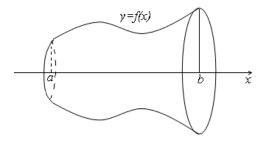


Рис. 13.

Так как каждое сечение тела плоскостью x = const представляет собой круг радиуса $R = \left| f(x) \right|$, то объем тела вращения может быть найден по полученной выше формуле:

$$V = \pi \int_{a}^{b} f^{2}(x) dx$$

4. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Вычислить $\int_{\pi/6}^{\pi/4} \frac{dx}{\cos^2 x}$ по формуле Ньютона

Лейбница.

$$\int_{\pi/6}^{\pi/4} \frac{dx}{\cos^2 x} = tgx \Big|_{\pi/6}^{\pi/4} = tg\frac{\pi}{4} - tg\frac{\pi}{6} = 1 - \frac{\sqrt{3}}{3}.$$

Пример 2. Вычислить $\int_0^1 x e^{-x} dx$.

жим $u=x, dv=e^{-x}dx$, откуда $du=dv, v=e^{-x}$. Тогда $\int_0^1 x e^{-x} \, dx = -x e^{-x} \Big|_0^1 + \int_0^1 e^{-x} \, dx = e^{-1} - e^{-x} \Big|_0^1 = -2 \, e^{-1} + 1 = \frac{\mathrm{e}^{-2}}{\mathrm{e}}$

Воспользуемся методом интегрирования по частям. Поло-

Пример 3.

Вычислить
$$\int_0^t \frac{\ln^2 x}{x} dx$$
.

Положим
$$lnx=t$$
, тогда откуда $\frac{dx}{x}=dt$; ес-

ли
$$x=1$$
, то $t=0$; если $x=e$, то $t=1$. Следовательно,
$$\int_0^t \frac{\ln^2 x}{x} dx = \int_0^1 t^2 dt = \frac{1}{3} t^3 \Big|_0^1 = \frac{1}{3} (1^3 - 0^3) = \frac{1}{3}.$$

Пример 4. Найти площадь фигуры, ограниченной параболой $y = 4x - x^2$ и осью $\textbf{\textit{O}} x$.

Парабола пересекает ось Ox в точках O(0;0) и M(4;0). Следовательно,

$$S = \int_0^4 (4x - x^2) \, dx = \left[2x^2 - \frac{1}{3}2x^3\right]_0^4 = \frac{32}{3}$$
 (кв. ед.).

Пример 5. Найти длину дуги кривой $y^2 = x^3$ от x = 0 до x = 1 $(y \ge 0)$.

Дифференцируя уравнение кривой, найдем $y' = \frac{3}{2} \sqrt{x}$. Таким образом,

$$L = \int_0^1 \sqrt{1 + \frac{9}{4}} x dx = \frac{4}{9} \cdot \frac{2}{3} \sqrt[3]{\left(1 + \frac{9}{4}x\right)} \Big|_0^1 = \frac{8}{27} \left(\frac{13}{4}\right)^{\frac{3}{2}} - \frac{8}{27} = \frac{8}{27} \left(\frac{13}{8}\sqrt{13} - 1\right).$$

Пример 6.

Найти длину дуги кривой $x=cos^5(t),$ $y=sin^5(t)$ от $t_1=0$ до $t_2=\pi/2.$ Найдем производные по параметру $t:\dot{x}=-5cos^5(t)\sin(t),\dot{y}=5sin^5(t)\cos(t).$ Следовательно,

$$L = \int_0^{\pi/2} \sqrt{(-5\cos^4(t)\sin(t))^2 + (5\sin^4(t)\cos(t))^2} dt =$$

$$= 5 \int_0^{\pi/2} \sin(t)\cos(t)\sqrt{\sin^6(t) + \cos^6(t)} dt$$

$$= \frac{5}{2} \int_0^{\frac{\pi}{2}} \sin(2t) \sqrt{\frac{1}{4} + \frac{3}{4}\cos^2(2t)} dt =$$

$$= -\frac{5}{8} \int_0^{\pi/2} \sqrt{1 + 3\cos^2(2t)} d(\cos(2t))$$

$$= -\frac{5}{8\sqrt{3}} \left[\frac{\sqrt{(3)}}{2} \cos(2t) \sqrt{1 + 3\cos^2(2t)} \right]^{\pi/2} =$$

$$= \frac{5}{8} \left[2 - \frac{\ln(2 - \sqrt{3})}{\sqrt{3}} \right]$$

Пример7. Найти длину дуги кривой $p=\sin^3(\emptyset/3)$ от $\emptyset_1=0$ до $\emptyset_2=\pi/2$. Имеем $p'=\sin^2(\emptyset/3)\cos(\emptyset/3)$. Следовательно,

$$\begin{split} L &= \int_0^{\pi/2} \sqrt{\sin^6\left(\frac{\emptyset}{3}\right) + \left(\sin^2\left(\frac{\emptyset}{3}\right)\cos\left(\frac{\emptyset}{3}\right)\right)^2} \, d\emptyset \\ &= \int_0^{\pi/2} \sin^2\left(\frac{\emptyset}{3}\right) d\emptyset = \frac{1}{2} \int_0^{\pi/2} (1 - \cos\left(\frac{2\emptyset}{3}\right)) d\emptyset = \\ &= \frac{1}{2} \left[\emptyset - \frac{3}{2}\sin\left(\frac{2\emptyset}{3}\right)\right] \frac{\pi}{2} = \frac{1}{8} \left(2\pi - 3\sqrt{3}\right). \end{split}$$

Пример 8. Вычислить несобственный интеграл $\int_0^b \cos(x) dx$ (или установить его расходимость).

Имеем

$$\lim_{b \to +\infty} \int_0^b \cos(x) \, dx = \lim_{b \to +\infty} \sin(x) \, \Big|_0^b = \lim_{b \to +\infty} (\sin(b) - \sin(b))$$
$$= \lim_{b \to +\infty} \sin(b),$$

т.е. предел не существует. Следовательно, несобственный интеграл расходится.

Пример 9. Вычислить несобственный интеграл $\int_{-\infty}^{-1} \frac{dx}{x^2}$.

Найдем

$$\lim_{a \to -\infty} \int_{a}^{-1} \frac{dx}{x^{2}} = \lim_{a \to -\infty} \left[-\frac{1}{x} \right]_{a}^{-1} = \lim_{a \to -\infty} \left(1 + \frac{1}{a} \right) = 1,$$

т.е. несобственный интеграл сходится.

Пример 10. Найти
$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$$
.

Подынтегральная функция – четная, поэтому

$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = 2 \int_{0}^{+\infty} \frac{dx}{1+x^2}.$$

Тогда

$$\int_0^{+\infty} \frac{dx}{1+x^2} = \lim_{b \to +\infty} \int_0^b \frac{dx}{1+x^2} = \lim_{b \to +\infty} arctg(x) \Big|_0^b = \lim_{b \to +\infty} arctg(b) = \frac{\pi}{2}.$$

Таким образом, $\int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = \pi$, т.е. несобственный инте-

грал сходится.

Пример 11. Найти
$$\int_0^1 \frac{dx}{x}$$
.

Подынтегральная функция $f(x) = \frac{1}{x}$ в точке x = 0 не ограничена, а поэтому

$$\int_0^1 \frac{dx}{x} = \lim_{a \to 0} \int_a^1 \frac{dx}{x} = \lim_{a \to 0} \ln(x) \Big|_a^1 = \lim_{a \to 0} (\ln(1) - \ln(a)) = +\infty,$$

т.е. несобственный интеграл расходится.

Пример 12. Найти
$$\int_0^{+\infty} xe^{-x^2} dx$$
.

Имеем

$$\int_{0}^{+\infty} xe^{-x^{2}} dx = \lim_{b \to +\infty} \int_{0}^{b} xe^{-x^{2}} dx = \lim_{b \to +\infty} \left[-\frac{1}{2} e^{x^{2}} \right]_{0}^{b}$$
$$= \lim_{b \to +\infty} \left(\frac{1}{2} + \frac{1}{2} e^{-b^{2}} \right) = \frac{1}{2},$$

т.е. несобственный интеграл сходится.

4.1 Задачи для самостоятельного решения

Определенный интеграл

1.
$$\int_{1}^{2} (x^2 - 2x + 3) dx$$

2.
$$\int_{2}^{6} \sqrt{x-2} dx$$

$$3. \int_{1}^{0} \frac{3x^4 + 3x^2 + 1}{x^2 + 1} dx$$

4.
$$\int_{0}^{1} (x+1)^{3} dx$$

$$5. \int_{0}^{-3} \frac{dx}{\sqrt{25+3x}}$$

6.
$$\int_{0}^{1} \frac{dx}{\sqrt{4-x^2}}$$

7.
$$\int_{0}^{\pi/2} \sin 2x dx$$

$$8. \int_{-1}^{2} e^{x} dx$$

9.
$$\int_{0}^{1} \frac{x dx}{\sqrt{1+x^2}}$$

10.
$$\int_{-1}^{7} \frac{dx}{\sqrt{3x+4}}$$

$$11. \int_{0}^{\pi/2} \cos 5x \cos x dx$$

12.
$$\int_{-2}^{-1} \frac{dx}{(11+5x)^3}$$

$$13. \int_{0}^{2\pi} x \sin x dx$$

$$14. \int_{0}^{\pi/2} x \cos x dx$$

15.
$$\int_{0}^{\sqrt{3}} arctgx dx$$

16.
$$\int_{1}^{e} \ln x dx$$

Вычисление площадей

Вычислить площадь области, ограниченной линиями

1.
$$y = x^2$$
, $y = 2 - x$

2.
$$y = x^2 - 4$$
, $y = x + 8$

3.
$$y = 2 - x^2$$
, $y = x$

4.
$$y = x^2$$
, $y = \sqrt{x}$

5.
$$y = x^3$$
, $y = 1$, $x = 0$

6.
$$y = x^2 + 1$$
, $y = 0$, $x = 1$, $x = 2$

7.
$$y = \sqrt{x}$$
, $y = 2\sqrt{x}$, $x = 4$

8.
$$y = e^x$$
, $x = 0$, $x = 1$, $y = 0$

9.
$$y = 4 - x^2$$
, $y = x^2$

10.
$$y = x^3$$
, $y = x$

11.
$$y = \ln x$$
, $x = e$, $y = 0$

12.
$$y = \sin x$$
, $y = 3\sin x$, $x = 0$, $x = \pi$

Вычислить длину дуги кривой

1)
$$y = 1 - ln(x^2 - 1)$$
, $3 \le x \le 4$

2)
$$y = lnsinx$$
, $\frac{\pi}{2} \le x \le \frac{\pi}{2}$

3)
$$y = 2 + lncosx$$
, $0 \le x \le \frac{\pi}{6}$

4)
$$\rho = 5(1 - \cos\varphi), \quad -\frac{\pi}{3} \le \varphi \le 0$$

5)
$$\begin{cases} x = 3(t - sint) \\ y = 3(1 - cost) \end{cases} \quad t \in (\pi; 2\pi)$$

6)
$$\rho = \cos\varphi + \sin\varphi, \quad \varphi \in \left[0; \frac{\pi}{2}\right]$$

7)
$$y = \frac{1}{2} \ln \sin^2 x$$
, $\frac{\pi}{3} \le x \le \frac{\pi}{2}$

8)
$$\begin{cases} x = e^t cost \\ y = e^t sint \end{cases} \quad 0 \le t \le 1$$

9)
$$\begin{cases} x = cost + tsint \\ y = sint - tcost \end{cases} \quad 0 \le t \le \frac{\pi}{2}$$

10)
$$y = lncosx$$
, $\frac{\pi}{6} \le x \le \frac{\pi}{3}$

11)
$$\rho = 3e^{\varphi}, \quad 0 \le \varphi \le \frac{\pi}{3}$$

12)
$$\begin{cases} x = 4\cos^3 t & \frac{\pi}{6} \le t \le \frac{\pi}{4} \\ y = 4\sin^3 t & \frac{\pi}{6} \le t \le \frac{\pi}{4} \end{cases}$$

13)
$$\begin{cases} x = 3e^{t}(cost - sint) \\ y = 3e^{t}(cost + sint) \end{cases} \quad 0 \le t \le 1$$

14)
$$\rho = 3(1 + \sin\varphi), \quad -\frac{\pi}{6} \le \varphi \le 0$$

Вычислить несобственный интеграл

1)
$$\int_0^\infty e^{-2x} dx$$

$$2) \int_{2}^{\infty} \frac{dx}{x \ln x}$$

$$3) \int_2^\infty \frac{dx}{x \ln^3 x}$$

$$4) \int_{1}^{\infty} \frac{dx}{x^2}$$

5)
$$\int_0^3 \frac{dx}{\sqrt{9-x^2}}$$

6)
$$\int_0^3 \frac{dx}{(x-3)^2}$$

7)
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}}$$

8)
$$\int_{0}^{1} \frac{dx}{x}$$

9)
$$\int_{1}^{\infty} \frac{dx}{x}$$

$$10) \int_{0}^{\infty} \sin x dx$$

11)
$$\int_{0}^{\infty} \frac{arctgxdx}{x^{2}+1}$$

12)
$$\int_{1}^{\infty} \frac{dx}{x^2}$$

13)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1}$$

14)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 4x + 9}$$

15)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2}$$
 16) $\int_{0}^{\infty} e^{-x} dx$

$$16) \int_{0}^{\infty} e^{-x} dx$$

4.2 Типовой расчет

Задание №1. Вычислить интеграл

1.
$$\int_{1}^{2} (x^2 - 2x + 3) dx$$

$$2. \int_{0}^{6} \sqrt{x-2} dx$$

$$3. \int_{1}^{0} \frac{3x^4 + 3x^2 + 1}{x^2 + 1} dx$$

4.
$$\int_{0}^{1} (x+1)^{3} dx$$

5.
$$\int_{0}^{-3} \frac{dx}{\sqrt{25+3x}}$$

6.
$$\int_{0}^{1} \frac{dx}{\sqrt{4-x^2}}$$

7.
$$\int_{0}^{\pi/2} \sin 2x dx$$

$$8. \int_{-1}^{2} e^{x} dx$$

9.
$$\int_{0}^{1} \frac{x dx}{\sqrt{1+x^2}}$$

10.
$$\int_{-1}^{7} \frac{dx}{\sqrt{3x+4}}$$

11.
$$\int_{0}^{\pi/2} \cos 5x \cos x dx$$
 12.
$$\int_{-2}^{-1} \frac{dx}{(11+5x)^3}$$

12.
$$\int_{-2}^{-1} \frac{dx}{(11+5x)^3}$$

$$13. \int_{0}^{2\pi} x \sin x dx$$

13.
$$\int_{0}^{2\pi} x \sin x dx$$
 14. $\int_{0}^{\pi/2} x \cos x dx$

15.
$$\int_{0}^{\sqrt{3}} arctgx dx$$

16.
$$\int_{1}^{e} \ln x dx$$

Задание №2. Вычислить площадь области, ограниченной линиями

1.
$$y = x^2$$
, $y = 2 - x$

2.
$$y = x^2 - 4$$
, $y = x + 8$

3.
$$y = 2 - x^2$$
, $y = x$

4.
$$y = x^2$$
, $y = \sqrt{x}$

5.
$$y = x^3$$
, $y = 1$, $x = 0$

6.
$$y = x^2 + 1$$
, $y = 0$, $x = 1$, $x = 2$

7.
$$y = \sqrt{x}$$
, $y = 2\sqrt{x}$, $x = 4$

8.
$$y = e^x$$
, $x = 0$, $x = 1$, $y = 0$

9.
$$y = 4 - x^2$$
, $y = x^2$

10.
$$y = x^3$$
, $y = x$

11.
$$y = \ln x$$
, $x = e$, $y = 0$

12.
$$y = \sin x$$
, $y = 3\sin x$, $x = 0$, $x = \pi$

Задание №3. Вычислить длину дуги кривой

1.
$$y = 1 - \ln(x^2 - 1)$$
, $3 \le x \le 4$
2. $y = \ln \sin x$, $\frac{\pi}{3} \le x \le \frac{\pi}{2}$
3. $y = 2 + \ln \cos x$, $0 \le x \le \frac{\pi}{6}$
4. $\rho = 5(1 - \cos \varphi)$, $-\frac{\pi}{3} \le \varphi \le 0$
5. $\begin{cases} x = 3(t - \sin t) \\ y = 3(1 - \cos t) \end{cases}$ $t \in (\pi; 2\pi)$
6. $\rho = \cos \varphi + \sin \varphi$, $\varphi \in \left[0; \frac{\pi}{2}\right]$
7. $y = \frac{1}{2} \ln \sin^2 x$, $\frac{\pi}{3} \le x \le \frac{\pi}{2}$
8. $\begin{cases} x = e^t \cos t \\ y = e^t \sin t \end{cases}$ $0 \le t \le 1$
9. $\begin{cases} x = \cos t + t \sin t \\ y = \sin t - t \cos t \end{cases}$ $0 \le t \le \frac{\pi}{2}$
10. $y = \ln \cos x$, $\frac{\pi}{6} \le x \le \frac{\pi}{3}$
11. $\rho = 3e^{\varphi}$, $0 \le \varphi \le \frac{\pi}{3}$
12. $\begin{cases} x = 4\cos^3 t & \frac{\pi}{6} \le t \le \frac{\pi}{4} \\ y = 4\sin^3 t & \frac{\pi}{6} \le t \le \frac{\pi}{4} \end{cases}$
13. $\begin{cases} x = 3e^t(\cos t - \sin t) \\ y = 3e^t(\cos t + \sin t) \end{cases}$ $0 \le t \le 1$
14. $\rho = 3(1 + \sin \varphi)$, $-\frac{\pi}{6} \le \varphi \le 0$

СПИСОК ЛИТЕРАТУРЫ

- 1. Пискунов Н. С. Дифференциальное и интегральное исчисления для втузов, т. 1: Учебное пособие для втузов.— 13-е изд.— М.: Главная редакция физико-математической литературы, 1985.— 432 с.
- 2. Сборник задач по математике. Под редакцией А.В.Ефимова, Б.П. Демидовича. М., 1993 г.
- 3. Соболь Б.В., Мишняков Н.Т., Поркшеян В.М. Практикум по высшей математике. Изд. 3-е. Ростов н/Д, 2006. 640 с.