





ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

Кафедра «Прикладная математика»

# Учебное пособие

«Производные и правило Лопиталя» по дисциплине

# «Математика»

Авторы
Рябых Г. Ю.,
Ворович Е. И.,
Тукодова О. М.,
Фролова Н. В.,
Пристинская О. В.



## **Аннотация**

Учебное пособие предназначено для аудиторной и самостоятельной работы при различных видах обучения: очном, заочном и дистанционном. Для студентов всех направлений и специальностей.

# **Авторы**

канд.физ.-мат. наук, доцент кафедры «Прикладная математика» Рябых Г.Ю., канд.физ.-мат. наук, доцент кафедры «Высшая математика» Ворович Е.И., канд.физ.-мат. наук, доцент кафедры «Высшая математика» Тукодова О.М., ст. преподаватель кафедры «Прикладная математика» Фролова Н.В., ст. преподаватель кафедры «Прикладная математика» Пристинская О.В.





## Оглавление

| 1. Производная функции                                   | 4  |
|----------------------------------------------------------|----|
| 1.1. Задачи, приводящие к понятию производной            |    |
| 1.2. Основные правила и формулы дифференцирования        |    |
| 1.3. Производные высших порядков                         |    |
| 1.4. Производная показательно-степенной функции          |    |
| 1.5. Дифференцирование функции, заданной неявно          | 15 |
| 1.6. Дифференцирование функции, заданной параметрически. | 15 |
| 2. Правило Лопиталя                                      | 17 |
| 3. Примеры решения задач                                 | 20 |
| 4. Задачи для самостоятельного решения                   | 27 |
| СПИСОК ЛИТЕРАТУРЫ                                        | 31 |

## 1. ПРОИЗВОДНАЯ ФУНКЦИИ

При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют **производной функцией** (или просто производной) данной функции f(x) и обозначают символом

$$y' = f'(x)$$
 или  $\frac{dy}{dx}$ .

Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f'(x), называют **дифференцированием** и состоит он из следующих трех шагов:

1) даем аргументу x приращение  $\Delta x$  и определяем соответствующее приращение функции

$$\Delta y = f(x + \Delta x) - f(x).$$

2) составляем отношение

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

3) считая x постоянным, а  $\Delta x$  , стремящимся к нулю, находим

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x},$$

который обозначаем f'(x), как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x, при котором мы переходим к пределу.



**Определение. Производной** y' = f'(x) данной функции y = f(x) при данном x называется предел отношения приращения функции к приращению аргумента, при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен.

Таким образом,

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Если функция в точке x имеет конечную производную, то функция называется дифференцируемой в этой точке.

## <u>Пример.</u>

1) Пользуясь определением производной, найти производную функции

$$y = x^2$$
.

Дадим аргументу приращение  $\Delta x$  . Тогда функция получит приращение  $\Delta y$ 

$$\Delta y = (x + \Delta x)^2 - x^2 = x^2 + 2x\Delta x + (\Delta x)^2 - x^2 = \Delta x (2x + \Delta x)$$
$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} (2x + \Delta x) = 2x$$

2) Найдем производную постоянной функции у=С.

Здесь 
$$\Delta y = C - C = 0$$

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 0$$
  $\to$   $C' = 0$ .

3) Найдем производную аргумента y=x.

Дадим x приращение  $\Delta x$ .

$$\Delta y = x + \Delta x - x = \Delta x$$



Тогда 
$$y'=\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}=\lim_{\Delta x \to 0} 1=1$$
 Итак,  $x'=1$  .

# 1.1. Задачи, приводящие к понятию производной. Физический, геометрический и экономический смысл производной

# 1. Задача о скорости движения. Механический смысл производной.

Пусть вдоль некоторой прямой движется точка позакону s=s(t) , где s — пройденный путь, t — время. Найдем скорость точки в момент времени  $t=t_0$  .

Пусть за время  $\Delta t$  был пройден путь  $\Delta s$  , тогда средняя скорость

$$V_{cp} = rac{\Delta s}{\Delta t}$$
 , где  $\Delta s = s(t_0 + \Delta t) - s(t_0)$  .

Чем меньше  $\Delta t$ , тем лучше средняя скорость характеризует движение точки в момент времени  $t_0$ . В связи с этим под скоростью в момент времени  $t_0$  естественно понимать предел средней скорости при  $\Delta t \to 0$ .

$$V = \lim_{\Delta t \to 0} V_{cp} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = s'(t)$$

Механический смысл производной: производная пути по времени  $s'(t_0)$  есть скорость точки в момент времени  $t_0$ 

$$V(t_0) = s'(t_0)$$

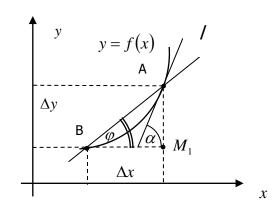


Замечание. Понятие производной, заимствованное из физики удобно при исследовании поведения произвольной функции. Какую бы зависимость не изображала функция y=f(x), отношение  $\frac{\Delta y}{\Delta x}$  есть средняя скорость изменения y относительно изменения x,  $y'(x_0)$  — мгновенная скорость изменения y при  $x=x_0$ .

Значение производной состоит в том, что при изучении любых процессов с ее помощью можно оценить скорость изменения связанных между собой величин.

# 2. Геометрический смысл производной. Уравнение касательной к кривой

Рассмотрим график y = f(x), точки  $A(x_0, y_0)$  и  $B(x_0 + \Delta x, y_0 + \Delta y)$  на графике, AB — секущая, / — касательная, проходящая через точку A.



Обозначим  $\varphi$  и a – углы наклона секущей AB и касательной / к оси ox соответственно,  $k_{AB}$  и  $k_{I}$  – их угловые коэффициенты



$$k_{AB} = tg\phi = \frac{\Delta y}{\Delta x}$$
.

Под касательной к кривой y=f(x) в точке А будем понимать предельное положение секущей АВ при приближении точки В к точке А, т.е. при  $\Delta x \to 0$ . В этом случае  $\varphi \to a$  ,  $k_{AB} \to k_{I}$ 

$$k_l = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'(x)$$
.

Геометрический смысл производной:  $y'(x_0)$  равна угловому коэффициенту касательной к графику y=f(x) в этой точке.

Уравнение касательной к кривой y = f(x) в точке  $A(x_0, y_0)$  имет вид

$$y - y_0 = f'(x_0)(x - x_0).$$

Это уравнение получается, если в уравнение прямой, проходящей через данную точку  $M_0(x_0, y_0)$  с данным угловым коэффициентом k

$$y - y_0 = k(x - x_0)$$

подставляем  $k_{\kappa ac} = f'(x_0)$ .

# 3. Экономический смысл производной. Задача о производительности труда

Пусть функция u(t) выражает количество произведенной продукции u за время t.

Найдем z – производительность труда в момент  $t_0$ .



Обозначим  $\Delta u$  – количество продукции, произведенной за время  $\Delta t$ ,  $z_{CP}$  – среднюю производительность труда за это время

$$z_{cp} = \frac{\Delta u}{\Delta t}.$$

Очевидно, что z можно определить как предельное значение  $z_{\mathcal{C}}$  при  $\Delta t{
ightarrow} 0$ 

$$z = \lim_{\Delta t \to 0} \frac{\Delta u}{\Delta t} = u'(t).$$

Предельные издержки производства.

Издержки производства y будем рассматривать как функцию количества выпускаемой продукции x.

Пусть  $\Delta x$  — прирост продукции, тогда  $\Delta y$  — приращение издержек производства и  $\frac{\Delta y}{\Delta x}$  — среднее приращение издержек на единицу продукции.

Производная  $y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$  выражает предельные издержки производства и приближенно характеризует дополнительные затраты на производство единицы дополнительной продукции.

Предельные издержки зависят от x и определяются не постоянными производственными затртатами, а лишь переменными (на сырье, топливо и т.п.). Аналогично могут быть определены предельная выручка, предельный доход, предельный продукт, предельная производительность и т.д.

Применение дифференциального исчисления для исследования экономических объектов и процессов на



основании анализа предельных величин получило название предельного анализа.

Предельные величины характеризуют не состояние (как суммарная или средняя величина), а процесс, т.е. изменение экономического объекта.

Таким образом, производная выступает как скорость изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора.

## 4. Задача о линейной плотности стержня

Рассматтривается тонкий неоднородный стержень, функция m(I) выражает зависимость его массы от длины.  $\delta$  – линейная плотность стержня (масса, приходящаяся на единицу длины).

Обозначим  $\Delta m$  – массу стержня длины  $\Delta l$ 

$$\delta_{cp} = \frac{\Delta m}{\Delta l}$$
,  $\delta = \lim_{\Delta l \to 0} \frac{\Delta m}{\Delta l} = m'(l)$ 

Ускорение a есть скорость изменения скорости  $a_{cp}=\frac{\Delta V}{\Delta t}$  , где  $\Delta V-$  изменение скорости за время  $\Delta t$ 

$$a = \lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} = V'(t)$$

## 1.2. Основные правила и формулы дифференцирования

Выведены правила дифференцирования и формулы для вычисления производных основных элементарных функций.



Они сведены в таблицу, которой пользуются для практического дифференцирования.

Обозначим f(x) = u, g(x) = v- функции, дифференцируемые в точке x.

1. 
$$c' = 0$$
,  $c = const$ 

2. 
$$x' = 1$$

3. 
$$(u \pm v)' = u' \pm v'$$

4. 
$$(uv)' = u'v + uv'$$

4a. 
$$(cu)' = cu'$$

$$5. \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2},$$

если 
$$\nu \neq 0$$
 .

$$6. \left(u^n\right)' = nu^{n-1}u'$$

$$7. \left(a^{u}\right)' = a^{u} \ln au'$$

7a. 
$$\left(e^{u}\right)'=e^{u}u'$$

$$8. \left(\log_a u\right)' = \frac{1}{u \ln a} u'$$

8a. 
$$\left(\ln u\right)' = \frac{1}{u}u'$$

9. 
$$\left(\sin u\right)' = \cos u u'$$

$$10. \left(\cos u\right)' = -\sin u \, u'$$

11. 
$$(tgu)' = \frac{1}{\cos^2 u}u'$$

12. 
$$(ctgu)' = -\frac{1}{\sin^2 u}u'$$

13. 
$$\left(\arcsin u\right)' = \frac{1}{\sqrt{1 - u^2}} u'$$



14. 
$$(\arccos u)' = -\frac{1}{\sqrt{1-u^2}}u'$$

15. 
$$(arctgu)' = \frac{1}{1+u^2}u'$$

16. 
$$(arcctgu)' = -\frac{1}{1+u^2}u'$$

Правила дифференцирования доказываются на основании теорем о пределах.

## 1.3. Производные высших порядков

Пусть функция f(x) – дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную

$$y' = f'(x) = \frac{df(x)}{dx}$$

Если найти производную функции f'(x), получим вторую производную функции f(x).

$$y'' = f''(x) = \frac{d^2 f(x)}{dx^2}$$

т.е. 
$$y'' = (y')'$$
 или  $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$ .

Этот процесс можно продолжить и далее, находя производные степени n.



$$\frac{d^n y}{dx^n} = \frac{d}{dx} \left( \frac{d^{n-1} y}{dx^{n-1}} \right).$$

Для производных высших порядков используются обозначения

$$y'', y''', y^{(4)}, y^{(5)}, ..., y^{(n)}$$

## Пример.

1) 
$$y = 5x^4 - 6x^3 + 2x^2 - 4x + 1$$
  
 $y' = 20x^3 - 18x^2 + 4x - 4$   
 $y'' = 60x^2 - 36x + 4$   
 $y''' = 120x - 36$   
 $y^{(4)} = 120$   
 $y^{(5)} = 0$   
 $y^{(6)} = 0$  и т.д.  
2)  $y = 3^x$   
 $y' = 3^x \ln x$ ;  
 $y'' = 3^x \ln^2 3$ ;  
 $y''' = 3^x \ln^3 3$ ; ...  
 $y^{(n)} = 3^x \ln^n 3$ 

Замечание: Механический смысл второй производной. Выше было установлено, что если точка движется прямолинейно по закону s=s(t), (где s — путь, t — время), то  $s'(t_0)$  — скорость изменения пути в момент времени  $t_0$ .



Следовательно,  $s''(t) = \left[s'(t_0)\right]' = v'(t_0)$  — скорость изменения скорости или ускорение точки в момент времени  $t_0$  .

# 1.4. Производная показательно-степенной функции

Функция называется показательной, если независимая переменная входит в показатель степени, и степенной, если переменная является основанием. Если же и основание и показатель степени зависят от переменной, то такая функция будет показательно — степенной и иметь вид  $y = f(x)^{g(x)}$ . В таблице нет формулы для вычисления производных таких функций. Для их дифференцирования используется прием предварительного логарифмирования.

Пусть u = f(x) и v = g(x) – функции, имеющие производные в точке x, f(x) > 0.

Найдем производную функции  $y=u^{-\nu}$ . Логарифмируя, получим:

Iny = v Inu; 
$$\frac{y'}{y} = v' \ln u + v \frac{u'}{u}$$
;  $y' = u^v \left( v \frac{u'}{u} + v' \ln u \right)$ 

## Пример.

1) 
$$y = x^x$$
  $\ln y = \ln x^x = x \ln x$ ;  
 $\frac{y'}{y} = \ln x + x \frac{1}{x} = \ln x + 1$   $y' = x^x (\ln x + 1)$ 

# 1.5. Дифференцирование функции, заданной неявно

Функция называется явной, если она задана уравнением y=f(x) , например,  $y=x^2+5x+1$  .

Функция y аргумента x называется неявной, если она задана уравнением F(x,y)=0, не разрешенным относительно зависимой переменной, например,  $x^3+y^3-x=0$ .

Для нахождения производной функции у, заданной неявно, нужно: продифференцировать обе части уравнения, рассматривая y как функцию от x; из полученной уравнения найти y'.

## Пример.

1) 
$$x^3 + y^3 - x = 0$$
.

Найти y'.

$$3x^2 + 3y^2y' - 1 = 0$$

$$y' = \frac{1 - 3x^2}{3y^2}$$

# 1.6. Дифференцирование функции, заданной параметрически

Функция y = f(x) может быть задана параметрически посредством переменной t, называемой параметром

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
, где  $t \in X$ 



Например, параметрическое уравнение окружности радиуса R с центром в начале координат имеет вид

$$\begin{cases} x = R \cos t \\ y = R \sin t \end{cases}$$
  $t \in [0, 2\pi]$ 

Параметрическое уравнение эллипса  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  имеет

вид

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$$
, где  $t \in [0, 2\pi]$ .

Пусть  $\mathit{x(t)}$  и  $\mathit{y(t)}$  дифференцируемы и  $\mathit{x'}(t) \neq 0$ . Тогда  $y_{\scriptscriptstyle x}'$  можно вычислить по формуле

$$y'_x = \frac{\dot{y}}{\dot{x}}$$
.

Здесь введены обозначении  $\dot{x}=x_t'$  ,  $\dot{y}=y_t'$  .

Если x(t) и y(t) имеют производную второго порядка и  $x'(t) \neq 0$ , то существует производная второго порядка функции, заданной параметрически

$$y_{xx}'' = \frac{\left(y_x'\right)_t'}{\dot{x}}.$$

## Пример.

1) 
$$\begin{cases} x = a \cos t \\ y = a \sin t \end{cases}$$
 
$$\begin{cases} \dot{x} = -a \sin t \\ \dot{y} = a \cos t \end{cases}$$

$$y'_x = \frac{a\cos t}{-a\sin t} = -ctgt$$
;



$$(y'_x)'_t = \frac{1}{\sin^2 t};$$
  $y''_{xx} = \frac{1}{\sin^2 t(-a\sin t)} = -\frac{1}{a\sin^3 t}.$ 

## 2. ПРАВИЛО ЛОПИТАЛЯ

(Лопиталь (1661-1704) - французский математик)

К разряду неопределенностей принято относить следующие соотношения:

$$\frac{0}{0}; \frac{\infty}{\infty}; \infty \cdot 0; \infty^{0}; 1^{\infty}; \infty - \infty$$

**Теорема (правило Лопиталя).** Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g'(x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при  $x \rightarrow a$  равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Доказательство. Применив формулу Коши, получим:

$$\frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\varepsilon)}{g'(\varepsilon)}$$

где  $\epsilon$  - точка, находящаяся между а и х. Учитывая, что f(a) = q(a) = 0:

$$\frac{f(x)}{g(x)} = \frac{f'(\varepsilon)}{g'(\varepsilon)}$$



Пусть при хightarrowа отношение  $\dfrac{f'(x)}{g'(x)}$  стремится к некоторо-

му пределу. Т.к. точка  $\varepsilon$  лежит между точками а и х, то при хightarrowа получим  $\varepsilon 
ightarrow$ а, а следовательно и отношение  $\dfrac{f'(\varepsilon)}{g'(\varepsilon)}$  стре-

мится к тому же пределу. Таким образом, можно записать:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Теорема доказана.

**Пример:** Найти предел 
$$\lim_{x \to 1} \frac{x^2 - 1 + \ln x}{e^x - e}$$
.

Как видно, при попытке непосредственного вычисления предела получается неопределенность вида  $\frac{0}{0}$ . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.

$$f'(x) = 2x + \frac{1}{x};$$
  $g'(x) = e^{x};$ 

$$\lim_{x \to 1} \frac{f'(x)}{g'(x)} = \frac{2x + \frac{1}{x}}{e^x} = \frac{2+1}{e} = \frac{3}{e};$$

Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полу-



ченные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.

Пример: Найти предел 
$$\lim_{x \to \infty} \frac{xe^{\frac{x}{2}}}{x + e^x}$$
. 
$$f'(x) = e^{\frac{x}{2}}(1 + \frac{1}{2}x); \qquad g'(x) = 1 + e^x;$$
 
$$f''(x) = \frac{1}{2}e^{\frac{x}{2}} + \frac{1}{2}e^{\frac{x}{2}} + \frac{x}{4}e^{\frac{x}{2}} = \frac{1}{4}e^{\frac{x}{2}}(4 + x);$$
 
$$g''(x) = e^x;$$
 
$$\lim_{x \to \infty} = \frac{\frac{1}{4}e^{\frac{x}{2}}(4 + x)}{e^x} = \lim_{x \to \infty} \frac{\frac{1}{4}(4 + x)}{e^{\frac{x}{2}}}$$
 
$$f'''(x) = \frac{1}{4}; \qquad g'''(x) = \frac{1}{2}e^{\frac{x}{2}}; \qquad \lim_{x \to \infty} \frac{1}{2e^{\frac{x}{2}}} = 0;$$

Следует отметить, что правило Лопиталя — всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой — либо другой метод (замена переменных, домножение и др.).

Неопределенности вида  $0^{0}$ ;  $1^{\infty}$ ;  $\infty^{0}$  можно раскрыть с помощью логарифмирования. Такие неопределенности встречаются при нахождении пределов функций вида  $y = [f(x)]^{g(x)}$ , f(x)>0 вблизи точки а при  $x\to a$ . Для нахождения предела такой функции достаточно найти предел функции  $\log g(x) \ln f(x)$ .



<u>Пример:</u> Найти предел  $\lim_{\substack{x \to 0 \\ x>0}} x^x$ .

Здесь  $y = x^x$ , lny = xlnx.

Тогда

$$\lim_{\substack{x \to 0 \\ x > 0}} \ln y = \lim_{\substack{x \to 0 \\ x > 0}} x \ln x = \lim_{\substack{x \to 0 \\ x > 0}} \frac{\ln x}{\frac{1}{x}} = \begin{cases} npabuno \\ \Pionumann \end{cases} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{1/x}{-1/x^2} = -\lim_{\substack{x \to 0 \\ x > 0}} x = 0;$$

Следовательно

$$\lim_{\substack{x \to 0 \\ x > 0}} \ln y = \ln \lim_{\substack{x \to 0 \\ x > 0}} y = 0; \quad \Rightarrow \quad \lim_{\substack{x \to 0 \\ x > 0}} y = \lim_{\substack{x \to 0 \\ x > 0}} x^x = 1$$

**Пример:** Найти предел  $\lim_{x\to\infty}\frac{x^2}{e^{2x}}$ .

$$f'(x) = 2x;$$
  $g'(x) = 2e^{2x};$   $\lim_{x \to \infty} \frac{x}{e^{2x}} = \frac{\infty}{\infty};$ - получи-

ли неопределенность. Применяем правило Лопиталя еще раз.

$$f''(x) = 2;$$
  $g'(x) = 4e^{2x};$   $\lim_{x \to \infty} \frac{1}{2e^{2x}} = \frac{1}{\infty} = 0.$ 

## 3. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

## Табличное дифференцирование

Рассмотрим примеры вычисления производных с использованием таблицы производных.

В примерах 1) -6) требуется вычислить производную степенной функции (формула 6).

1) 
$$(x^5)' = 5x^4$$



2) 
$$\left(\frac{1}{x^3}\right)' = \left(x^{-3}\right)' = -3x^{-4} = -\frac{3}{x^4}$$

3) 
$$\left(\sqrt[3]{x^2}\right)' = \left(x^{\frac{2}{3}}\right)' = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3\sqrt[3]{x}}$$

4) 
$$(\ln^6 x)' = 6 \ln^5 x (\ln x)' = \frac{6 \ln^5 x}{x}$$

5) 
$$((1-x^2)^{10})' = 10(1-x^2)^9(1-x^2)' = -20x(1-x^2)^9$$

6) 
$$\left(\frac{1}{\cos^5 x}\right)' = \left(\cos^{-5} x\right)' = -5\cos^{-6} x\left(\cos x\right)' = -5\cos^{-6} x(-\sin x) = \frac{5\sin x}{\cos x}$$

$$7) \left(\sin 5x\right)' = 5\cos 5x$$

8) 
$$(\cos(1-5x))' = -\sin(1-5x)(1-5x)' = 5\sin(1-5x)$$

9) 
$$\left(\sin \ln x\right)' = \cos \ln x \left(\ln x\right)' = \frac{\cos \ln x}{x}$$

10) 
$$\left(\ln(1-3x-7x^2)\right)' = \frac{\left(1-3x-7x^2\right)'}{1-3x-7x^2} = \frac{-3-14x}{1-3x-7x^2}$$

11) 
$$\left(\ln\cos(5x+8)\right)' = \frac{\left(\cos(5x+8)\right)'}{\cos(5x+8)} = -\frac{5\sin(5x+8)}{\cos(5x+8)} = -5tg(5x+8)$$

12) 
$$\left(\arcsin 4x\right)' = \frac{\left(4x\right)'}{\sqrt{1 - \left(4x\right)^2}} = \frac{4}{\sqrt{1 - 16x^2}}$$

Следующие примеры демонстрируют использование правил 3, 4 и 5.

13) 
$$y = 4x^3 - 12x^2 - 6x + 4$$
  $y' = 12x^2 - 24x - 6$ 



14) 
$$y = e^{-3x} \sin 6x$$

$$y' = \left(e^{-3x}\right)' \sin 6x + e^{-3x} \left(\sin 6x\right)' = -3e^{-3x} \sin 6x + 6e^{-3x} \cos 6x$$

$$15) \quad y = \frac{x^2 - 3}{2x^2 + 1}$$

$$y' = \frac{\left(x^2 - 3\right)' \left(2x^2 + 1\right) - \left(2x^2 + 1\right)' \left(x^2 - 3\right)}{\left(2x^2 + 1\right)^2} = \frac{2x\left(2x^2 + 1\right) - 4x\left(x^2 - 3\right)}{\left(2x^2 + 1\right)^2} = \frac{14x}{\left(2x^2 + 1\right)^2}$$

$$16) \quad y = \left(4\ln 3 + \frac{\pi}{8}\right)\cos x$$

$$y' = \left(4\ln 3 + \frac{\pi}{8}\right)(\cos x)' = -\left(4\ln 3 + \frac{\pi}{8}\right)\sin x$$

17)  $y = x \cos x \sin x + \frac{1}{2} \cos^2 x$ . Сначала преобразуем дан-

ную функцию:

$$y = \frac{1}{2}x\sin 2x + \frac{1}{2}\cos^2 x$$

$$y' = \frac{1}{2}\sin 2x + \frac{1}{2}x2\cos 2x + \frac{1}{2}2\cos x(-\sin x) =$$

$$= \frac{1}{2}\sin 2x + x\cos 2x - \sin x\cos x = x\cos 2x.$$
18) 
$$y = \frac{x^2e^{x^2}}{x^2 + 1}.$$

$$y' = \frac{(2xe^{x^2} + x^22xe^{x^2})(x^2 + 1) - (2x)x^2e^{x^2}}{(x^2 + 1)^2} =$$



$$=\frac{2x^3e^{x^2}+2x^5e^{x^2}+2xe^{x^2}+2x^3e^{x^2}-2x^3e^{x^2}}{(x^2+1)^2}=\frac{2xe^{x^2}(x^4+1+x^2)}{(x^2+1)^2}$$

19) 
$$y = \ln tg \frac{x}{2} - \frac{x}{\sin x}$$

$$y' = \frac{1}{tg\frac{x}{2}} \cdot \frac{1}{\cos^2 \frac{x}{2}} \cdot \frac{1}{2} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{\sin x - x \cos x}{\sin^2 x} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{1}{2\cos \frac{x}{2}\cos \frac{x}{2}} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} - \frac{1}{2\cos \frac{x}{2}\cos \frac{x}{2}} = \frac{1}{2\cos \frac{x}{2}\cos \frac{x}{2}} - \frac{1}{2\cos \frac{x}{2}\cos \frac{x}{2}\cos \frac{x}{2}} = \frac{1}{2\cos \frac{x}{2}\cos \frac{x}{2}} - \frac{1}{2\cos \frac{x}{2}\cos \frac{x}{2}\cos \frac{x}{2}$$

$$= \frac{\sin x - \sin x + x \cos x}{\sin^2 x} = \frac{x \cos x}{\sin^2 x}$$

20) 
$$y = arctg \frac{2x^4}{1-x^8}$$

$$y' = \frac{1}{\left(1 + \frac{4x^8}{\left(1 - x^8\right)^2}\right)} \cdot \frac{8x^3(1 - x^8) - (-8x^7)2x^4}{\left(1 - x^8\right)^2} =$$

$$=\frac{(1-x^8)^2(8x^3-8x^{11}+16x^{11})}{(1+x^8)^2(1-x^8)^2}=\frac{8x^3+8x^{11}}{(1+x^8)^2}=\frac{8x^3(1+x^8)}{(1+x^8)^2}=\frac{8x^3}{1+x^8}$$

21) 
$$y = x^2 e^{x^2} \ln x$$

$$y' = \left(x^2 e^{x^2}\right)' \ln x + x^2 e^{x^2} \frac{1}{x} = \left(2x e^{x^2} + x^2 e^{x^2} 2x\right) \ln x + x e^{x^2} =$$

$$=2xe^{x^2}(1+x^2)\ln x + xe^{x^2} = xe^{x^2}(1+2\ln x + 2x^2\ln x)$$

## Вычисление производных высших порядков

22) 
$$y = 5x^4 - 6x^3 + 2x^2 - 4x + 1$$



$$y' = 20x^{3} - 18x^{2} + 4x - 4$$

$$y'' = 60x^{2} - 36x + 4$$

$$y''' = 120x - 36$$

$$y^{(4)} = 120$$

$$y^{(5)} = 0$$

$$y^{(6)} = 0 \text{ и т.д.}$$
23)  $y = 3^{x}$ 

$$y' = 3^{x} \ln x;$$

$$y''' = 3^{x} \ln^{2} 3;$$

$$y'''' = 3^{x} \ln^{3} 3;$$

$$y^{(n)} = 3^{x} \ln^{3} 3$$

## Дифференцирование показательно-степенных функций



## Дифференцирование функций, заданных неявно

26)  $x^2 - xy + \ln y = 2$ . Найти y' и вычислить ее значение в точке (2,1).

$$2x - (y + xy') + \frac{y'}{y} = 0$$
  $y' = \frac{2xy - y^2}{xy - 1}$ .

Значение v' при x=2, y=1 v'(2)=3.

$$y'(2) = 3$$

27) 
$$x^{3} + \ln y - x^{2}e^{y} = 0$$
  

$$3x^{2} + \frac{y'}{y} - (2xe^{y} + x^{2}e^{y}y') = 0$$

$$y' = \frac{(2xe^{y} - 3x^{2}e^{y})y}{1 - x^{2}e^{y}y}$$

## Дифференцирование функций, заданных параметрически

28) 
$$\begin{cases} x = a\cos^3 t \\ y = b\sin^3 t \end{cases}$$
 
$$\begin{cases} \dot{x} = -3a\cos^2 t \sin t \\ \dot{y} = 3b\sin^2 t \cos t \end{cases}$$

$$y_x' = \frac{3b\sin^2 t \cos t}{-3a\cos^2 t \sin t} = -\frac{b}{a}tgt$$

$$(y_x')_t' = -\frac{b}{a} \frac{1}{\cos^2 t}$$

$$y''_{xx} = -\frac{b}{a\cos^2 t(-3a\cos^2 t \sin t)} = -\frac{b}{3a^2\cos^4 t \sin t}$$

29) 
$$\begin{cases} x = \sin t - t \cos t \\ y = \cos t + t \sin t \end{cases}$$
$$\begin{cases} \dot{x} = \cos t - (\cos t - t \sin t) = t \sin t \\ \dot{y} = -\sin t + \sin t + t \cos t = t \cos t \end{cases}$$



$$y'_{x} = \frac{t \cos t}{t \sin t} = ctgt \qquad (y'_{x})'_{t} = -\frac{1}{\sin^{2} t};$$
$$y''_{xx} = \frac{1}{\sin^{2} t \sin t} = -\frac{1}{t \sin^{3} t}.$$

Пример: Найти предел 
$$\lim_{x\to\infty}\frac{\pi-2arctgx}{e^{\frac{3}{x}}-1}$$
. 
$$f'(x)=-\frac{2}{1+x^2}\,;\qquad g'(x)=e^{\frac{3}{x}}\cdot\frac{-3}{x^2}\,;$$
 
$$\lim_{x\to\infty}\left[-\frac{2x^2}{(1+x^2)e^{\frac{3}{x}}(-3)}\right]=\frac{-2}{(0+1)\cdot 1\cdot (-3)}=\frac{2}{3}\,.$$

Следует отметить, что правило Лопиталя — всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой — либо другой метод (замена переменных, домножение и др.).

**Пример:** Найти предел 
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$
.

$$f'(x) = e^x + e^{-x} - 2;$$
  $g'(x) = 1 - \cos x;$ 

$$\lim_{x\to 0}\frac{e^x+e^{-x}-2}{1-\cos x}=\frac{1+1-2}{1-1}=\frac{0}{0} \ \ \text{- опять получилась неопреде-}$$

ленность. Применим правило Лопиталя еще раз.

$$f''(x) = e^x - e^{-x};$$
  $g''(x) = \sin x;$ 



$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} = \frac{1-1}{0} = \frac{0}{0}$$
 - применяем правило Лопиталя еще раз.

$$f'''(x) = e^{x} + e^{-x}; g'''(x) = \cos x;$$

$$\lim_{x \to 0} \frac{e^{x} + e^{-x}}{\cos x} = \frac{2}{1} = 2.$$

# 4. ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Вычислить производные:

1) 
$$y = x^6$$

3) 
$$y = \frac{1}{x}$$

$$5) y = \sqrt[n]{x}$$

7) 
$$y = \frac{1}{\sqrt{x}}$$

9) 
$$y = 4x^3 - 5x^8 + 11$$

$$y = 4x^{\circ} - 5x^{\circ} + 11$$

10) 
$$y = 2x^8 - 3\sin x + 5\ln x - 6$$

11) 
$$y = 3\cos x - 4 \operatorname{tg} x + 2^x + 11$$

12) 
$$y = x^{10} - 6 \operatorname{ctg} x + e^x$$

$$14) y = \sin 5x$$

16) 
$$y = \text{tg } 2x$$

18) 
$$y = e^{-3x}$$

20) 
$$y = \cos(3x + 1)$$

22) 
$$y = tg(3x + 8)$$

24) 
$$y = \cos(x^2 + 1)$$

26) 
$$y = \sin \ln x$$

28) 
$$y = e^{3\cos x - 5x^4}$$

30) 
$$y = 5^{\cos x}$$

32) 
$$y = \arcsin 3x$$

2) 
$$y = \frac{1}{x^3}$$

4) 
$$y = \sqrt[3]{x^2}$$

6) 
$$y = \frac{1}{\sqrt[5]{x^3}}$$

$$8) \ y = 3x^2 - 4x + 8$$

$$13) y = \cos 10x$$

15) 
$$y = \cos \frac{x}{3}$$

17) 
$$y = \operatorname{ctg} 5x$$

19) 
$$y = e^{10x}$$

21) 
$$y = \sin(1 - 5x)$$

23) 
$$y = \text{ctg}(2x^3 + x)$$

25) 
$$y = e^{3x^2 - 8x + 5}$$

27) 
$$y = e^{\sin x}$$

29) 
$$y = 2^x$$

31) 
$$y = (0.2)^{\cos 6x}$$

33) 
$$y = \operatorname{arcctg} 10x$$



34) 
$$y = \arccos e^{3x}$$
36)  $y = \arctan \sqrt{x^3 + 1}$ 
37)  $y = \sin^2 x$ 
38)  $y = \cos^5 x$ 
39)  $y = \ln^4 x$ 
40)  $y = \frac{1}{\cos x}$ 
41)  $y = \frac{1}{\lg^5 x}$ 
42)  $y = \frac{1}{\ln^2 x}$ 
43)  $y = \sqrt{\arctan x}$ 
44)  $y = \frac{1}{\sqrt{\ln x}}$ 
45)  $y = \sqrt{1 - 5x}$ 
51)  $y = \sqrt{1 - 5x}$ 
51)  $y = \sqrt{1 + 6x}$ 
52)  $y = \ln 4x$ 
56)  $y = \ln 2x$ 
57)  $y = \ln (3x^2 + 6x + 1)$ 
58)  $y = \ln (1 - 4x^5)$ 
69)  $y = \ln (\sin^2 x + \sqrt{x})$ 
61)  $y = \ln (\sin^2 x + \sqrt{x})$ 
62)  $y = \cos \ln \sin x$ 
63)  $y = \lg(\ln(x^3 + 2))$ 
64)  $y = \cos \ln \sin x$ 
65)  $y = e^{-3x} \cos 2x$ 
66)  $y = (3x^2 - 2) \cot 5x$ 
67)  $y = (x^3 + 2x + 1)\sqrt{x^2 + 1}$ 
78)  $y = \frac{e^x}{x}$ 
79)  $y = \frac{\ln x}{2x + 6x}$ 
79)  $y = \frac{\ln 8 \sin x}{x}$ 
80)  $y = \frac{2x + 3}{\sin x - \cos x}$ 
81)  $y = \ln 8 \sin x$ 
82)  $y = (3x^2 + 1) \sin \frac{\pi}{12}$ 



83) 
$$y = \frac{e^x + \ln 5 \sin x}{8 + \ln^2 5}$$
84)  $y = x^5 - 2x^4 + 3x^3 - 5x^2 + 1$   $y^{(6)} = ?$ 
85)  $y = 2^x$   $y^{(n)} = ?$ 
86)  $y = 2x^4 - 3x^3 + 5x^2 - 7x + 8$   $y^{(5)} = ?$  87)  $y = \ln x$   $y^{(n)} = ?$ 
88)  $y = x^x$  89)  $y = x^{\sin x}$ 
90)  $y = (\sin x)^{3x}$  91)  $y = (\cos x)^{\sin x}$ 
92)  $y = (\operatorname{tg} x)^{\operatorname{arcsin} x}$  93)  $y = (\operatorname{arctg} x)^x$ 
94)  $\begin{cases} x = 3t^2 \\ y = t^3 \end{cases}$  95)  $\begin{cases} x = a(\varphi - \sin \varphi) \\ y = a(\varphi - \cos \varphi) \end{cases}$ 
96)  $\begin{cases} x = a\cos^3 \varphi \\ y = b\sin^3 \varphi \end{cases}$  97)  $\begin{cases} x = \cos t + t \sin t \\ y = \sin t - t \cos t \end{cases}$ 
98)  $\begin{cases} x = \ln(1 - t^2) \\ y = t - \operatorname{arctg} t \end{cases}$  99)  $\begin{cases} x = e^t \sin t \\ y = e^t \cos t \end{cases}$ 
100)  $x^3 + y^3 - 3xy = 0$  101)  $x^3 + \ln y - x^2 e^y = 0$ 
102)  $y \sin x - \cos(x - y) = 0$  103)  $y = \ln \sqrt{\frac{\sin x}{x}}$ 
104)  $y = \ln^3 \sqrt{\frac{tgx}{x}}$  105)  $y = \ln^4 \sqrt{\frac{2x + 1}{\sin^3 x}}$ 
106)  $y = \ln \frac{(3x + 5)^4}{\sqrt{2x + 8}}$  107)  $y = \sqrt[5]{\frac{1 + 2x}{1 - x}}$ 
108)  $y = \frac{\sqrt{x + 2}(3 - x)^4}{\sin^8 x}$  109)  $y = \sqrt[3]{\frac{\cos^2 x(x - 3)^2}{x^5}}$ 
110)  $y = \arcsin \frac{2x^2}{1 + x^4}$ 
111)  $y = e^x \operatorname{arctg} e^x - \ln \sqrt{1 + e^{2x}}$ 
112)  $y = \frac{\sin x}{\cos^2 x} + \ln \frac{1 + \sin x}{\cos x}$ 
Найти пределы по правылу Лопиталя:





$$1. \lim_{x \to 0} \frac{\sin x}{x}$$

3. 
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

5. 
$$\lim_{x \to \infty} \frac{2x^2 - 3x + 1}{3x^2 - 8x + 7}$$

$$7. \lim_{x \to 0} \frac{x - \sin x}{x^3}$$

9. 
$$\lim_{x \to \infty} \frac{\ln x}{x}$$

11. 
$$\lim_{x \to 0} \frac{\ln x}{ctgx}$$

$$13. \lim_{x \to 0} x \ln x$$

15. 
$$\lim_{x\to +\infty} xe^{-x}$$

17. 
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{\sin x - x}$$

19. 
$$\lim_{x\to 0} \left( \frac{1}{x} - \frac{1}{e^x - 1} \right)$$

21. 
$$\lim_{x \to \infty} \left( 1 + \frac{3}{x} \right)^x$$

23. 
$$\lim_{x\to 0} (e^{2x} + x)^{\frac{1}{x}}$$

$$25. \lim_{x \to 1} \left( tg \frac{\pi x}{4} \right)^{tg \frac{\pi x}{2}}$$

2. 
$$\lim_{x \to 0} \frac{e^x - 1}{\sin 2x}$$

4. 
$$\lim_{x \to 1} \frac{x^3 - 3x^2 + 2}{x^3 - 4x^2 + 3}$$

6. 
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\ln(1+x)}$$

$$8. \lim_{x \to 0} \frac{x \cos x - \sin x}{x^3}$$

$$10. \lim_{x\to\infty}\frac{e^x}{x^2}$$

12. 
$$\lim_{x \to \frac{\pi}{2}} \frac{tgx}{tg3x}$$

14. 
$$\lim_{x\to 0} (1-e^{2x}) ctgx$$

16. 
$$\lim_{x\to 0} \arcsin x \, ctgx$$

18. 
$$\lim_{x \to 1} \left( \frac{2}{x^2 - 1} - \frac{1}{x - 1} \right)$$

$$20. \lim_{x\to 0} \sin x^{tgx}$$

22. 
$$\lim_{x \to 1} x^{\frac{1}{1-x}}$$

**24.** 
$$\lim_{x \to 0} x^{\frac{3}{4 + \ln x}}$$

$$26. \lim_{x \to 0} ctgx^{\frac{1}{\ln x}}$$



## СПИСОК ЛИТЕРАТУРЫ

- 1. Пискунов Н. С. Дифференциальное и интегральное исчисления для втузов, т. 1: Учебное пособие для втузов.— 13-е изд.— М.: Главная редакция физико-математической литературы, 1985.— 432 с.
- 2. Сборник задач по математике. Под редакцией А.В.Ефимова, Б.П. Демидовича. М., 1993 г.
- 3. Соболь Б.В., Мишняков Н.Т., Поркшеян В.М. Практикум по высшей математике. Изд. 3-е. Ростов н/Д, 2006. 640 с.