

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Кафедра «Прикладная математика»

Учебно-методическое пособие

по дисциплине «Математика»

«Однофакторный дисперсионный анализ»

Авторы Рябых Г.Ю., Мул А.П.

Ростов-на-Дону, 2016

Аннотация

Однофакторный дисперсионный анализ.

Методические указания к практическим и лабораторным занятиям.

Методические указания краткое включают нахождения Данные описание методов числовых методические указания предназначены ДЛЯ самостоятельной работы студентов по ознакомлению и приобретению минимальных навыков практического использования одного из разделов математической статистики – дисперсионного анализа. Указания могут быть использованы на практических и лабораторных занятиях.

Предназначены для студентов всех направлений и специальностей.

Авторы

проф. Рябых Г.Ю. ст. преподаватель Мул А.П.

Оглавление

ВВЕДЕНИЕ	4
Элементы дисперсионного анализа ОДНОФАКТОРНЫЙ ДИСПЕРСИОННЫЙ АНАЛИЗ	4 7
Вопросы для самоконтроля	
Использована литература	20

ВВЕДЕНИЕ

Элементы дисперсионного анализа

Раздел математической статистики – дисперсионный анализ находит важные практические применения в различных областях научной, производственной и хозяйственной деятельности. Он является одним из вариантов факторного анализа данных наблюдений (опыта) при изучении влияния определенных факторов и их совокупностей на результаты наблюдений. Методами дисперсионного анализа можно решить задачи такого типа:

1. Установить, существенно ли влияние на величину У некоторого фактора X, который может иметь несколько уровней $X_1,$ $X_2,$..., X_n .

С помощью дисперсионного анализа может быть решен вопрос, подтверждают ли опытные данные или не подтверждают влияние X на У, а также выявить наиболее высокий уровень X.

2. Изучить воздействие на величину У несколько факторов.

 $X^{(1)},\ X^{(2)},\ ...,\ X^{(m)},$ каждый из которых может иметь несколько уровней:

$$X_1^{(1)}, X_2^{(1)}, ..., X_{K_1}^{(1)};$$

 $X_1^{(2)}, X_2^{(2)}, ..., X_{K_2}^{(2)};$
 $X_1^{(m)}, X_2^{(m)}, ..., X_m^{(m)}.$

Выявить наиболее существенно влияющие факторы, наилучшие их варианты, сравнить влияние отдельных факторов и уровней и их комбинаций.

Факторы могут быть как качественные (например, метод работы, тип станков, инструментов, вид материалов, вид удобрения и т.д.), так и количественные (например, давление, скорость резца, твердость металла, количество удобрения данного вида и т.д.).

Задача 1-ого типа является задачей однофакторного анализа.

<u>Пример 1.</u> Требуется проверить целесообразность введения нового технологического режима производства. Здесь У может, например, выражать средний процент брака за рабочую смену;

 $X^{\,(1)}$ –вид технологического режима. Уровни $X^{\,(1)}$: $X_1^{\,(1)}$ – старый режим; $X_2^{\,(1)}$ – новый режим.

Вопрос о подтверждении преимущества нового технологического режима должен быть решен на основе анализа статического комплекса, содержащего значения (показатели) результативного признака (У), полученные путем проведенных испытаний. Он может быть представлен в виде комбинационной таблицы 1.

			Габлица 1	
	1	2	3	 Р
Номер				
Ном е р Вид				
испытания				
режима				
$X_1^{(1)}$	Y_{11}	\overline{Y}_{12}	Y_{13}	 $Y_{_{1P}}$
1			15	
$X_2^{(1)}$	${Y}_{21}$	${Y}_{22}$	${Y}_{23}$	 ${Y}_{_{2P}}$

Р – число всех испытаний; Y_{ij} – значение У в ј – том испытании при L – том уровне воздействующего фактора $X^{\,(1)}$ (i=1,2; j=1,2, , P).

Задача 2 – го типа относится к многофакторному дисперсионному анализу.

Пример 2. Пусть имеются практические основания предполагать, что средний процент брака У (см. пример № 1) зависит не только от варианта технологического режима производства (фактор $X^{(1)}$), но и от других факторов, например, от вида материала – фактор $X^{(2)}$ (предположим, что имеется 3 варианта материалов, которые могут быть использованы, т.е. $X^{(2)}$ имеет 3 уровня $X_1^{(2)}$, $X_2^{(2)}$, $X_3^{(2)}$), от двух различных типов станков – фактор $X^{(3)}$ ($X_1^{(3)}$, $X_2^{(3)}$ – уровни фактора $X^{(3)}$).

Проверка целесообразности вновь разработанного технологического режима может быть проведена путем анализа стати-

ческого комплекса, представленного в виде комбинационной таблицы 2.

Таблица 2.

Вид	Тип стан-	Вид	матери	
технологич.	ка	Ы	ала	
режима		$X_1^{(3)}$	$X_2^{(3)}$	$X_3^{(3)}$
$X_1^{(1)}$	$X_1^{(2)}$	Y_{111}	Y_{112}	Y_{112}
	$X_2^{(2)}$	Y_{121}	Y_{122}	Y_{123}
$X_2^{(1)}$	$X_1^{(2)}$	$Y_{211}^{}$	\overline{Y}_{212}	$Y_{213}^{}$
	$X_2^{(2)}$	\overline{Y}_{221}	\overline{Y}_{222}	\overline{Y}_{223}

Здесь Y_{ijk} - процент брака в условиях і —го (i = 1, 2) технологического режима при использовании j —го (j = 1, 2) типа станков и K —го (K = 1, 2, 3) вида материалов.

Дисперсия σ^2 случайной величины (СВ) У является наиболее удобной и распространенной в статистике характеристикой меры вариации – меры изменчивости (колеблемости) СВ.

Основная идея дисперсионного анализа состоит в том, что общая сумма квадратов отклонений значений изучаемой величины от ее среднего значения, вычисляемая на основе всех данных наблюдения исследуемой величины (У), расщепляется на составные части, которые порождаются влиянием различных факторов и их комбинаций (факторные суммы) и не остаточную сумму, обусловленную не учитываемыми (случайными) факторами. Далее, с помощью этих сумм вычисляются соответственно общая, факторная и остаточная выборочная дисперсии. И исследованием значимости различия между этими дисперсиями решается вопрос о существенности влияния того или иного фактора или их комбинаций.

Мы остановимся здесь более подробно на однофакторном дисперсионном анализе.

ОДНОФАКТОРНЫЙ ДИСПЕРСИОННЫЙ АНАЛИЗ

Пусть СВ У может зависеть от фактора X, имеющего q уровней $X_1,\ X_2,\ \dots,\ X_q$. В результате эксперимента получено по p независимых наблюдений величины У на каждом из q уровней величины X, которые выражаются величинами $Y_{1j},\ Y_{2j},\ \dots,\ Y_{pj}$; $j=1,2,\ \dots,\ q$, т.е. всего pq значений величины У, представленных таблицей 3.

<u>Таблица 3.</u>

<u> 1 a c</u>	<u>таолица 3.</u>						
Номера		Уров Х					
наблюд.	X_1	X_2	ни	X_{j}		X_{q}	
1	Y_{11}	V_{12}	•••	Y_{1j}	•••	\overline{Y}_{1q}	
2	\boldsymbol{Y}_{21}	\overline{Y}_{22}	•••	\overline{Y}_{2j}	•••	\overline{Y}_{2q}	
•••		•••			•••	•••	
i	Y_{i1}	Y_{i2}	•••	${Y}_{ij}$	•••	\overline{Y}_{iq}	
•••	•••	•••	•••	•••	•••	•••	
p	\overline{Y}_{p1}	V_{p2}	•••	${Y}_{pj}$	•••	${Y}_{pq}$	

Полагается, что независимые наблюдения Y_{ij} на каждом уровне взяты из нормальной генеральной совокупности о одной и той же дисперсией σ^2 на всех q уровнях.

Вычислим: среднее значение y

$$\overline{y} = \frac{1}{pq} \sum_{i=1}^{p} \sum_{j=1}^{q} y_{ij}$$
 (1)

Общую сумму квадратов отклонений от среднего значения:

$$S_{o \delta u q} = \sum_{i=1}^{p} \sum_{j=1}^{q} (y_{ij} - \overline{y})^2$$
 (2)

Факторную сумму квадратов:

S факт= p
$$\sum_{j=1}^{q} \overline{(Y} - \overline{Y})^2$$
 (3)

где
$$\overline{Yj} = \frac{1}{p} \sum_{i=1}^{p} Yij$$
 (j=1,2,....,q) (4)

среднее групповое значение Y , соответствующее группе наблюдений при постоянном j-том уровне фактора X.

 $S_{
m 06 m}$ характеризует общую изменчивость — рассеяние (отклонение от среднего) величины Y, $S_{
m фак}$ характеризует изменчивость Y за счет фактора X (чем меньше влияние X, тем ближе групповые средние \overline{Yj} и общей средней \overline{Y} , меньше S фак). Изменчивость, вызванная другими, не учитываемыми (случайными) факторами характеризуются величиной остаточной суммы квадратов отклонений

S OCT =
$$\sum_{i=1}^{p} \sum_{j=1}^{q} (Yij - \overline{Y})^2$$
 (5)

 $S_{\text{ост}}$ отражает влияние случайных причин (отличных от фактора X).

Действительно, если бы на Y не оказывали влияния другие факторы, кроме X, то наблюдаемые при одном и том же j-ом уровне X значения Y теоретически не должны отличаться от $\overline{Y}j$ -среднего значения этой группы наблюдений; поскольку же на Y действуют и случайные факторы, отличные от X, то наблюдения при одном и том же уровне X различны — рассеяны вокруг групповой средней.

Покажем, что
$$S_{06\text{щ}} = S_{\phi \text{ак}} + S_{\text{ост}}$$
 (6)
$$S_{06\text{щ}} = \sum_{i=1}^p \sum_{j=1}^q (Yij - \overline{Y})^2 = \sum_{i=1}^p \sum_{j=1}^q (Yij - \overline{Y}j) ^2 =$$

$$\sum_{i=1}^{p} \sum_{j=1}^{q} (Yij - \overline{Y}j + \overline{Y}j - \overline{Y})^2 =$$

$$\sum_{i=1}^{p} \sum_{j=1}^{q} (Yij - \overline{Y}j)^{2} + \sum_{i=1}^{p} \sum_{j=1}^{q} (\overline{Y}j - \overline{Y})^{2} + 2\sum_{i=1}^{p} \sum_{j=1}^{q} (Yij - \overline{Y}j)(\overline{Y}j - \overline{Y}) =$$

 $S_{\text{ост}}+S_{\phi a \kappa}$

так как
$$\sum_{i=1}^{p} \sum_{j=1}^{q} (Yij - \overline{Y}j)(\overline{Y}j - \overline{Y}) = 0$$
 (7)

Справедливость (7) можно проверить непосредственно:

$$\sum_{i=1}^{p} \sum_{j=1}^{q} (Yij - \overline{Y}j)(\overline{Y}j - \overline{Y}) = \sum_{j=1}^{q} (\overline{Y}j - \overline{Y}) \sum_{i=1}^{p} (Yij - \overline{Y}j) = \sum_{j=1}^{q} (\overline{Y}j - \overline{Y})(\sum_{i=1}^{p} Yij - \sum_{i=1}^{p} \overline{Y}j) = \sum_{j=1}^{q} (\overline{Y}j - \overline{Y})(\sum_{i=1}^{p} Yij - p\overline{Y}j) = \sum_{j=1}^{q} (\overline{Y}j - \overline{Y})(\sum_{i=1}^{p} Yij - p\overline{Y}j) = \sum_{j=1}^{q} (\overline{Y}j - \overline{Y})(\sum_{i=1}^{p} Yij - p\overline{Y}j) = 0$$

<u>Замечание 1.</u> Для вычисления величин $S_{06\mu}$ и $S_{\phi a \kappa}$ удобно пользоваться формулами:

$$S_{\text{общ}} = \sum_{j=1}^{q} Pj - \frac{1}{pq} (\sum_{j=1}^{q} Rj)^{2}$$
 (2⁰)

$$S_{\phi a \kappa} = \frac{1}{p} \sum_{j=1}^{q} Rj^2 - \frac{1}{pq} (\sum_{j=1}^{q} Rj)^2$$
 (3°)

где $Pj = \sum_{i=1}^{p} Yij^2$ - сумма квадратов значений величины Y на j-

том уровне $Rj = \sum_{i=1}^{p} Yij$ - сумма значений величины Y на j-том уровне (j=1,2,....,q).

В дальнейшем под дисперсией будем понимать "исправленные" выборочные (вычисленные по данным наблюдений — выборке из генеральной совокупности), дисперсии, т.к. они являются несмещенными оценками генеральных

дисперсий (математическое ожидание "исправленной" выборочной дисперсии равно дисперсии генеральной).

Обозначим общую, факторную и остаточную дисперсии соответственно через σ^2 общ , σ^2 фак , σ^2 ост :

$$\sigma^2_{\text{общ}} = \frac{1}{n-1} * S_{\text{общ}} = \frac{1}{pq-1} * S_{\text{общ}}$$
 (8)

$$\sigma^2_{\phi a \kappa} = \frac{1}{q - 1} * S_{\phi a \kappa} \tag{9}$$

$$\sigma^2_{\text{ oct}} = \frac{1}{q(p-1)} *S_{\text{oct}}$$
 (10),

Где pq = n —общее число наблюдений ; q- число уровней фактора X;

р-число наблюдений на каждом уровне,

 $pq-1=K_{
m oбm};\ q-1=K$ фак ; q(p-1)= $K_{
m oct}$ - число степеней свободы соответственно общей, факторной и остаточной дисперсий

 $K_{\text{ост}} = K_{\text{общ}} - K_{\text{фак}}$

Действительно, $K_{\text{ост}} = q(p-1) = pq-1 - (q-1) = K_{\text{общ}} - K_{\text{фак}}$

Для того, чтобы решить вопрос о существенности влияния фактора X на изменение Y проверяют гипотезу: групповые средние равны.

Справедливость этой статистической гипотезы означает, что различие групповых средних незначимо и, следовательно M(Y) – математическое ожидание Y одно и то же на различных уровнях X, т.е. влияние последнего несущественно.

Заметим, что если гипотеза о равенстве групповых средних верна, то в этом случае каждая из дисперсий σ^2 общ , σ^2 фак ,

 σ^2 ост является несмещенной оценкой неизвестной генеральной дисперсии. Поэтому факторная и остаточная дисперсии различаются незначимо. Если же эта гипотеза окажется несправедливой, то существенное различие в групповых средних влечет существенное различие факторной и остаточной дисперсий, т.е. можно считать, что опытные данные подтверждают существенность X на Y. Таким образом, решение нашей задачи сводится к проверке нулевой гипотезы, но различие между остаточной и факторной дисперсии незначимо.

Сравнение двух дисперсий нормальных генеральных совокупностей проводится с помощью F критерия (критерий Фишера), который является случайной величиной, равной отношению большей выборочной дисперсии к меньшей.

Так как при σ^2 фак < σ^2 ост можно считать расхождение между групповыми средними незначимым, то в этом случае нет надобности прибегать к критерию F ; (полагаем, что влияния фактора X несущественно. При σ^2 фак $\geq \sigma^2$ ост вычисляем F

$$\mathsf{табл} = \frac{\sigma^2 \phi a \kappa m}{\sigma^2 o c m}$$

Задаемся уровнем значимости λ . λ является вероятностью того, что в условиях справедливости нулевой гипотезы, критерий F примет значение, большее F кр , т.е. вероятность совершить ошибку 1-рода —отвергнуть правильную гипотезу. Уровень значимости λ берут обычно равным 0,05, или 0,01, или 0,001, что соответствует классификации явлений на редкие, очень редки и чрезвычайно редкие.

СВ F подчиняется определенному закону распределения вероятностей (закон Фишера-Снедекора). Этот закон позволяет при заданных степенях свободы $K1=K_{\phi a \kappa}$ и $K2=K_{o c \tau}$

Вычислить вероятность того, что F(K1, K2) превзойдет заданное число F кр . По заданной вероятности, равной уровню значимости λ определяется F кр — критические точки распределения Фишера-Снедекора: F кр = F кр (λ , K1, K2)

Имеются таблицы критических точек распределения F , из которых можно по λ , K1, K2 определить соответствующее F кр .

Если $F_{Taбл} < F_{\kappa p}$, то нет оснований отвергнуть нулевую гипотезу, т.е. данные наблюдения не подтверждают существенность влияния фактора X на Y, если же $F_{Taбл} > F_{\kappa p}$, то нулевую гипотезу отвергают, считается, что опытные данные подтверждают существенность влияния фактора X (расхождение между факторной и остаточной дисперсией значимо).

Алгоритм однофакторного дисперсионного анализа:

- 1. По данным наблюдений построить комбинационную таблицу (табл.3)
- 2. Вычислить общие и групповые средние (по формулам (1) и (4)).
- 3. Вычислить общую (S общ) и факторную (S фак) суммы квадратов (по формулам (2), (3)).
 - 4. Вычислить $S_{\text{ост}} = S_{\text{общ}} S_{\text{фак}}$

- 5. Если σ^2 фак $\geq \sigma^2$ ост , то вычислить $F_{\text{табл}} = \frac{\sigma^2 \phi a \kappa m}{\sigma^2 o c m}$
- 6. Определить F кр = F (λ ,K1,K2) по таблице критических точек распределения Фишера- Снедекора.
 - 7. Сравнить $F_{табл}$ и $F_{пр}$.

Если $F_{\text{табл}}$ < $F_{\text{пр}}$ гипотеза Но принимается, расхождение между дисперсиями считается незначимым, в противном случае гипотеза отвергается, расхождение между дисперсиями значимо.

Замечание 2. Для упрощения расчетов иногда (при больших или дробных значениях Yij) удобно вместо Yij взять "уменьшенные " значения Zij= Yij-C, где C равно общей средней \overline{Y} или числу, близкому к \overline{Y} . Комбинационная таблица преобразуется в таблицу величин Zij . Расчет $S_{\phi a \kappa}$ и $S_{o 6 \mu}$ следует вести по формулам (2^0) и (3^0), подставляя в них вместо Yij — Zij.

Замечание 3. Для выбора наилучшего уровня влияющего фактора (после того, как существенность его влияния подтверждена) можно сравнивать попарно групповые средние, выделить наилучшие варианты и далее сравнивать между собой эти варианты; исследовать надежность различия средних в этих вариантах и т.д. При этом пользуются критерием Стьюдента.

<u>Пример 4.</u> Данные 4-х испытаний по признаку Y приведены в таблице 4. Исследовать существенность влияния величины X на Y.

Таблица 4.

100/11	таолица т.						
Номер	испыта-	Уровни фактора X			Уровни фактора X		
ния		X1	X2	X3			
1		51	52	42			
2		52	54	44			

3	56	56	50
4	57	58	52

Полагая Zij= Yij -52 (c= 52) i= 1,2,3,4 ; j =1,2,3 составим расчетную таблицу 5.

<u>Табли</u>	<u>ıa 5.</u>						
	Урс	вни фак	тора	Χ	ı		
Номер ис-	X1	Γ	X2	T	Х3	T	
пытаний	Zi 1	(Zi1) ^2	Zi 2	(Zi2) ^2	Zi 3	(Zi3) ^2	
1	-1	1	0	0	- 10	100	
2	0	0	2	4	-8	64	
3	4	16	4	16	-2	4	
4	5	25	6	36	0	0	
$Pj=\sum_{i=1}^{4} (Xij)^2$		42		56		168	$\sum_{j=1}^{3} Pj = 266$
$RJ = \sum_{i=1}^{4} Zij$	8		12		- 20		$\sum_{j=1}^{3} Rj = 0$

(RJ)^2
$$\begin{bmatrix} 6 \\ 4 \end{bmatrix}$$
 $\begin{bmatrix} 14 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 40 \\ 0 \end{bmatrix}$ $\begin{bmatrix} \sum_{j=1}^{3} (Rj)^2 = 608 \end{bmatrix}$

$$S_{\text{общ}} = \sum_{j=1}^{3} P_{j} - \frac{(\sum_{j=1}^{3} R_{j})^{2}}{3*4} = 266 - 0 = 266$$

$$S_{\text{фак}} = \frac{1}{4} \sum_{j=1}^{3} R_{j}^{2} - \frac{\sum_{j=1}^{3} R_{j}}{4*3} = \frac{608}{4} - 0 = 152$$

$$S_{\text{ост}} = 266 - 152 = 114$$

$$\delta_{\text{фак}}^{2} = \frac{S_{\text{фак}}}{3-1} = \frac{152}{2} = 76$$

$$\delta_{\text{ост}}^{2} = \frac{S_{\text{ост}}}{3*(4-1)} = \frac{114}{9} = 12,67 ;$$

$$F_{\text{Ha6л}} = \frac{\delta_{\text{фак}}^{2}}{\delta_{\text{ост}}^{2}} = \frac{76}{12,67} = 6.$$

По таблице критических точек распределения Фишера-Снедекора находим : при $K_1=3$ - 1=2 ; $K_2=3*(4-1)=9$, $\alpha=0,05$ находим $F_{\text{табл}}=F_{\text{Kp}}$ (0,05; 2; 9) = 4,26 (см., например, [2] стр. 420-421, табл. V).

Так как $F_{\text{набл}} > F_{\text{кр}}$, то нулевую гипотезу о равенстве дисперсии, а следовательно, гипотезу о равенстве групповых средних отвергаем. Таким образом, данные наблюдений подтверждают, что групповые средние различаются значимо, следовательно, подтверждается существенность влияния фактора X.

<u>Пример 5</u>. При изучении факторов производительности труда выделен один: X – образование рабочих. Установлены три его уровня: X_1 – начальное образование, X_2 – неполное среднее и X_3 – среднее. Из каждой группы отобрано по пять рабочих. Выработка рабочих (за один час в среднем) составила: с начальным образованием – 13, 14, 16, 18, 19; с неполным средним образованием – 19, 18, 21, 20, 22; со средним образованием 22, 23, 20, 21, 19.

Требуется исследовать существенность влияния образования X рабочих на производительность (Y) их труда.

Исходная таблица имеет вид:

Номер	испыта-	Уровни фактора X (образование)			
ния		Х ₁ – нач.	Х₂ – н/сред.	Х₃ – средн.	
1		13	19	22	
2		14	18	23	
3		16	21	20	
4		18	20	21	
5		19	22	19	

Положим с = 20 и составим расчетную таблицу:

Положим с = 20 и составим расчетную таолицу:							
Номер	Уровні	и факто	ра Х				
испытания	X_1		X_2		X ₃		
	X _{i1}	X _{i1} ²	X _{i2}	X_{i2}^2	X _{i3}	X _{i3} ²	
1	-7	49	-1	1	2	4	
2	-6	36	-2	4	3	9	
3	-4	16	1	1	0	0	
4	-2	4	0	0	1	1	
5	-1	1	2	4	-1	1	
$P_{j} = \sum_{i=1}^{5} x_{ij}^{2}$		106		10		15	$\sum_{j=1}^{3} P_{j} = 131$
$R_{j} = \sum_{i=1}^{5} x_{ij}$	-20		0		5		$\sum_{j=1}^{3} R_{j} =$
R _j ²	400		0		25		$\sum_{j=1}^{3} R_j^2$ = 425

$$\begin{split} S_{\text{общ}} &= 131 - \frac{\left(-15\right)^2}{3*5} = 131 - 15 = 116 \; ; \\ S_{\text{фак}} &= \frac{1}{5}*425 - \frac{\left(-15\right)^2}{3*5} = 85 - 15 = 70 \; ; \\ S_{\text{ост}} &= 116 - 70 = 46 ; \end{split}$$

$$\delta_{\phi a \kappa^2} = \frac{70}{3-1} = 35$$
;
 $\delta_{oct}^2 = \frac{46}{3*(5-1)} = \frac{46}{12} = 3,84$;
 $F_{Ha6\pi} = \frac{35}{3,84} = 9,14$.

По таблице критических точек распределения Фишера-Снедекора находим при $K_1=3-1=2;\ K_2=3*(5-1)=12.$

$$F_{Ta6n} = F_{Kp} (0,05; 2; 12) = 3,88$$

Так как $F_{\text{набл}} > F_{\text{кр}}$, то гипотезу о равенстве групповых средних отвергаем. Данные наблюдений показывают существенность влияния фактора X (образование) на производительность труда рабочих.

<u>Пример 6</u>. Пробы из очень чистого железа, полученного двумя различными методами A и B, имели следующие точки плавления:

Α	1493	1519	1518	1512	1512	1514
В	1509	1494	1512	1483	1507	1491

Существенно ли влияние на свойства металла метода его получения?

Положим c = 1500 и составим расчетную таблицу:

Положим с – 1300 и составим расчетную таолицу.							
Номер ис-	Уровни фа	Уровни фактора X – точки плавления					
пытания	Α		В				
	Xi1	Xi1 ²	Xi2	Xi2 ²			
1	-7	49	9	81			
2	19	361	-6	36			
3	18	324	12	144			
4	12	144	-17	289			
5	12	144	7	49			
6	14	196	-9	81			
$P_{j} = \sum_{i=1}^{6} x_{y}^{2}$		1218		680	$\sum_{j=1}^{2} P_{j}$ 1898	II	
$R_{j} = \sum_{i=1}^{6} x_{ij}$	68		-4		$\sum_{j=1}^{2} R_{j}$	=	

R _j ²	4624	16	$\sum_{j=1}^{2} R_{j}^{2} = 4640$
			טדטד

$$S_{\text{общ}} = 1898 - \frac{64^2}{2*6} = 1898 - 341,3 = 1556,7$$
 $S_{\text{фак}} = \frac{1}{6}*4640 - \frac{64^2}{12} = 773,3 - 341,3 = 432$
 $S_{\text{ост}} = 1556,7 - 432 = 1124,7$
 $\delta_{\text{фак}}^2 = \frac{432}{2-1} = 432$
 $\delta_{\text{ост}}^2 = \frac{1124,7}{2*(6-1)} = 112,47$
 $F_{\text{Ha6Л}} = \frac{432}{112,47} \approx 3,84$

 $F_{Ta6\pi} = F_{KP} (0,05;1;10) = 4,96$

Так как $F_{\text{набл}} < F_{\kappa p}$, то нулевую гипотезу принимаем. Влияние метода не существенно.

Решите самостоятельно следующие примеры:

<u>Пример 7</u>. Кислота непрерывным образом концентрируется на некотором типе оборудования, в результате чего часть оборудования ржавеет и со временем разрушается. Потери металла (в сотнях тонн) за период от установки оборудования до момента разрушения некоторой его части зафиксированы в таблице для трех линейных мастерских A, B и C. Проверить нулевую гипотезу,, по которой средняя продолжительность службы металла одна и та же для всех трех мастерских.

Мастерская	Потери металла				
Α	84	60	40	47	34
В	67	92	95	40	98
С	46	93	100	92	92

<u>Пример 8</u>. Фруктовый сок хранился в течение нескольких месяцев в цистернах четырех типов, после чего комиссия из восьми человек определяла количество сока в каждой цистерне, причем, каждый дегустатор давал свою численную оценку по некоторой шкале. Результаты дегустации даны в таблице (см. ниже). А)

Проверить нулевую гипотезу, согласно которой тип цистерн, в которых хранится сок, не оказывает влияния на его качество; Б) Проверить нулевую гипотезу об отсутствии систематических расхождений между оценками дегустаторов.

Цистерна	Дегустатор							
	1	2	3	4	5	6	7	8
Α	6,14	5,72	6,90	5,80	6,23	6,06	5,42	6,04
В	6,55	6,29	7,40	6,40	6,28	6,26	6,22	6,76
С	5,54	5,61	6,60	5,70	5,31	5,58	5,57	5,84
	4,81	5,09	6,61	5,03	5,15	5,05	5,77	6,17

<u>Пример 9</u>. По данным испытаний получена таблица значений результативного признака У при различных 5-ти уровнях некоторого фактора X. Исследовать значимость влияния X на У.

	Уровни фактора X				
пытаний	I	II	III	IV	V
1	83	81	76	78	79
2	61	61	67	67	64
3	78	71	75	72	74

<u>Пример 10</u>. Исследовать влияние фактора X, имеющего 6 уровней, на некоторый фактор У, используя числовые характеристики У, полученные в результате 4-х испытаний и приведенные в таблице:

Номер ис-	Уровни X					
пытания	Ι	II	III	IV	V	VI
1	58	49	45	28	54	47
2	48	41	44	55	49	45
3	47	46	44	50	53	47
4	65	46	44	41	52	47

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Перечислите основные задачи, которые решаются с помощью дисперсионного анализа.
- 2. Какое различие между задачами, решаемыми с помощью однофакторного и с помощью многофакторного дисперсионного анализа?
- 3. В чем различие между общей и факторной суммами квадратов отклонения наблюдаемой величины от её среднего значения?
- 4. Как вычисляется остаточная сумма квадратов от-клонений ($S_{\text{ост}}$) по S_{φ ак и S_{o} 6 ω 9.
 - 5. Что характеризует $S_{\text{ост}}$, $S_{\phi a \kappa}$, $S_{o 6 \mu}$?
- 6. В чем состоит основная идея дисперсионного анализа?
- 7. Опишите алгоритм однофакторного дисперсионного анализа.
- 8. Сформулируйте нулевую статическую гипотезу, проверяемую в процессе решения задач в однофакторном дисперсионном анализе? Какой статический критерий при этом используется?

ИСПОЛЬЗОВАНА ЛИТЕРАТУРА

- [1.] ГМУРМАН В.Е. Теория вероятностей и математическая статистика. Изд-во "Высшая школа", М. 1972 г., гл. XX, стр. 343-354.
- [2.] ДЛИН А.М. Математическая статистика в технике. Издво "Сов. наука", М., 1958г., гл. УІІ, стр. 201-222.