

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Кафедра «Прикладная математика»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к проведению практических занятий

«Сборник контрольных работ по математике для бакалавров»

Автор

Азарова Л.В., Белушкина Г.В., Мул А.П., Рябых В.Г., Рябых Г.Ю., Фролова Н.В.

Ростов-на-Дону, 2014

Сборник контрольных работ по математике для бакалавров

Аннотация

Методические указания предназначены для студентов очной и заочной форм обучения всех специальностей.

Автор

Азарова Л.В.,

Белушкина Г.В.,

Мул А.П., ст. преподаватель

Рябых В.Г., к.ф.-м.н., доцент

Рябых Г.Ю., к.ф.-м.н., профессор

Фролова Н.В., ст. преподаватель

КОНТРОЛЬНАЯ РАБОТА № 1 Вариант №1

1.Для матриц
$$A = \begin{pmatrix} 3 & 0 & 4 \\ -2 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}$$
 и $B = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 1 & -2 \\ 5 & 3 & 1 \end{pmatrix}$

вычислить матричный многочлен $A^2 - BA + 3A$.

$$\begin{cases} x + 2y - 2z = 5 \\ 4x - y + 10z = 11. \\ 5x + 3y - 5z = 9 \end{cases}$$
2. a)
$$\begin{cases} 2x - 3y + z = 2 \\ x + 2y - 3z = 1. \\ 5x + y - 6z = 5 \end{cases}$$

3.Разложить вектор $\overline{c}=(9;4)$ по векторам \overline{a} и \overline{b} , если $\overline{a}=(1;2)$ и $\overline{b}=2\overline{i}-3\overline{j}$.

4.Найти вектор \overline{d} , зная, что $\overline{d}\perp\overline{a},\overline{d}\perp\overline{b}$, где $\overline{a}=(2;3;\!-\!1),\overline{b}=(1;-2;3)$ и $\overline{d}\cdot\!\left(2\overline{i}-\overline{j}+\overline{k}\right)\!=\!-\!6$.

5.Найти площадь параллелограмма, построенного на векторах $\overline{a}=3\,\overline{p}+\overline{q}$ и $\overline{b}=\overline{p}-2\overline{q}$, где $\left|\overline{p}\right|=4,\left|\overline{q}\right|=l,\left(\overline{p},\overline{q}\right)=\frac{\pi}{4}$.

1.Для матриц
$$A = \begin{pmatrix} 4 & 1 & 2 \\ -2 & 0 & 2 \\ 3 & -1 & 2 \end{pmatrix}$$

$$B = egin{pmatrix} 1 & 0 & 3 \\ 1 & -2 & 4 \\ 1 & -2 & -4 \end{pmatrix}$$
 вычислить матричный многочлен $A^2 - 2BA + A$.

2.a)
$$\begin{cases} x - 3z + 4t = -4 \\ 2x + y + 10z - 15t = 10 \\ 2y + 3z - 6t = 7 \end{cases}$$

$$3x + 4y - z + 2t = 4$$

$$\begin{cases} 2x_1 - x_2 - x_3 - 2x_4 - x_5 = 2 \\ -x_1 - 2x_2 + 3x_3 + x_4 - 2x_5 = -1 \\ x_1 + x_2 - 2x_3 - x_4 + x_5 = 1 \\ 2x_1 - 3x_2 + x_3 - 2x_4 - 3x_5 = 2 \end{cases}$$

3.Радиус-вектор точки M составляет с осью Ox угол 45°, с осью Oy - 60° . Его длина $|\overline{r}|=6$. Найти координаты точки M, зная, что третья координата отрицательная.

4.Найти единичный вектор, перпендикулярный векторам $\overline{a}=2\overline{i}+\overline{j}+\overline{k}$ и $\overline{b}=(1;1;2)$.

5.Найти площадь треугольника ABC, в котором A(2;1;0), B(-2;4;1), C(-3;-8;4).

Вариант №3

1.Для матриц
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 1 & 2 \\ -3 & 3 & 2 \end{pmatrix}$$
 и $B = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 2 & 4 \\ 3 & 1 & -1 \end{pmatrix}$ вы-

числить матричный многочлен $2A^2 + BA + 3A$.

2.a)
$$\begin{cases} 2x - y + 5t = 6 \\ 3x + 2y - z = 3 \\ -x + 2y + 4z + t = 10 \\ -y - z + 3t = 0 \end{cases}$$

$$\begin{cases} x - y = 3 \\ 2x + y - 3z = 3 \\ -x - 2y + 3z = 0 \end{cases}$$

3.Проверить, что четыре точки A(3;-1;2), B(1;2;-1), C(-1;1;-3) и D(3;-5;3) служат вершинами трапеции.

4.Даны векторы $\overline{a}=2\overline{i}-\overline{j}+3\overline{k},\overline{b}=\overline{i}-3\overline{j}+2\overline{k},\overline{c}=3\overline{i}+2\overline{j}-4\overline{k}$. Найти вектор \overline{x} , если $\overline{x}\overline{a}=-5,\overline{x}\overline{b}=-11,\overline{x}\overline{c}=20$.

5.В треугольнике с вершинами A(4;-14;8), B(2;-18;12), C(12;-8;12) найти длину высоты, опущенной из вершины C на сторону AB .

Вариант №4

1.Для матриц
$$A = \begin{pmatrix} 3 & -1 & 0 \\ -2 & 1 & -3 \\ 5 & 1 & 2 \end{pmatrix}$$
 и

$$B = egin{pmatrix} -1 & 0 & 2 \ 3 & 1 & -2 \ 5 & -4 & 1 \end{pmatrix}$$
 вычислить матричный многочлен

$$B^2 - BA + 4A.$$

2.a)
$$\begin{cases} 4x + 4y - 5z = -2\\ 3x + 2y + z = 7\\ x - y + 10z = 20 \end{cases}$$

6)
$$\begin{cases} x + 3y - z = 4 \\ x + 2y + z = 1 \\ x + 4y - 3z = 7 \end{cases}$$

3.3ная одну из вершин треугольника A(I;-6;3) и векторы, совпадающие с двумя сторонами $\overline{AB}=3\,\bar{j}+5\overline{k}$ и $\overline{BC}=4\bar{i}+2\,\bar{j}-\overline{k}$, найти остальные вершины и вектор \overline{CA} .

4.Найти вектор \overline{m} , зная, что $\overline{m}\perp \overline{c}$, $\overline{m}\overline{a}=4$, $\overline{m}\overline{b}=35$, где $\overline{a}=\left(3;-2;4\right)$, $\overline{b}=\left(5;1;6\right)$, $\overline{c}=\left(-3;0;2\right)$.

5.3ная две стороны $\overline{AB}=\left(-3;-2;6\right),$ $\overline{BC}=\left(-2;4;4\right)$ треугольника ABC , вычислить длину высоты AD .

Вариант №5

1.Для матриц
$$A = \begin{pmatrix} 4 & 0 & 2 \\ -1 & 1 & -3 \\ 5 & 1 & 2 \end{pmatrix}$$
 и

$$B = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 1 & -2 \\ 5 & -5 & 0 \end{pmatrix}$$
 вычислить матричный многочлен
$$A^2 + BA + 3B.$$

$$\begin{cases} 2x + 3y - 4z + 5t = 3 \\ -y - t = -1 \end{cases}$$

$$x - 3z + 8t = -1$$

$$x + 2y - 4z + 3t = 0$$

$$\begin{cases} 2x - 3y + z = 2 \\ x + 2y - 3z = 1 \end{cases}$$

$$5x + y - 6z = 5$$

$$3x - y - 2z = 3$$

3.Радиус-вектор точки M составляет с осью Oy угол 60° , а с осью Oz угол 45° ; его длина $|\vec{r}|=8$. Найти координаты точки M, если ее абсцисса отрицательная.

4.Показать, что четырехугольник с вершинами A(-5;3;4), B(-1;-7;5), C(6;-5;-3) и D(2;5;-4) есть квадрат.

5.Найти площадь треугольника с вершинами A(1;-2;3), B(0;-1;2), C(3;4;5).

Вариант №6

1.Для матриц
$$A = \begin{pmatrix} 1 & 5 & 4 \\ -2 & 2 & -4 \\ 1 & 1 & 2 \end{pmatrix}$$
 и $B = \begin{pmatrix} -5 & 1 & 2 \\ 0 & 3 & -1 \\ 2 & 3 & 1 \end{pmatrix}$

вычислить матричный многочлен $A^2 - BA + 4B$

2.a)
$$\begin{cases} x_1 - x_2 + 2x_3 - 3x_4 = 4 \\ -x_1 + 2x_2 - x_3 + 4x_4 = 1 \\ 2x_1 + x_2 - 2x_3 + 4x_4 = 1 \\ x_1 + x_2 + x_3 + x_4 = 7 \end{cases}$$

$$\begin{cases} x - 3y + 2z = 2 \\ x + y - 5z = 7 \\ 3x - y - 8z = 16 \end{cases}$$

3.Даны радиус-векторы вершин треугольника ABC: $\overline{r}_A=\overline{i}+2\overline{j}+3\overline{k}$, $\overline{r}_B=3\overline{i}+2\overline{j}+\overline{k}$, $\overline{r}_C=\overline{i}+4\overline{j}+\overline{k}$. Показать, что треугольник ABC равносторонний.

4.Найти вектор \overline{d} , коллинеарный вектору $\overline{a}=\overline{i}+2\,\overline{j}-3\overline{k}$ и удовлетворяющий условию $\overline{b}\cdot\overline{a}=28$.

5.Даны вершины треугольника A(1;-1;2), B(5;-6;2), C(1;3;-1). Найти длину его высоты, опущенной из вершины B на сторону AC .

1.Для матриц
$$A = \begin{pmatrix} 1 & 0 & 4 \\ 2 & 2 & 3 \\ 3 & -7 & 2 \end{pmatrix}$$
 и

$$B = egin{pmatrix} 1 & 1 & 2 \\ 3 & 5 & 2 \\ 5 & 3 & 1 \end{pmatrix}$$
 вычислить матричный многочлен $B^2 - BA + 3A$.

2.a)
$$\begin{cases} 7x - 2y + 4z = 13 \\ 2x + 2y - z = 2 \\ 3x - y + z = 0 \end{cases}$$

$$\begin{cases} 2x_1 - x_2 - x_3 - 2x_4 - x_5 = 2 \\ -x_1 - 2x_2 + 3x_3 + x_4 - 2x_5 = -1 \\ x_1 + x_2 - 2x_3 - x_4 + x_5 = 1 \\ 2x_1 - 3x_2 + x_3 - 2x_4 - 3x_5 = 2 \end{cases}$$

3.Три силы \overline{F}_1 , \overline{F}_2 , \overline{F}_3 приложены к одной точке, имеют взаимно перпендикулярные направления. Найти величину их равнодействующей \overline{F} , если известны величины сил: $\left|\overline{F}_I\right|=2$, $\left|\overline{F}_2\right|=10$, $\left|\overline{F}_3\right|=11$.

4.Векторы $\overline{AB}=2\overline{a}-6\overline{b}$, $\overline{BC}=\overline{a}+7\overline{b}$, $\overline{CA}=-3\overline{a}-\overline{b}$ образуют треугольник ABC; векторы \overline{a} и \overline{b} - взаимно перпендикулярные орты. Найти углы треугольника ABC.

5. Найти площадь треугольника, построенного на векторах $\overline{a}=\overline{i}-2\,\overline{j}+5\overline{k}$ и $\overline{b}=5\,\overline{j}-7\overline{k}$.

1.Для матриц
$$A = \begin{pmatrix} 3 & -1 & 4 \\ 3 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$
 и

$$B = egin{pmatrix} 1 & 1 & 2 \ -4 & 0 & 2 \ 2 & -4 & 3 \end{pmatrix}$$
 вычислить матричный многочлен $A^2 + 3BA + 2B$

2.a)
$$\begin{cases} 2x - y + 5t = 6 \\ 3x + 2y - z = 3 \end{cases}$$
$$-x + 2y + 4z + t = 10.$$
$$-y - z + 3t = 0$$
$$\begin{cases} 2x + y - 3z = 5 \\ x - y + 2z - 2t = -4. \\ 2y - z - t = 3 \end{cases}$$

3.Три вектора $\overline{a},\overline{b}$ и \overline{c} попарно перпендикулярны, а длины их соответственно равны 2, 3 и 6. Найти длину суммы S этих векторов и направляющие косинусы вектора \overline{S} .

4.Найти вектор \overline{x} , зная, что он перпендикулярен к оси Oz и удовлетворяющие условиям $\overline{x}\cdot\overline{a}=9,\,\overline{x}\cdot\overline{b}=-4$, где $\overline{a}=(3;-1;5),\,\overline{b}=(1;2;-3).$

5.Найти площадь параллелограмма, построенного на векторах $\overline{a}=3\,\overline{p}+2\,\overline{q}\,$ и $\overline{b}=2\,\overline{p}-\overline{q}$, где $\left|\overline{p}\right|=4,\left|\overline{q}\right|=3,\left(\overline{p},\overline{q}\right)=\frac{3}{4}\pi$.

1.Для матриц
$$A = \begin{pmatrix} -1 & 0 & 4 \\ 2 & -3 & 1 \\ 1 & 1 & -5 \end{pmatrix}$$
 и

$$B = \begin{pmatrix} 3 & 1 & 2 \\ 0 & 6 & -2 \\ 2 & 3 & 0 \end{pmatrix}$$
 вычислить матричный многочлен $A^2 - BA + 3A$.

2.a)
$$\begin{cases} 2x + 3y - 4z + 5t = 3 \\ -y - t = -1 \\ x - 3z + 8t = -1 \\ x + 2y - 4z + 3t = 0 \end{cases}$$
6)
$$\begin{cases} x - 2y - z = 2 \\ -2x + 4y + 2z = -4 \end{cases}$$

3.Найти вектор \overline{x} , коллинеарный вектору $\overline{a}=\overline{i}-2\,\overline{j}-2\overline{k}$, образующий с ортом $\,\overline{j}\,$ острый угол и имеющий длину $|\overline{x}|=15$.

4.Даны векторы $\overline{a}=(1;-3;4), \overline{b}=(3;-4;2), \overline{c}=(-1;1;4).$ Найти пр $_{\overline{b}+\overline{c}}$ \overline{a} .

5.Вычислить синус угла, образованного векторами $\overline{a}=(2;-2;1)$ и $\overline{b}=(2;3;6)$.

1.Для матриц
$$A = \begin{pmatrix} 3 & -5 & 4 \\ 2 & 0 & 3 \\ 1 & 1 & -4 \end{pmatrix}$$

$$B = egin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & 2 \\ 1 & 3 & -3 \end{pmatrix}$$
 вычислить матричный многочлен $B^2 - BA + 2A$.
$$\begin{cases} x + y = 1 \\ y + z = 4 \\ x + z = 6 \end{cases}$$

6)
$$\begin{cases} 2x + y - 5z - t = 2\\ x - 2y + 2t = 1\\ -x + 3y - z - 3t = -1\\ x - y - z + t = 1 \end{cases}$$

3.Векторы \overline{a} , \overline{b} и \overline{c} имеют равные длины и попарно образуют равные углы. Найти координаты вектора \overline{c} , если $\overline{a}=(1;1;0), \overline{b}=(0;1;-1).$

A(1;-1;4), B(3;2;-1), C(6;2;-2), D(5;0;1). Проверить лежат ли они на одной плоскости.

КОНТРОЛЬНАЯ РАБОТА № 2 Вариант №1

1.Дана пирамида с вершинами
$$A_1(7;2;4), A_2(7;-1;-2), A_3(3;3;1), A_4(-4;2;1)$$
. Найти:

- а) угол между ребрами $A_{l}A_{2}$ и $A_{l}A_{4}$;
- б) объем пирамиды;
- в) длину высоты, опущенной на грань $A_{1}A_{2}A_{3}$.
- 2. Найти уравнение плоскости, проходящей через $O\big(0,\,0,\,0\big)$ и прямую $\begin{cases} x-y+z-7=0\\ 3x+2y-12z+5=0 \end{cases}.$
- 3. Найти уравнение плоскости, проходящей через P(1,-4,5) параллельно OYX
- 4. Через точку пересечения прямой $\frac{x+1}{2} = \frac{y-2}{1} = \frac{z-1}{-1}$ и плоскости, 3x-2y+z-3=0 провести прямую параллельно прямой $\frac{x-2}{1} = \frac{y-3}{2} = \frac{z+1}{3}$.

- 1.Дана пирамида с вершинами $A_1(1;3;6), A_2(2;2;1), A_3(-1;0;1), A_4(-4;6;-3).$ Найти:
 - а) косинус угла между ребрами A_1A_2 и A_1A_4 ;
 - б) объем пирамиды;
 - в) длину высоты, опущенной на грань $A_{I}A_{2}A_{3}$.
- 2.Составить уравнение плоскости, проходящей через прямые $\begin{cases} 2x-y+3z-5=0\\ x+2y-z+2=0 \end{cases}, \ \frac{x-1}{2}=\frac{y+5}{-1}=\frac{z-3}{-2} \ .$
- 3.Найти уравнение плоскости, проходящей через P(1,2,0) параллельно $\bar{a}=(2,0,7), \bar{b}=(1,1,0)$.
- 4.Найти уравнение перпендикуляра, опущенного из точки $A\big(1,-2,3\big) \text{ на прямую } \begin{cases} x-2y+4z-2=0\\ 2x+2y-3z+3=0 \end{cases}.$

Вариант №3

1.Дана пирамида с вершинами
$$A_1ig(-2;0;-4ig)$$
, $A_2ig(-1;7;1ig)$, $A_3ig(4;-8;-4ig)$, $A_4ig(1;-4;6ig)$.Найти:

- а) длину ребра $A_{2}A_{3}$;
- б) косинус угла между ребрами A_1A_2 и A_1A_4 ;
- в) объем пирамиды.
- 2.Найти уравнение плоскости, проходящей через Mig(0,4,-2ig) параллельно прямым

$$\frac{x-1}{2} = \frac{y}{1} = \frac{z-2}{3}, \frac{x}{3} = \frac{y+2}{5} = \frac{z-3}{1}.$$

3.Найти уравнение плоскости, проходящей через $A(1,0,1),\,B(-2,6,4)$ параллельно $\overline{a}=(2,6,-5)$.

4.Найти расстояние от точки B(2,0,3) по прямой $\begin{cases} 2x-y+z-1=0\\ x+y+z-3=0 \end{cases}.$

Вариант №4

1.Дана пирамида с вершинами $A_I(I;2;0),\,A_2(3;0;-3),\,A_3(5;2;6),\,A_4(8;4;-9)$. Найти:

- а) длину ребра $A_{2}A_{3}$;
- б) угол между ребрами A_1A_2 и A_1A_4 ;
- в) объем пирамиды.
- 2.Найти уравнение плоскости, проходящей через M(2,0,1), P(0,1,-3) перпендикулярно плоскости 3x-y+3z-5=0.
- 3.Найти уравнение плоскости, проходящей через $A(1,1,2),\,B(0,2,0),\,C(-1,0,6)$
- 4.Найти проекцию начала координат на плоскость 2x + y 3z 14 = 0.

- 1.Дана пирамида с вершинами $A_I(7;2;4),\,A_2(7;-1;-2),\,A_3(3;3;I),\,A_4(-4;2;I)$. Найти:
 - а) угол между ребрами A_1A_2 и A_1A_4 ;

- б) объем пирамиды;
- в) длину высоты, опущенной на грань $A_1 A_2 A_3$.
- 2.Найти уравнение плоскости, проходящей через прямые $\frac{x-1}{2} = \frac{y}{3} = \frac{z}{1}, \frac{x+1}{2} = \frac{y+5}{3} = \frac{z}{1}$.

3.Даны вершины тетраэдра: A(2,0,1), B(0,5,1), C(4,-1,3), D(3,-1,5). Написать уравнение плоскости, проходящей через CD параллельно AB

4.Найти расстояние от точки A(3,0,4) до прямой $\begin{cases} 2x-y+1=0 \\ 2x-z=0 \end{cases}.$

Вариант №6

- 1.Дана пирамида с вершинами $A_I(I;3;6),\,A_2(2;2;I),\,A_3(-1;0;I),\,A_4(-4;6;-3).$ Найти:
 - а) косинус угла между ребрами A_1A_2 и A_1A_4 ;
 - б) объем пирамиды;
 - в) длину высоты, опущенной на грань $A_1 A_2 A_3$.
- 2.Найти уравнение плоскости, проходящей через прямые $\frac{x-5}{13} = \frac{y-6}{1} = \frac{z+3}{-4}, \frac{x-2}{13} = \frac{y-3}{1} = \frac{z+3}{-4}$.

3.Найти уравнение плоскости, проходящей через P(1,0,1) параллельно $\bar{a}=(1,-2,3), \bar{b}=(-5,9,0).$

4.Найти проекцию точки (4, -3, 1) на плоскость x + 2y - z - 3 = 0 .

1.Дана пирамида с вершинами
$$A_1(-2;0;-4), A_2(-1;7;1), A_3(4;-8;-4), A_4(1;-4;6)$$
. Найти:

- а) длину ребра $A_{2}A_{3}$;
- б) косинус угла между ребрами $A_{{\scriptscriptstyle I}}A_{{\scriptscriptstyle 2}}$ и $A_{{\scriptscriptstyle I}}A_{{\scriptscriptstyle 4}}$;
- в) объем пирамиды.
- 2.Составить уравнение плоскости, проходящей через пря-

мую
$$\begin{cases} 2x-y+3z-5=0\\ x+2y-z+2=0 \end{cases}$$
 и перпендикулярно плоскости
$$2x-y-2z+15=0\,.$$

3.Найти уравнение плоскости, проходящей через P(1,0,1) параллельно $\bar{a}=(1,9,8), \bar{b}=(-1,6,0).$

4.Найти угол, образованный прямой, проходящей через точки $\left(2,1,-1\right)$ и $\left(\frac{5}{2},\frac{1}{4},\frac{-5}{4}\right)$ с плоскостью x-y+z-1=0 .

Вариант №8

- 1.Дана пирамида с вершинами $A_I(I;2;0), A_2(3;0;-3), A_3(5;2;6), A_4(8;4;-9)$. Найти:
 - а) длину ребра A_2A_3 ;
 - б) угол между ребрами A_1A_2 и A_1A_4 ;
 - в) объем пирамиды.
- 2.Найти уравнение плоскости, проходящей через M(3,5,-4) перпендикулярно прямой $\frac{x-1}{2}=\frac{y+3}{1}=\frac{z}{3}$.
- 3. Составить уравнение плоскости, проходящей через начало координат и параллельной 2y-z+3=0 .
 - 4. Найти уравнение прямой, проходящей через точку
- A(1,2,3) и точку пересечения прямой $\frac{x-2}{-1} = \frac{y}{3} = \frac{z-1}{1}$ с плоскостью хоу.

- 1.Дана пирамида с вершинами $A_I(I;3;6), A_2(2;2;I), A_3(-1;0;I), A_4(-4;6;-3).$ Найти:
 - а) косинус угла между ребрами A_1A_2 и A_1A_4 ;
 - б) объем пирамиды;
 - в) длину высоты, опущенной на грань $A_{I}A_{2}A_{3}$.
- 2.Найти уравнение плоскости, проходящей через прямую $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z+5}{-1}$ перпендикулярно плоскости x-y+3z+5=0.

3.Написать уравнение плоскости, перпендикулярной плоскости 3x+5y-z=3 и пересекающей ее по прямой, лежащей в OYZ .

4. Через точку пересечения прямой $\frac{x-12}{4}=\frac{y-9}{3}=\frac{z-1}{1}$ и плоскости 3x+5y-z-2=0 провести параллельно прямой $\frac{x}{1}=\frac{y}{4}=\frac{z}{-3}$.

Вариант №10

1.Дана пирамида с вершинами $A_1(-2;0;-4),\,A_2(-1;7;1),\,A_3(4;-8;-4),\,A_4(1;-4;6)$. Найти:

- а) длину ребра $A_{2}A_{3}$;
- б) косинус угла между ребрами A_1A_2 и A_1A_4 ;
- в) объем пирамиды.
- 2.Составить уравнение плоскости, проходящей через M(0,4,1) параллельно прямым x+1 y+4 z-2 x y-2 z+5

$$\frac{x+1}{2} = \frac{y+4}{-3} = \frac{z-2}{3}, \frac{x}{3} = \frac{y-2}{-2} = \frac{z+5}{-1}.$$

3.Через линию пересечения плоскостей x+3y+4z=0, x-y+z+2=0 провести плоскость, проходящую через (1,2,1).

4.
Найти угол
$$\begin{cases} x-2z-1=0 \\ y+2z-1=0 \end{cases} , \ \text{образованный с прямой, про-}$$

ходящей через начало координат и через точку (1, -1, -1).

КОНТРОЛЬНАЯ РАБОТА № 3 (А)

	Вариант №1		Вариант №2
1	$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x^3 + 2x^2 - x - 2}$	1	$\lim_{x \to -3} \frac{x^2 + 2x - 3}{x^3 + 4x^2 + 3x}$
2	$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9}$	2	$\lim_{x\to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$
3	$\lim_{x \to \infty} \frac{2x^3 - x + 4}{x^3 + 3x^2 - 2}$	3	$\lim_{x\to\infty}\frac{1-x+x^4}{3+2x^3-x^4}$
4	$\lim_{X\to 0} \frac{\sin 5X - \cos 3X}{\sin^2 X}$	4	$\lim_{x\to+\infty} \left(\sqrt{x^2+1}-2x\right)$
5	$\lim_{x \to 2} (3x - 5) \frac{2x}{x^2 - 4}$	5	$\lim_{x\to 0} \frac{3x^2 - 5x}{\sin 3x}$
6	$\lim_{x \to -3} \left(\frac{3}{x+3} - \frac{2x^2}{9 - x^2} \right)$	6	$\lim_{x \to \infty} \left(\frac{4x - 1}{4x + 3}\right)^x$

	Вариант №3		Вариант №4
1	$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$	1	$\lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}$
2	$\lim_{x \to -2} \frac{\sqrt{x+6} - 2}{x^3 + 8}$	2	$\lim_{x \to 1} \frac{\sqrt{1+x} - \sqrt{2x}}{x^2 - 1}$
3	$\lim_{x \to 2} \left(\frac{1}{x - 2} - \frac{12}{x^3 - 8} \right)$	3	$\lim_{x \to \infty} \frac{x - 2x^2 + 5x^4}{1 + 3x^2 + x^4}$
4	$\lim_{x \to \infty} \frac{5x^2 + 3x - 1}{3x^2 - x - 5}$	4	$\lim_{X\to+\infty} \left(\sqrt{X^2 + X} - \sqrt{X+1} \right)$
5	$\lim_{x\to 0} \frac{1-\cos 10x}{x\sin x}$	5	$\lim_{x\to 0} \frac{1-\cos^3 x}{4x^2}$
6	$\lim_{x \to -3} \left(\frac{3}{x+3} - \frac{2x^2}{9-x^2} \right)$	6	$\lim_{X\to+\infty}(2X+1)(\ln(X+3)-\ln X)$

	Вариант №5		Вариант №6
1	$\lim_{x \to -\frac{1}{3}} \frac{6x^2 - x - 1}{3x + 1}$	1	$\lim_{x \to -6} \frac{3x^2 + 17x - 6}{x^2 - 36}$
2	$\lim_{x \to 0} \frac{\sqrt{1 - 2x + x^2} - (1 + x)}{x}$	2	$\lim_{X\to 0} \frac{\sqrt{1+X} - \sqrt{1-X}}{\sqrt{X}}$
3	$\lim_{x \to \infty} \frac{4 + x + 3x^4}{x^4 - 2x + 1}$	3	$\lim_{x \to \infty} \frac{3x^3 - x + 2}{2x^3 + 4x^2 - 5}$

4	$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{2}{x^2 - 1} \right)$	4	$\lim_{x \to +\infty} \left(\sqrt{x^2 + 2x} - x \right)$
5	$\lim_{x\to 0} \frac{\operatorname{t} g X - \sin X}{X \sin X}$	5	$\lim_{x\to 0} \frac{\cos 3x - \cos x}{\operatorname{tg}^2 2x}$
6	$\lim_{x \to 1} \frac{\ln(2-x)}{1-x}$	6	$\lim_{x \to 0} (1 + 3x)^{\frac{1}{4x}}$

	Вариант №7		Вариант №8
1	$\lim_{x \to 1} \frac{2x^2 - x - 1}{x^4 - 1}$	1	$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^3 - x^2 - x + 1}$
2	$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x^2 - 1}$	2	$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x^2 - 16}$
3	$\lim_{x \to \infty} \frac{7x^3 - 2x + 2}{x^4 + 3}$	3	$\lim_{x \to \infty} \left(\sqrt{x^2 + x + 3} - \sqrt{x^2 - 4x} \right)$
4	$\lim_{x \to 2} \left(\frac{1}{2 - x} - \frac{x^2}{4 - x^2} \right)$	4	$\lim_{x \to \infty} \frac{1 - 3x^2 - x^4}{x^3 + x}$
5	$ \lim_{x \to 0} \frac{\sin 7x}{x^2 + \pi x} $	5	$\lim_{x \to 0} \frac{\sin^2 x - \tan^2 x}{x^4}$
6	$\lim_{x \to \infty} \left(\frac{2x+5}{2x+1}\right)^{3x}$	6	$\lim_{x\to\infty} x \ln\left(1-\frac{2}{x}\right)$

	Вариант №9		Вариант №10
1	$\lim_{x \to 1} \frac{(1+x)^2 - (1+3x)}{x^2 - x^5}$	1	$\lim_{x \to -4} \frac{x^2 + 3x - 4}{x^2 + 2x - 8}$
2	$\lim_{x \to 8} \frac{\sqrt{9 + 2x} - 5}{x - 8}$	2	$\lim_{x \to -2} \frac{\sqrt{6+x}-2}{x+2}$
3	$\lim_{x \to \infty} \frac{8x^5 - 2x + 9}{2x^5 + 2x - 3}$	3	$\lim_{x \to \infty} \frac{3 + 5x^2 - 2x^3}{x^3 + 2x - 6}$
4	$\lim_{x \to -1} \left(\frac{1}{x+1} - \frac{2}{1-x^2} \right)$	4	$\lim_{x\to +\infty} \left(\sqrt{x^2 + 3x} - x \right)$
5	$\lim_{x \to 0} \frac{2x \sin x}{1 - \cos x}$	5	$ \lim_{x \to 0} \frac{\operatorname{tg} x - \sin x}{x(1 - \cos 2x)} $
6	$\lim_{x\to\infty} \left(\frac{x+3}{x-3}\right)^{\frac{x}{2}}$	6	$\lim_{x\to 0} \left(1 + tg\frac{x}{2}\right)^{\frac{3}{x}}$

КОНТРОЛЬНАЯ РАБОТА № 3(Б)

	Вариант №1		Вариант №2
1	$\lim_{x \to -1} \frac{x^3 - 3x - 2}{x + x^2}$	1	$\lim_{x \to 1} \frac{(2x^2 - x - 1)^2}{x^3 + 2x^2 - x - 2}$
2	$\lim_{x\to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$	2	$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9}$
3	$\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 7x - \cos 3x}$	3	$\lim_{x \to 0} \frac{3x^2 - 5x}{\sin 4x}$
4	$\lim_{x\to 0} \frac{arcsin2x}{\ln(e-x)-1}$	4	$\lim_{x \to 0} \frac{1 - \cos x}{(e^{3x} - 1)^2}$
5	$\lim_{x\to 0} (2 - e^{\sin x})^{ctg\Pi x}$	5	$\lim_{x\to 0} \left(1 - \ln\left(1 + \sqrt[3]{x}\right)^{\frac{x}{\sin^4 \sqrt[3]{x}}}\right)$

	Вариант №3		Вариант №4
1	$\lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}$	1	$\lim_{x \to 0} \frac{(1+x)^3 - (1+3x)}{x+x^5}$
2	$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt{x} - 4}$	2	$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt[7]{x}}$
3	$\lim_{x\to 0} \frac{\sin^2 x - tg^2 x}{x^4}$	3	$\lim_{x \to 0} \frac{tgx - \sin x}{x(1 - \cos 2x)}$
4	$\lim_{x \to 0} \frac{\ln(x^2 + 1)}{1 - \sqrt{x^2 + 1}}$	4	$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{\sin 4x}$
5	$\lim_{x\to 0} \left(5 - \frac{4}{\cos x}\right)^{\frac{1}{\sin^2 3x}}$	5	$\lim_{x\to 0} (1+\sin^2 3x)^{\frac{1}{\ln \cos x}}$

	Вариант №5		Вариант №6
1	$\lim_{x \to -1} \frac{(x^3 - 2x - 1)^2}{x^4 + 2x + 1}$	1	$\lim_{x \to -3} \frac{x^2 + 2x - 3}{x^3 + 4x^2 + 3x}$
2	$\lim_{x \to 0} \frac{\sqrt{1 - 2x + x^2 - (1 + x)}}{\sqrt{x}}$	2	$\lim_{x \to -8} \frac{\sqrt{1-x-3}}{2+\sqrt[3]{x}}$
3	$\lim_{x\to 0} \frac{1-\cos^3 x}{12x^2}$	3	$\lim_{x \to 0} \frac{\sin 3x}{2x^2 + \Pi x}$
4	$\lim_{x\to 0} \frac{\arcsin 3x}{\sqrt{2+x}-\sqrt{2}}$	4	$\lim_{x\to 0} \frac{1-\cos 10x}{e^{x^{2-1}}}$
5	$\lim_{x \to 0} (1 - x \sin^2 x)^{\frac{1}{\ln(1 + \ln x^2)}}$	5	$\lim_{x\to 0} {}^{x^2}\sqrt{2-\cos x}$

	Вариант №7		Вариант №8
1	$\lim_{x \to 1} \frac{2x^2 - x - 1}{x^3 + 3x^2 - x - 3}$	1	$\lim_{x \to -1} \frac{x^3 - 3x - 2}{(x^2 - x - 2)^2}$
2	$\lim_{x \to 8} \frac{\sqrt{9 + 2x} - 5}{\sqrt[3]{x} - 2}$	2	$\lim_{x \to 0} \frac{\sqrt{1 - 2x + 3x^2} - (1 + x)}{\sqrt[3]{x}}$
3	$\lim_{x\to 0} \frac{2x\sin x}{1-\cos 4x}$	3	$\lim_{X\to 0} \frac{\cos 2X - \cos X}{1 - \cos X}$
4	$\lim_{x\to 0}\frac{x+tgx^2}{e^{2x}-e^x}$	4	$\lim_{x\to 0} \frac{9\ln(1-2x)}{4arctg3x}$
5	$\lim_{x\to 2} \left(\frac{\cos x}{\cos 2}\right)^{\frac{1}{x-2}}$	5	$\lim_{x\to 0}(\cos\sqrt{x})^{\frac{1}{x}}$

	Вариант №9		Вариант №10
1	$\lim_{x \to 2} \frac{x^3 - 6x^2 + 12x - 8}{x^3 - 3x^2 + 4}$	1	$\lim_{x \to 1} \frac{x^3 + x^2 - 5x + 3}{x^3 - x^2 - x + 1}$
2	$\lim_{X \to 4} \frac{\sqrt{X} - 2}{\sqrt[3]{X^3 - 16}}$	2	$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{\sqrt[3]{x^2 - 9}}$
3	$\lim_{x\to 0} \frac{1-\sqrt{\cos x}}{x\sin x}$	3	$\lim_{x\to 0} \frac{\cos 3x - \cos x}{tg^2 2x}$
4	$\lim_{x\to 0} \frac{e^{5x} - e^{3x}}{\sin 2x - \sin x}$	4	$\lim_{x \to 0} \frac{\sqrt{1 + tgx} - \sqrt{1 + \sin x}}{x^3}$
5	$\lim_{x\to 0} \left(6 - \frac{5}{\cos x}\right)^{ctg^2x}$	5	$\lim_{x \to 8} \left(\frac{2x - 7}{x + 1} \right)^{\frac{1}{\sqrt[3]{x} - 2}}$

КОНТРОЛЬНАЯ РАБОТА № 4

Найти производную:

Вариант №1

1. a)
$$\sin(x-2y) + \frac{x^3}{y} = 7x$$

$$\begin{cases} x = e^{-t} \cdot \cos t, \\ y = e^{t} \cdot \cos t \end{cases}$$

2. a)
$$y = \operatorname{arctg}^2 \ln \frac{\sqrt{x}}{x+2}$$

$$6) \quad y = \left(\sqrt{x}\right)^{\arcsin x}$$

3.
$$\lim_{x \to +\infty} \frac{x^2}{e^x}$$

Вариант №2

1. a)
$$e^{xy} + \frac{y}{x} = \cos 3x$$

2. 6)
$$\begin{cases} x = \cos t + \sin t, \\ y = \sin t - t \cdot \cos t \end{cases}$$

3. a)
$$y = 5\sqrt{\sin^4\left(\frac{x-3}{x}\right)}$$

4. 6)
$$y = x^{\arctan 7x}$$

$$5. \quad \lim_{x \to \frac{\pi}{2}} \frac{\operatorname{tg} 3x}{\operatorname{tg} x}$$

1. a)
$$x^3y^2 - \frac{x+1}{y} = \arcsin 4x$$

2. 6)
$$\begin{cases} x = \frac{t+1}{t}, \\ y = \frac{t-1}{t} \end{cases}$$

3. a)
$$y = 2^{tg^7 \left(\frac{x^2+4}{\sqrt{x}}\right)}$$

4. 6)
$$y = (x^2 + 3)^{\lg x}$$

$$5. \quad \lim_{x \to 0} \frac{\ln \cos x}{x}$$

Вариант №4

1. a)
$$\frac{y-2}{x^3} - tg(x+5y) = 7^x$$

2. 6)
$$\begin{cases} x = e^t \cdot \sin t \\ y = e^t \cdot \cos t \end{cases}$$

3. a)
$$y = \log_3 \arcsin\left(\frac{\sqrt{x}}{x-5}\right)$$

4. 6)
$$y = (\cos x)^{\frac{2}{x}}$$

$$5. \quad \lim_{x \to 0} \frac{e^x - 1}{\operatorname{tg} x}$$

Вариант №5

1. a)
$$\sqrt{x} + \sqrt{y} = \sqrt{5}$$

2. 6)
$$\begin{cases} x = t - \operatorname{arct} g t \\ y = \frac{t^3}{3} + 1 \end{cases}$$

3. a)
$$y = \frac{\sin x}{1 + \lg x}$$

4. 6)
$$y = x^{\ln x}$$

$$5. \quad \lim_{x \to +\infty} \frac{e^x}{x^3}$$

1. a)
$$x^2 + 3y^2 - 4xy + 10 = 0$$

2. 6)
$$\begin{cases} x = \frac{t+1}{t} \\ y = \frac{t-1}{t} \end{cases}$$

3. a)
$$y = \ln\left(\sqrt{\frac{1 + \lg x}{1 - \lg x}}\right)$$

4. 6)
$$y = (tgx)^{\cos x}$$

$$5. \quad \lim_{x \to 0} \frac{\ln x}{\operatorname{ctg} 2x}$$

Вариант №7

1. a)
$$\arcsin \frac{x}{y} = y \cdot \ln x$$

$$2. \quad 6) \quad \begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$$

3. a)
$$y = (1 + tg^2 3x) \cdot e^{-\frac{\pi}{2}}$$

4. 6)
$$y = x^{\arctan x}$$

$$5. \quad \lim_{x \to +\infty} \frac{\ln x}{x}$$

1. a)
$$arctg y = x^2 y$$

$$2. \quad 6) \quad \begin{cases} x = t^3 \\ y = 3t \end{cases}$$

3. a)
$$y = e^{-\ln\frac{x+2}{x-3}} - \frac{x-3}{x+2}$$

4. 6)
$$f(t) = t^{\frac{1}{\ln t}}$$

$$5. \quad \lim_{x \to 0} \frac{e^x - 1}{\sin x}$$

Вариант №9

1. a)
$$y = 2x - x^2$$

2. 6)
$$\begin{cases} x = e^t \cdot \sin t \\ y = e^t \cdot \cos t \end{cases}$$

3. a)
$$y = \ln \frac{(x+1)(x+3)^3}{(x+2)^3(x+4)}$$

4. 6)
$$y = (x^2 + 1)^{\sqrt{x}}$$

$$5. \quad \lim_{x \to 1} \frac{\ln x}{x - 1}$$

1. a)
$$ln \frac{x^2}{y} = 2xy - x^2$$

$$2. \quad 6) \begin{cases} x = \cos^2 2t \\ y = \sin^2 2t \end{cases}$$

3. a)
$$y = \arcsin^2 \frac{\sqrt{1 - x^2}}{x}$$

4. 6)
$$y = [ln(1-x^2)]^{\sqrt[3]{x}}$$

$$5. \quad \lim_{x \to 0} \frac{\sin^2 3x}{\sin^2 5x}$$

КОНТРОЛЬНАЯ РАБОТА № 5(А)

	Вариант №1		Вариант №2
1	$\int \sqrt{2x+3}dx$	1	$\int e^{3x-5} dx$
2	$\int x^2 \sin 3x dx$	2	$\int \frac{dx}{\sqrt{4x^2 + 12x + 10}}$
3	$\int \frac{dx}{\sqrt{7-x^2-6x}}$	3	$\int x \cos 2x dx$
4	$\int \frac{3x^2 - x + 8}{(x - 7)(x^2 + 4)} dx$	4	$\int \frac{4x^2 - 2x + 3}{(x - 2)(x^2 + 1)} dx$
5	$\int tg^4 x dx$	5	$\int \sin^3 x dx$
6	$\int \frac{x dx}{1 - \sqrt{x}}$	6	$\int \frac{\sqrt{2+x}}{x} dx$

	Вариант №3		Вариант №4
1	$\int \sin\left(\frac{x}{2} + \frac{\Pi}{4}\right) dx$	1	$\int \frac{x dx}{3x^2 + 5}$
2	$\int e^{x} 6x dx$	2	$\int \frac{dx}{x^2 - 6x + 13}$
3	$\int \frac{dx}{5 - x^2 + 4x}$	3	$\int x^2 e^{-x} dx$
4	$\int \frac{2x^2 - 1}{x^3 - 5x^2 + 6x} dx$	4	$\int \frac{2x^2 + 6x - 2}{x^3 + x^2 - 2x} dx$
5	$\int \cos^3 2x dx$	5	$\int \frac{dx}{\cos^4 x}$
6	$\int \frac{x-2}{1+\sqrt{x}} dx$	6	$\int \frac{x dx}{\sqrt[3]{2x - 3}}$

	Вариант №5		Вариант №6
1	$\int \frac{dx}{\sqrt{1-2x}}$	1	$\int 2^{5-x^2} x dx$
2	$\int \frac{dx}{9x^2 + 6x + 10}$	2	$\int \frac{dx}{\sqrt{25x^2 - 20x + 5}}$
3	$\int \ln(x+1)dx$	3	$\int x \sin 2x dx$
4	$\int \frac{2x^2 + 4}{x^3 - 8} dx$	4	$\int \frac{dx}{x(x^2+2)}$

5	$\int \frac{\sin^3 x}{\cos^2 x} dx$	5	$\int ctg^3 4x dx$
6	$\int \frac{\sqrt{x dx}}{1 + \sqrt[4]{x}}$	6	$\int \frac{dx}{1+\sqrt{x}}$

	Вариант №7		Вариант №8
1	$\int \frac{e^{x} dx}{1 - 3e^{x}}$	1	$\int \frac{dx}{\sin^2 7x}$
2	$\int \frac{dx}{7 + 6x - x^2}$	2	$\int \frac{dx}{x^2 + 4x + 13}$
3	$\int x3^{xdx}$	3	$\int \ln(x^2+1)dx$
4	$\int \frac{4x^2 + 8x + 3}{(x+2)(x+1)^2} dx$	4	$\int \frac{4x^2 + x + 4}{(x - 1)(x + 2)^2} dx$
5	$\int \frac{dx}{\sin^4 2x}$	5	$\int \frac{\cos^3 x dx}{\sin x}$
6	$\int \frac{1 - \sqrt{1 + x}}{\sqrt{1 + x}} dx$	6	$\int \frac{dx}{\sqrt[3]{x}(\sqrt[3]{x}-1)}$

	Вариант №9		Вариант №10
1	$\int \frac{dx}{\cos^2\left(3x - \frac{\pi}{4}\right)}$	1	$\int \frac{arctg^2 x dx}{1 + x^2}$
2	$\int \frac{dx}{\sqrt{24 - 4x^2 - 4x}}$	2	$\int \frac{dx}{4x^2 - 4x + 4}$
3	$\int x \ln x dx$	3	$\int (x+1)e^x dx$
4	$\int \frac{6x^2 - 6x + 9}{(x - 3)(x^2 + 9)} dx$	4	$\int \frac{6x^2 - 4x - 8}{x(x^2 - 4)} dx$
5	$\int tg^3 2x dx$	5	$\int \frac{\cos^3 x dx}{\sqrt{\sin x}}$
6	$\int \frac{\sqrt{x} dx}{1 + \sqrt{x}}$	6	$\int \frac{dx}{1 + \sqrt[3]{x+1}}$

КОНТРОЛЬНАЯ РАБОТА № 5(Б)

	Вариант №1		Вариант №2
1	$\int \frac{e^{2x} dx}{1 + e^{x}}$	1	$\int \frac{\cos 10x dx}{\sqrt[5]{1 - \sin 10x}}$
2	$\int \frac{(5x+1)dx}{\sqrt{3-2x-x^2}}$	2	$\int \frac{(3x+5) dx}{\sqrt{61+x^2+10x}}$
3	$\int x^2 \sin^2 \frac{x}{2} dx$	3	$\int \arccos x dx$
4	$\int \frac{(3x-7) dx}{(2x+1)(x^2+4)}$	4	$\int \frac{(4x+7) dx}{(x^2+2x+7)(2-x)}$
5	$\int \frac{\sqrt{x} dx}{\sqrt[4]{x^3} - \sqrt{x}}$	5	$\int \sqrt{\mathrm{e}^{\mathrm{x}} + 7} dx$
6	$\int \cos^7 x dx$	6	$\int \frac{\sin^2 x dx}{\cos^6 x}$
7	$\int \frac{\sqrt{9+x^2}}{x^4} dx$	7	$\int \frac{\sqrt{1+x^2}}{x^4} dx$

	Вариант №3		Вариант №4
1	$\int \frac{\cos x dx}{4 + \sin^2 x}$	1	$\int \frac{x^2 dx}{9 + 4^x}$
2	$\int \frac{(2x+1) dx}{\sqrt{11-10x-x^2}}$	2	$\int \frac{(2x+5)dx}{x^2-6x+25}$
3	$\int x^3 e^{-x^2} dx$	3	$\int x^3 \cos^2 3x dx$
4	$\int \frac{(9x^2 - 3x - 8) dx}{(x^{2+7})(2x - 1)}$	4	$\int \frac{(5x+9) dx}{(x+1)(x^2+1)}$
5	$\int \frac{dx}{x(\sqrt{x}+6)}$	5	$\int \frac{\ln x dx}{x\sqrt{\ln x + 1}}$
6	$\int \frac{dx}{\sin^3 x \cos^5 x}$	6	$\int tg^5 2x dx$
7	$\int \frac{x^2 dx}{\sqrt{x^2 - 4}}$	7	$\int \frac{dx}{x^2 \sqrt{4 - x^2}}$

	Вариант №5		Вариант №6
1	$\int \left(4\cos x - \frac{5}{\sqrt{9 - 4x^2}}\right) dx$	1	$\int \frac{e^{arctg}}{1+x^2} dx$
2	$\int \frac{(3x+2) dx}{2x^2 - 6x + 13}$	2	$\int \frac{(3x-4)dx}{7+4x-x^2}$

3	$\int 2x arctgx dx$	3	$\int \ln 3x^2 dx$
4	$\int \frac{(9x-1) dx}{(1-2x)(x^2+x+1)}$	4	$\int \frac{(1-3x) dx}{(2x^2+x+1)(x+1)}$
5	$\int \frac{x dx}{\sqrt{x-1} + \sqrt[4]{x-1}}$	5	$\int \frac{dx}{\sqrt{2+e^x}}$
6	$\int \frac{dx}{3\cos x + 2}$	6	$\int \cos^4 3x dx$
7	$\int x^3 \sqrt{1 - x^2} dx$	7	$\int \frac{dx}{x^2 \sqrt{x^2 + 25}}$

	Вариант №7		Вариант №8
1	$\int \frac{\sin\frac{1}{x} - x}{x^2} dx$	1	$\int \sqrt{\cos^6 x \sin^3 x} dx$
2	$\int \frac{(x+4)dx}{6+4x-x^2}$	2	$\int \frac{(3x-5) dx}{\sqrt{4x^2+4x+5}}$
3	$\int x^6 \ln x dx$	3	$\int (x^2 + 3) \cos \frac{x}{2} dx$
4	$\int \frac{(7x+5) dx}{(2x-1)(x^2+4)}$	4	$\int \frac{(x^2 + 9x - 10) dx}{(x+5)(x^2 + 4x + 5)}$
5	$\int \frac{dx}{\sqrt[4]{x+1} + \sqrt{x+1}}$	5	$\int \frac{dx}{2\sqrt[3]{x} + \sqrt{x}}$
6	$\int \frac{dx}{\sin^3 x}$	6	$\int \frac{dx}{5 + 4\sin x}$
7	$\int \frac{\sqrt{4-x^2}}{x^4} dx$	7	$\int \frac{x^2 dx}{\sqrt{9 - x^2}}$

	Вариант №9		Вариант №10
1	$\int \frac{3 - \sqrt{5 + x^2}}{5 + x^2} dx$	1	$\int \left(\frac{x^2 + 2}{x^2 + 1} + 10^{-x} \right) dx$
2	$\int \frac{(3x+7)dx}{x^2-6x+13}$	2	$\int \frac{(4x-7)dx}{x^2-8x+12}$
3	$\int x^3(e^x+3^x)dx$	3	$\int x^2 \sin^2 6x dx$
4	$\int \frac{(10-11x) dx}{(2x-3)(x^2+1)}$	4	$\int \frac{(4-5x) dx}{(2x^2+1)(x+1)}$
5	$\int \frac{dx}{(3x+1)\sqrt{x+1}}$	5	$\int \frac{\sqrt{x} dx}{\sqrt[4]{x^5} + 1}$

Управление дистанционного обучения и повышения квалификации

Сборник контрольных работ по математике

6	$\int \frac{dx}{\cos x \sin^3 x}$	6	$\int ctg^3 (2x+1) dx$
7	$\int \frac{\sqrt{1+x^2}}{x^2} dx$	7	$\int x^2 \sqrt{4 - x^2} dx$

КОНТРОЛЬНАЯ РАБОТА № 6 Вариант №1

- 1. Вычислить площадь области, ограниченной осью ОХ и первой аркой циклоиды: $\begin{cases} x = 2(t - \sin(t)) \\ y = 2(1 - \cos(t)) \end{cases}$
 - 2. Вычислить длину дуги кривой:

$$y = 1 - \ln(x^2 - 1); 3 \le x \le 4$$

- 3. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями: $y = 2x - x^2$, y = 0.
 - 4. Вычислить несобственные интегралы:

a)
$$\int_0^\infty e^{-2x} dx$$

a)
$$\int_0^\infty e^{-2x} dx$$
 6) $\int_1^2 \frac{dx}{x\sqrt{\ln(x)}}$

Вариант №2

1. Вычислить площадь области, ограниченной астроидой:

$$\begin{cases} x = 3\cos^3 t \\ y = 3\sin^3 t \end{cases}$$

2. Вычислить длину дуги кривой:

$$y = 2 - e^x$$
; $\ln\sqrt{3} \le x \le \ln\sqrt{8}$

- 3. Вычислить объем тела, образованного вращением вокруг оси ОҮ фигуры, ограниченной линями: $y = x^3$; $y = \sqrt{x}$
 - 4. Вычислить несобственные интегралы:

a)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 4x + 5}$$
 6) $\int_{0}^{2} \frac{dx}{\sqrt[3]{(x-1)^2}}$

6)
$$\int_0^2 \frac{dx}{\sqrt[3]{(x-1)^2}}$$

Вариант №3

- 1. Вычислить площадь области, ограниченной линиями
- $a = \sin \varphi$, $b = 2\sin\varphi$
- 2. Вычислить длину дуги кривой:

$$y = \ln(\sin(x));$$
 $\frac{\pi}{3} \le x \le \frac{\pi}{2}$

3. Найти объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями:

$$y = -x^2 + 5x - 6$$
, $y = 0$

4. Вычислить несобственные интегралы:

a)
$$\int_0^\infty \frac{x^2 dx}{x^3 + 5}$$

a)
$$\int_0^\infty \frac{x^2 dx}{x^3 + 5}$$
 6) $\int_{-1}^1 \frac{dx}{x^2 + 2x - 3}$

Вариант №4

- 1. Вычислить площадь области, ограниченной линией
- $a = \cos \varphi + \sin \varphi$
- 2. Вычислить длину дуги кривой:

$$g = \frac{x^2}{4} - \frac{\ln x}{2}, \ 1 \le x \le 2$$

3. Найти объем тела, образованного вращением вокруг оси ОҮ фигуры, ограниченной линиями:

$$y = (x - 1)^2$$
; $x = 0$; $y = 0$.

- 4. Вычислить несобственные интегралы:
- a) $\int_{1}^{\infty} \frac{dx}{(x+3)^3}$ 6) $\int_{2}^{3} \frac{xdx}{\sqrt{x^2-4}}$

Вариант №5

- 1. Вычислить площадь области, ограниченной линией : $a = \frac{1}{2} + \cos\varphi$
- 2. Вычислить длину дуги кривой: $y = 2 + \ln(\cos(x)), 0 \le x \le$ $\frac{\pi}{6}$
- 3. Найти объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями: $y = x^2$, $y^2 - x = 0$
 - 4. Вычислить несобственные интегралы:

 - a) $\int_0^\infty x e^{-x} dx$ 6) $\int_0^{\sqrt{2}} \frac{x dx}{\sqrt[2]{2-v^2}}$

Вариант №6

- 1.Вычислить площадь области, ограниченной линиями $a = 4\cos\varphi$ $a = 2\cos\varphi$;
 - 2. Вычислить длину дуги линии

$$\begin{cases} x = 3(t - \sin(t)) \\ y = 3(1 - \cos(t)) \end{cases} t \in [\pi; 2\pi]$$

- 3. Найти объем тела, образованного вращением вокруг оси ОҮ фигуры, ограниченной линиями y = lnx, x = e, y = 0
 - 4. Вычислить несобственные интегралы

$$a) \int_0^\infty \frac{x dx}{\sqrt{1 + 2x^2}}$$

$$6) \int_0^1 \frac{x-2}{\sqrt{x}} dx$$

Вариант №7

- 1. Вычислить площадь области, ограниченной линией $a = \frac{1}{2} + \sin \varphi$
 - 2. Вычислить длину дуги астроиды

$$\begin{cases} x = 2\cos^3 t \\ y = 2\sin^3 t \end{cases} t \in \left[0, \frac{\pi}{2}\right]$$

3. Найти объем тела, образованного вращением вокруг оси ОҮ фигуры, ограниченной линиями

$$y = x^2 + 1$$
; $y = 2$; $x = 0$

4. Вычислить несобственные интегралы:

a)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 6x + 10}$$
; b) $\int_{1}^{2} \frac{x^2}{x^3 - 1} dx$;

Вариант №8

1.Вычислить площадь области, ограниченной линиями:

$$y = x^2 + 4x;$$
 $y = x + 4;$

2. Вычислить длину дуги линии:

$$\delta = 5(1 - \cos \varphi), \quad -\frac{\pi}{3} \le \varphi \le 0;$$

- 3. Найти объем тела, образованного вращением вокруг оси *ОХ* фигуры, ограниченной линиями:
- $y = e^{1-x}$; y = 0; x = 0; x = 1;
 - 4. Вычислить несобственные интегралы:

a)
$$\int_{3}^{\infty} \frac{x}{\sqrt[3]{4-x^2}} dx$$
; b) $\int_{2}^{3} \frac{dx}{(x-2)^2}$;

Вариант №9

І. Вычислить площадь области, ограниченной линиями:

$$xy = 6; x + y = 7;$$

2. Вычислить длину дуги линии:

$$\delta = 3(1 + \sin \varphi), \quad -\frac{\pi}{6} \le \varphi \le 0;$$

3. Найти объем тела, образованного вращением вокруг оси *ОУ* фигуры, ограниченной линиями:

$$y = x^2 - 2x + 1;$$
 $x = 2;$ $y = 0;$

4. Вычислить несобственные интегралы:

a)
$$\int_2^\infty \frac{dx}{x \ln^2 x}$$
; b) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \operatorname{tg} x \, dx$;

Вариант №10

1. Вычислить площадь области, ограниченной линиями:

$$y = 2 - x^2;$$
 $y = x;$ $y = -x;$

2. Вычислить длину дуги линии:

$$\delta = \cos \varphi + \sin \varphi$$
, $\varphi \in [0; \frac{\pi}{2}]$

3. Найти объем тела, образованного вращением вокруг оси OX фигуры, ограниченной линиями:

$$y = 3\sin x$$
; $y = \sin x$; $0 \le x \le \pi$;

4. Вычислить несобственные интегралы:

a)
$$\int_{5}^{\infty} \frac{dx}{x^2 - 2x - 2}$$
; b) $\int_{3}^{5} \frac{dx}{\sqrt{x^2 - 9}}$

КОНТРОЛЬНАЯ РАБОТА № 7 Вариант №1

- 1. Найти полный дифференциал функции двух переменных: $z = \cos(x + y^2)$
- 2. Используя дифференциал, вычислить приближённо: $(1.03)^{0.99}$
- 3. Найти производную скалярного поля u(x,y,z)в точке Mпо направлению вектора \overline{a} : $u=(x^2+y^2+z^2)^{\frac{3}{2}}$; $\overline{a}=\overline{i}-\overline{j}+\overline{k}$; M(1;1;1)
- 4. Найти угол между градиентами скалярных полей $u\left(x,y,z\right)$ и v(x,y,z)

В точке М: $v = \frac{x^3}{2} + 6y^3 + 3\sqrt{6}z^3; \quad u = \frac{yz^2}{x^2}; \quad M\left(\sqrt{2}; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}}\right)$

5. Исследовать на экстремум функцию: $z = x^3 + 3xy^2 - 15x - 12y$

Вариант №2

- 1. Найти полный дифференциал функции двух переменных: $z=2^{x^2+2y}$
- 2. Используя дифференциал, вычислить приближённо: $(\arcsin 0.49)^{0.01}$
- 3. Найти производную скалярного поля u(x,y,z) в точке M по направлению вектора \overline{a} : $u=x^2y-\sqrt{xy-z^2};$ $\overline{a}=2\overline{j}-\overline{2k};$ M(1;5;-2)
- 4. Найти угол между градиентами скалярных полей u(x,y,z) и v(x,y,z)

в точке М: $v = \frac{x^3}{2} + 6y^3 + 3\sqrt{6}z^3; \quad u = x^2yz^3; \quad M(1; 0; -1)$

5. Исследовать на экстремум функцию: $z = x^2 + xy + y^2 - 3x - 6y$

- 1. Найти полный дифференциал функции двух переменных: $z = \ln(x^2 + y^2)$
 - 2. Используя дифференциал, вычислить приближённо: $\frac{\arctan g \ 0.99}{\sqrt{3 \Omega g}}$
- 3. Найти производную скалярного поля u(x,y,z) в точке M по направлению вектора \overline{a} : $u=x(\ln y-\arctan x);$ $\overline{a}=8\overline{i}+4\overline{j}+8\overline{k};$ M(-2;1;-1);
- 4. Найти угол между градиентами скалярных полей u(x,y,z) и v(x,y,z)

M:

$$v = 9\sqrt{2}x^3 - \frac{y^3}{2\sqrt{2}} - \frac{4z^3}{\sqrt{3}}; \quad u = \frac{z^3}{xy^2}; \quad M\left(\frac{1}{3}; 2; \sqrt{\frac{3}{2}}\right)$$

5. Исследовать на экстремум функцию: $z = 2xy - 3x^2 - 2xy - 3x^2 - 3x^2 - 2xy - 3x^2 - 3x^$ $2v^2 + 10$

Вариант №4

- 1. Найти полный дифференциал функции двух переменных: $z=x^{1-y}$
- 2. Используя дифференциал, вычислить приближённо: $(0.99)^2 + \sqrt{3.98}$
- 3. Найти производную скалярного поля u(x,y,z) в точке Mпо направлению вектора \overline{a} : $u = \sin(x + 2y) + \sqrt{xyz}$; $M\left(\frac{\pi}{2};\frac{3}{2}\pi;3\right)$
- 4. Найти угол между градиентами скалярных полей u(x,y,z)И v(x,y,z)

в точке M:
$$v=6\sqrt{6}x^3-6\sqrt{6}y^3+2x^3; \quad u=x\frac{z^2}{y}; \qquad M\left(\frac{1}{\sqrt{6}};\frac{1}{\sqrt{6}};1\right)$$

5. Исследовать на экстремум функцию: $z = 2x^3 + xv^2 +$ $5x^2 + v^2$

Вариант №5

- 1. Найти полный дифференциал функции двух переменных: $z = e^{x+y^2}$
- 2. Используя дифференциал, вычислить приближённо: $\sqrt{0.99 + 2.98}$
- 3. Найти производную скалярного поля u(x,y,z) в точке Mпо направлению вектора \overline{a} : $u = \ln(3 - x^2) + xy^2z$; $\overline{a} = -\overline{i} + xy^2z$ $2\overline{j} - 2\overline{k}; M\left(1; 2; \frac{1}{\sqrt{c}}\right)$
- 4. Найти угол между градиентами скалярных полей u(x,y,z)и v(x, y, z)

в точке М:
$$v = \frac{3}{x} + \frac{4}{y} - \frac{1}{\sqrt{6}z};$$
 $u = \frac{x^3y^2}{z};$ $M\left(1; 2; \frac{1}{\sqrt{6}}\right)$

5. Исследовать на экстремум функцию: $z = 3x^2 - x^3 + 3v^2 +$ 4*y*

- 1. Найти полный дифференциал функции двух переменных: $z = \sqrt{x^2 + y^2}$
- 2. Используя дифференциал, вычислить приближённо: $(1.04)^{2.02}$
 - 3. Найти производную скалярного поля u(x,y,z) в точке M

по направлению вектора
$$\overline{a}$$
: $u=\frac{\sqrt{x}}{y}-\frac{yz}{x+\sqrt{y}};$ $\overline{a}=2\overline{i}+\overline{k};$ $M(4;1;-2)$

4. Найти угол между градиентами скалярных полей u(x,y,z) и v(x,y,z)

в точке М:
$$v = \frac{3}{2}x^2 + 3y^2 - 2z^2$$
; $u = x^2yz^3$; $M\left(2; \frac{1}{3}; \sqrt{\frac{3}{2}}\right)$

5. Исследовать на экстремум функцию: $z = x^2 + y^2 - 2 \ln x - 18 \ln y$

Вариант №7

- 1. Найти полный дифференциал функции двух переменных: $z=x^2+y\ln x$
- 2. Используя дифференциал, вычислить приближённо: $\frac{\arccos 0.52}{\arctan 0.01}$
- 3. Найти производную скалярного поля u(x,y,z) в точке M по направлению вектора \overline{a} : $u=\sqrt{xy}+\sqrt{9-z^2}$; $\overline{a}=-\overline{2i}+2\overline{j}-\overline{k}$; M(1;1;0)
- 4. Найти угол между градиентами скалярных полей u(x,y,z) и v(x,y,z)

в точке М:
$$v = x^2 + 9y^2 + 6z^2$$
; $u = xyz$; $M\left(1; \frac{1}{3}; \frac{1}{\sqrt{6}}\right)$

5. Исследовать на экстремум функцию: z = xy(4 - x - y)

Вариант №8

- 1. Найти полный дифференциал функции двух переменных: $z = \arcsin xy$
- 2. Используя дифференциал, вычислить приближённо: $(0.99)^{\sin 0.01}$
- 3. Найти производную скалярного поля u(x,y,z) в точке \underline{M} по направлению вектора \overline{a} : $u=xy-\frac{x}{z}$; $\overline{a}=5\overline{i}+\overline{j-k}$; M(-4;3;-2)
- 4. Найти угол между градиентами скалярных полей u(x,y,z) и v(x,y,z)

в точке М:
$$v = \frac{3}{2}x^2 + 3y^2 - 2z^2$$
; $u = x^2yz^3$; $M\left(2; \frac{1}{3}; \sqrt{\frac{3}{2}}\right)$

5. Исследовать на экстремум функцию: $z = xy + \frac{50}{x} + \frac{20}{y}$; (x, y > 0)

Вариант №9

1. Найти полный дифференциал функции двух переменных:

$$z = \ln(x + e^{-y})$$

2. Используя дифференциал, вычислить приближённо: $e^{0.01}$

$$\sqrt{0.99 + 2.99}$$

- 3. Найти производную скалярного поля u(x,y,z) в точке M по направлению вектора \overline{a} : $u=2^2+\arctan(x-y)$; $\overline{a}=\overline{i}+2\overline{j}-2\overline{k}$; M(1;2;-1)
- 4. Найти угол между градиентами скалярных полей u(x,y,z) и v(x,y,z)

в точке М:
$$v = x^2 + 9y^2 + 6z^2$$
; $u = \frac{1}{xyz}$; $M\left(1; \frac{1}{3}; \frac{1}{\sqrt{6}}\right)$

5. Исследовать на экстремум функцию: $z = 2 - \sqrt[3]{x^2 + y^2}$

Вариант №10

- 1. Найти полный дифференциал функции двух переменных: $z = \sin x \cos x$
- 2. Используя дифференциал, вычислить приближённо: $\sqrt{5.01+3.99}$
- 3. Найти производную скалярного поля u(x,y,z) в точке M по направлению вектора \overline{a} : $u=\ln(x+\sqrt{y^2+z^2})$; $\overline{a}=-2\overline{i}-\overline{j}+\overline{k}$; M(1;-3;4)
- 4. Найти угол между градиентами скалярных полей u(x,y,z) и v(x,y,z)

в точке М:
$$v = x^2 - y^2 - 3z^2$$
; $u = \frac{x}{yz^2}$; $M\left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}}; \frac{1}{\sqrt{3}}\right)$

5.Исследовать на экстремум функцию: $z = xy^2(1 - x - y)$

КОНТРОЛЬНАЯ РАБОТА № 8 (А)

	Вариант №1		Вариант №2
1	$y'x^3 = 2y$	1	xy'-y=0
2	$x^2 + y^2 - 2xyy' = 0;$	2	$y + \sqrt{x^2 + y^2} - xy' =$
			0; y(1) = 0
3	$x^2y' = 2xy - 3; y(-1) = 1;$	3	y'-ytgx=ctgx
4	$(x\cos 2y + 1)dx$	4	$\left(4 - \frac{y^{22}}{x}\right)dx + \frac{2y}{x}dy = 0;$
	$-x^2\sin 2ydy=0;$		$\left(4 - \frac{1}{x}\right)ax + \frac{1}{x}ay = 0;$
5	$2yy''=1+(y')^2$	5	$2yy''=(y')^2$
6	$y'' + y = x^2 + 1$	6	y"+3y'=9x

	Вариант №3		Вариант №4
1	xy'+y=0	1	yy'+x=0
2	$xy'-y=xtg\frac{y}{x}$	2	$xy'=y-xe^{\frac{y}{x}}$
3	y'+ycosx=sin2x	3	(2x+1)y'+y=x;
4	$3x^2e^y dx +$	4	$e^{-y} dx + (1 - xe^{-y}) dy = 0;$
	$(x^3e^y - 1) dy = 0$		
5	$y''y^3 = 1$	5	$y''+2x(y')^2=0$
6	y"-3y'+2=sin3x	6	$y''+3y'+2y=2\cos 2x$

	Вариант №5		Вариант №6
1	y'-y=0	1	$y'(x^2+4) = 3xy$
2	$xy+y^2=(2x^2+xy)y'$	2	$y + \sqrt{x^2 + y^2} =$
			$2xy'; y \mid \frac{=0}{x=1}$
3	$(1+x^2)y'+xy=1$	3	$y' = 3\frac{y}{x} - \frac{2}{x}$
4	$2x\cos^2 y dx +$	4	$(\sin x + y^3) dx + (3xy^2)$
	$(2y - x^2 \sin 2y) dy = 0$		+2) dy = 0
5	$y''tgy=2(y')^2$	5	$y'' \ln x = \frac{2y'}{x}$
6	$y''+y=2e^x$	6	$y''+2y'+1=3e^x$

	Вариант №7		Вариант №8
1	$x^2y' + y = 0$	1	$2y'\sqrt{x} = y; y \mid \frac{=1}{x=4}$
2	$xy' + 2\sqrt{xy} = y$	2	$y' = \frac{y^2}{x^2} - \frac{y}{x}$
3	$xy'+y=\ln x+1$	3	y'cosx-ysinx=sin2x

4	$(3x^2 + 2y) dx + (2x - 3) dy = 0$	4	$(3x^2y - 2) dx + \left(x^3 + \frac{1}{y}\right) dy$ $= 0$
5	$yy''+(y')^2=0$	5	$y''x\ln x = y'$
6	$y''-2y'+y=e^{2x}$	6	$y''-4y=8x^2$

	Вариант №9		Вариант №10
1	$x^2y' + y^2 = 0$	1	$\mathbf{y'}(x^2 - 4) = 2xy; y \mid$
			$\frac{=1}{x=0}$
2	$xy'=y\left(1+\ln\frac{y}{x}\right)$	2	$x^2y' = y^2 + xy$
3	$y' + \frac{2y}{x} = \frac{e^{-x^2}}{x}$	3	$y' - \frac{3y}{x} = x$
4	$(2\cos x + y^3) dx + (3xy^2$	4	$(2xy^2+5)dx+\left(\frac{2}{y}\right)$
	-3) dy = 0;		7
			$+2x^2y$) dy
			= 0
5	$y'' + 2y(y')^3 = 0$	5	$y'' = \frac{1}{1+x^2}$
6	$y''-y'=3e^{2x}$	6	-y y" =2cosx

КОНТРОЛЬНАЯ РАБОТА № 8 (Б)

	Вариант №1		Вариант №2
1	$2x+2xy^{2} +$	1	$2xdx-ydy=x^2ydy-$
	$\sqrt{2-x^2}y'=0$		xy^2dx
2	$xy'=4\sqrt{2x^2+y^2}+y$	2	$y' = \frac{x^2 + 2xy - 5y^2}{2x^2 - 6xy}$
3	$y' + xy = (1 + x)e^{-x}y^2$	3	$xy'+y=2y^2 \ln x$
4	$tgxy''-y'+\frac{1}{sinx}=0$	4	$x^2y^{\prime\prime} + xy^{\prime} = 1$
5	$y''+y'-6y=e^{2x}(20x +$	5	$y''-4y'+4y=e^{2x}sin6x$
	14)		
6	$y''+2y'=4e^x(sinx +$	6	$y''+4y'+3y=4e^{-x}(1-$
	cosx)		<i>x</i>)

	Вариант №3		Вариант №4
1	$3(x^2y+y)dy+$	1	$(1 + e^x)yy' = e^x$
	$\sqrt{2+y^2}dx=0$		
2	$xy' = \frac{3y^3 + 2x^2y}{2y^2 + x^2}$	2	$y' = \frac{x + 2y}{2x - y}$
3	$y' + 4x^3y =$	3	$2y'+y\cos x = \frac{\cos x(1+\sin x)}{y}$
	$4(x^3+1)e^{-4x}y^2$		y
4	$(1+x^2)y'' + 2xy' = x^3$	4	$x^4y^{\prime\prime} + x^3y^{\prime} = 1$
5	$y''+6y'+9y=e^{x}(24 +$	5	$y''+2y'-3y=e^{x}(8x+6)$
	16 <i>x</i>)		
6	y"+2y'+5y=-sin2x	6	$y''+y=2\cos7x-3\sin7x$

	Вариант №5		Вариант №6
1	$\sqrt{3+y^2}$ +	1	$y(1 + \ln y) + xy' = 0$
	$\sqrt{1-x^2}$ yy'=0		
2	$y' = \frac{y^2}{x^2} + 4\frac{y}{x} + 2$	2	$y' = \frac{x^2 + xy - y^2}{x^2 - 2xy}$; $-2x^2$
3	$y'+2xy=\frac{2x^3y^3}{3}$	3	$3y' + 2xy = \frac{2xe}{y^2}$
4	$y'' + \frac{2x}{x^2 + 1}y' = 2x$	4	y"=y'-x ²
5	$y''-2y'-3y=e^{-x}(8x -$	5	$y''-2y'+y=e^{2x}(2x+5)$
	14)		
6	$y''-6y'+13y=e^{-3x}cos8x$	6	y"+2y'+5y=-cosx

	Вариант №7		Вариант № 8
1	$(e^x + 8) dy - ye^x dx = 0$	1	$\sqrt{4 - x^2}y' + xy^2 + x = 0$

2	$xy' = \sqrt{x^2 + y^2} + y$	2	$xy'-y=xtg\frac{y}{x}$
3	2(y'+xy)=	3	$xy'+y=xy^2$
	$(x-1)e^xy^2$		
4	$y''-\frac{y'}{x}=x^2$	4	y"-y'ctgx=2xsinx
5	$y''-3y'+4y=e^{x}(18x -$	5	$y''-4y'+4y=e^{x}(x-1)$
	21)		
6	$y''+2y'=6e^x(sinx +$	6	$y''-9y=e^{3x}cosx$
	cosx)		

	Вариант №9		Вариант №10
1	$y \ln x + x y' = 0$	1	$6xdx-ydy=x^2ydy-$
			$3xy^2dx$
2	$xy'=y-xe^{\frac{y}{x}}$	2	$2x^3y' = y(2x^2 - y^2)$
3	$y'-ytgx = -\frac{2}{3}y^4 sinx$	3	$xy'-4y=2x^2\sqrt{y}$
4	$y'' - \frac{y'}{x} = -2 \frac{\ln x}{x}$	4	$y'' + \frac{y'}{2x} = x^2$
5	$y''-3y'-2y=-4xe^x$	5	$y''-3y'+2y=e^{2x}(4x+9)$
6	y"-5y'=sin5x	6	$y''-2y'+y=e^x\sin 2x$

КОНТРОЛЬНАЯ РАБОТА № 9 Вариант №1

1. Изменить порядок интегрирования в интеграле $\int_1^3 dx \int_x^{3x-1} f(x,y) dy$

область интегрирования изобразить на чертеже.

2. Вычислить площадь области, ограниченной линиями:

 $y^2 = 8x + 16;$ $y^2 = -4x + 4;$

3. Найти объем тела, ограниченного поверхностями:

 $x^2 + y^2 = z;$ $x^2 + y^2 = 4;$ z = 0;

4. Вычислить криволинейный интеграл, где Iдуга кривой I0, от точки I0 до I4:

$$\int_{I} y \, dx - (y - x^{2}) \, dy; \quad y = 2x - x^{2}; \quad O(0; 0); \quad A(2; 0);$$

5. Вычислить криволинейный интеграл:

$$\int_{l} \frac{dl}{x^2+y^2+z^2}; \quad \text{где } l-\text{дуга линии} \begin{cases} x \stackrel{.}{=} a \cos t \\ y = a \sin t \; ; \quad t \in [0;a]; \\ z = bt \end{cases}$$

Вариант №2

1. Изменить порядок интегрирования в интеграле $\int_2^3 dy \int_{v-1}^4 f(x,y) dy$

область интегрирования изобразить на чертеже.

2. Вычислить площадь области, ограниченной линиями:

$$y = \frac{2}{1+x^2}; \qquad y = x^2;$$

3. Найти объем тела, ограниченного поверхностями:

 $x^2 + y^2 = 4;$ z = 2 + x; z = -2 - x;

4. Вычислить криволинейный интеграл, где *І*-дуга окружности:

$$\int_{l} \frac{dy}{x} - \frac{dx}{y}; \qquad \text{где } l - \text{дуга окружности } \begin{cases} x = \cos t \\ y = 2\sin t \end{cases}, \ t \in \left[\frac{\pi}{6}; \frac{\pi}{3}\right];$$

5. Вычислить криволинейный интеграл $\int_{AB}(x-y)dl$ вдоль отрезка прямой AB: A(0;0), B(4;3).

Вариант №3

1. Изменить порядок интегрирования в интеграле $\int_0^4 dy \int_{-v}^y f(x,y) dx$

область интегрирования изобразить на чертеже.

2. Вычислить площадь области, ограниченной линиями:

 $\delta = 2(1 - \cos \varphi);$ $\delta = 2\cos \varphi;$

3. Найти объем тела, ограниченного поверхностями:

$$x=\sqrt{4-y^2}; \qquad z=x; \qquad z=0;$$

4. Вычислить криволинейный интеграл $\int_{(OAB)} (x-y)^2 dx + (x-y)^2 dy;$

где (OAB)-ломаная линия O(0;0), A(2;0), B(4;2).

5. Вычислить криволинейный интеграл $\int_l xy\ dl$,

где \digamma четверть эллипса $\begin{cases} x = 3\cos t \\ y = 3\sin t \end{cases}$ лежащая в1 квадранте.

Вариант №4

1. Изменить порядок интегрирования в интеграле $\int_0^2 dx \int_{x^2}^{x^3+1} f(x,y) dy$

область интегрирования изобразить на чертеже.

2. Вычислить площадь области, ограниченной линиями:

$$y = x^2;$$
 $x + 2y - 3;$ $y = 0$

3. Найти объем тела, ограниченного поверхностями:

$$z = 4 - x - 2y$$
; $z = 0$; $x^2 + y^2 = 4$;

- 4. Вычислить криволинейный интеграл $\int_{l}^{}\frac{y}{x}dx+y\,dy$ вдоль дуги / кривой $y=\ln x$ от точкиA(1;0) до B(l,1).
- 5. Вычислить криволинейный интеграл $\int_{l}^{\infty} x \ dl$,

где
$$\digamma$$
дуга линии $\begin{cases} x=t \\ y=rac{t^2}{2}, \ t \in [0;1] \end{cases}$

Вариант №5

1. Изменить порядок интегрирования в интеграле $\int_0^2 dy \int_y^{4-y} f(x,y) dx$

область интегрирования изобразить на чертеже.

2. Вычислить площадь области, ограниченной линиями:

$$y = \frac{3}{x};$$
 $y = x + 2;$ $y = 4;$

3. Найти объем тела, ограниченного поверхностями:

$$z = \sqrt{y}$$
; $z = 2\sqrt{y}$; $x + y = 2$; $x = 0$;

- 4. Вычислить криволинейный интеграл $\int_{l} 2x\ dy 3y\ dx$, где \vdash ломанная *ABC:* A(1;2), B(3;1), C(2;5).
- 5. Вычислить криволинейный интеграл $\int_{l} \frac{y}{x} \, dl$, где \digamma дуга параболы $y = \frac{x^2}{2}$ от точки $A\left(1; \frac{1}{2}\right)$ до B(2; 2).

Вариант №6

1. Изменить порядок интегрирования в интеграле $\int_1^3 dx \int_{2-x}^x f(x,y) dy$

область интегрирования изобразить на чертеже.

2. Вычислить площадь области, ограниченной линиями:

$$y = \sin 2x$$
; $y = \cos 2x$; $x = 0$; $x = \frac{\pi}{8}$;

3. Найти объем тела, ограниченного поверхностями:

$$z = x^2$$
; $z = 0$; $y = 2x$; $x = 4$; $y = 0$;

- 4. Вычислить криволинейный интеграл $\int_{0}^{\infty} y \ dx + \frac{x}{x} \ dy$; вдоль дуги / кривой $y = e^x$ от точкиA(0;1) до B(-1,l).
- 5. Вычислить криволинейный интеграл $\int_{l} \sqrt{1+2x} \ dl$,

где
$$\digamma$$
дуга линии $\begin{cases} x = rac{t^2}{2} \\ y = rac{t^3}{3}, & t \in [0;1] \end{cases}$

Вариант №7

Изменить порядок интегрирования в интеграле $\int_0^4 dx \int_0^{\sqrt{25-x^2}} f(x,y) dy$

область интегрирования изобразить на чертеже.

2. Вычислить площадь области, ограниченной линиями:

$$y = \sqrt{x}; y = \frac{1}{x}; x = 4;$$

3. Найти объем тела, ограниченного поверхностями: $z=x^2+y^2; \quad y=x^2; \quad y=1; \qquad z=0;$

$$z = x^2 + y^2$$
; $y = x^2$; $y = 1$; $z = 0$;

4. Вычислить криволинейный интеграл $\int_{0}^{1} xy \, dx + yz \, dy +$ xz dz.

где /- дуга окружности
$$\begin{cases} x = \cos t \\ y = \sin t, t \in [0; \frac{\pi}{2}] \\ z = 1 \end{cases}$$

5. Вычислить криволинейный интеграл $\int_{l} y \ dl$, где Fдуга параболы $y^2 = 2x$ от точкиO(0;0)до $A(4;\sqrt{8})$.

Вариант №8

1. Изменить порядок интегрирования в интеграле $\int_0^3 dy \int_0^{\sqrt{4-y}} f(x,y) dy$

область интегрирования изобразить на чертеже.

- 2. Вычислить площадь области, ограниченной линиями: $y = 9 - y^2$; x = -2v:
 - 3. Найти объем тела, ограниченного поверхностями:

$$z = 4\sqrt{y}; \quad x + y = 4; \quad x = 0;$$

4. Вычислить криволинейный интеграл $\int_{(AB)} x^2 + y^2 dx +$ xy dy,

где (AB) – отрезок прямой от точки A(1;1) до B(3,4).

5. Вычислить криволинейный интеграл $\int_l y \ dl$, где \digamma дуга линии $y=\sin x$, $x\in[0;\frac{\pi}{2}]$

Вариант №9

1. Изменить порядок интегрирования в интеграле $\int_0^1 dx \int_{-x^2}^{x^2} f(x,y) dy$

область интегрирования изобразить на чертеже.

2. Вычислить площадь области, ограниченной линиями:

$$y = \frac{4}{x}; y = x; y = 4;$$

3. Найти объем тела, ограниченного поверхностями:

$$z = y^2$$
; $z = 0$; $x^2 + y^2 = 9$;

- 4. Вычислить криволинейный интеграл $\int_l (xy-1)dx + x^2ydy$ от точки A(1;0) до точки B(0;2) по дуге эллипса $x=\cos(t);$ $y=2\sin(t)$
- 5. Вычислить криволинейный интеграл $\int_l \frac{ydl}{\sqrt{x}}$, где I дуга линии $y^2 = \frac{4}{9}x^3$ от точки A(3;2 $\sqrt{3}$) до B(8; $\frac{32\sqrt{2}}{8}$).

Вариант №10

1.Изменить порядок интегрирования в интеграле $\int_1^2 dy \int_{-\sqrt{2-y}}^{\sqrt{2-y}} f(x,y) dx.$

Область интегрирования изобразить на чертеже.

2.Вычислить площадь области, ограниченной линиями:

$$y = 3\sqrt{x}, xy = 3, x = y.$$

3. Найти объем тела, ограниченного поверхностями:

$$y = \sqrt{x}$$
, $y = 2\sqrt{x}$, $z = 0$, $x + z = 6$.

- 4.Вычислить криволинейный интеграл $\int_l x^2 y dx + x^3 dy$ где l дуга параболы $y=x^2$ от точки A(-1;1) до B(1;1)
- 5.Вычислить криволинейный интеграл $\int_{I} (x^2 + y^2 + z^2) dl$

где I — дуга кривой
$$\begin{cases} x=2\cos(t) \\ y=2\sin(t), t\in[0;\pi] \\ z=5t \end{cases}$$

КОНТРОЛЬНАЯ РАБОТА №10 (А) Вариант №1

- 1.Найти формулы n-го члена ряда $\frac{2}{5} + \frac{4}{8} + \frac{6}{11} + \frac{8}{14} + \cdots$;
- 2.Написать 5 членов ряда по общему члену $a_n = \frac{3n-2}{n^2+1}$;
- 3. Исследовать на сходимость ряды:

$$a)\sum_{n=1}^{\infty}\frac{1}{n(n+1)};$$

6)
$$\sum_{n=1}^{\infty} \frac{n+1}{2n+1}$$
;

$$\mathrm{B})\sum^{\infty}\frac{(-1)n^2}{2^n};$$

$$\Gamma$$
) $\sum_{n=1}^{\infty} \frac{1}{(n+1)!}$;

4.Найти интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{(x-3)^n}{(n+1)^2}$

Вариант №2

- 1.Найти формулу n-го члена ряда $\frac{3}{4} + \frac{4}{5} + \frac{5}{16} + \frac{6}{25} + \cdots$;
- 2.Написать 5 членов ряда по общему члену $a_n = \frac{(-1)^n n}{2^n}$;
- 3. Исследовать на сходимость ряды:

a)
$$\sum_{n=1}^{\infty} \frac{2n}{(n+1)(n+3)};$$
 6) $\sum_{n=1}^{\infty} \frac{(-1)^n 3n}{5n+2};$
B) $\sum_{n=1}^{\infty} \frac{2^n}{(3n+1)^2};$ 7) $\sum_{n=1}^{\infty} \frac{n}{(2n+1)!};$

6)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3n}{5n+2}$$
;

B)
$$\sum_{n=1}^{\infty} \frac{2^n}{(3n+1)^2}$$
;

$$\Gamma \sum_{n=1}^{\infty} \frac{n}{(2n+1)!};$$

4.Найти интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{(x+2)^n}{n \cdot 3^n}$

Вариант №3

- 1.Найти формулу n-го члена ряда $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$;
- 2.Написать 5 членов ряда по общему члену $a_n = \frac{2+(-1)^n}{n^2}$
- 3. Исследовать на сходимость ряды:

a)
$$\sum_{n=1}^{\infty} \frac{n}{(2n+1)^2}$$
; 6) $\sum_{n=1}^{\infty} \frac{n}{1000n+1}$;
B) $\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)^2}{3^n}$; $\sum_{n=1}^{\infty} \frac{1}{(2n+2)!}$;

$$6) \sum_{n=1}^{\infty} \frac{n}{1000n+1}$$

B)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)^2}{3^n}$$

$$\Gamma$$
) $\sum_{n=1}^{\infty} \frac{1}{(2n+2)!}$

4.Найти интервал сходимости ряда $\sum_{n=1}^{\infty} rac{(x+1)^{n} \cdot 4^{n}}{n}$

Вариант №4

1.Найти формулу n-го члена ряда $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$;а

- 2.Написать 5 членов ряда по общему члену $a_n = \frac{n+1}{2^{n+1}}$
- 3.Исследовать на сходимость ряды:

a)
$$\sum_{n=1}^{\infty} \frac{n+1}{(n+2)(n+3)};$$
 6) $\sum_{n=1}^{\infty} \frac{(-1)^n 2n^2}{(n+1)!};$

$$6) \sum_{n=1}^{\infty} \frac{(-1)^n 2n^2}{(n+1)^2};$$

$$\mathrm{B})\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n};$$

$$\Gamma \sum_{n=1}^{\infty} \frac{(n+1)!}{n^2+1;}$$

4.Найти интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{(x-4)^n}{2n+1}$

Вариант №5

- 1.Найти формулу n-го члена ряда $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$;
- 2.Написать 5 членов ряда по общему члену $a_n = \frac{1}{n!}$
- 3. Исследовать на сходимость ряды:

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+3)^2}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{0.5n^2}{n^2 + 0.5}$$
;

B)
$$\sum_{n=1}^{\infty} \frac{5^n}{(n+1)^5}$$
; $\qquad \qquad \Gamma$) $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$;

$$\Gamma \sum_{n=1}^{\infty} \frac{n}{(n+1)!};$$

4.Найти интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^2+1}$

Вариант №6

- 1.Найти формулу n-го члена ряда $1-1+1-1+1-1+\cdots$;
- 2.Написать 5 членов ряда по общему члену $a_n = \frac{1}{(n+1)^2-1}$
- 3. Исследовать на сходимость ряды:

a)
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)^3}$$
;
B) $\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{3^n}$;

$$6) \sum_{n=1}^{\infty} \frac{3n}{2n+3};$$

B)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{3^n}$$

$$\Gamma$$
) $\sum_{n=1}^{n=1} \frac{1}{(2n+3)!}$;

4.Найти интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{(x-5)^n}{(n+1)n}$

- 1.Найти формулу n-го члена ряда $\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \cdots$;
- 2.Написать 5 членов ряда по общему члену $a_n = \frac{n!}{2^n}$
- 3. Исследовать на сходимость ряды:

a)
$$\sum_{n=1}^{\infty} \frac{n}{(2n+1)(2n+2)};$$
 6) $\sum_{n=1}^{\infty} \frac{(-1)^n 2n}{3n+2};$
B) $\sum_{n=1}^{\infty} \frac{3^n}{(3n+2)^2};$ Γ) $\sum_{n=1}^{\infty} \frac{n+1}{(5n)!};$

4.Найти интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{(x+3)^n n}{2^n}$

Вариант №8

- 1.Найти формулу n-го члена ряда $1 + \frac{2}{2} + \frac{3}{4} + \frac{4}{8} + \cdots$;
- 2.Написать 5 членов ряда по общему члену $a_n = (\frac{2n+1}{3n+1})^n$
- 3. Исследовать на сходимость ряды:

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (2n+1)}{n^2}$$
; 6) $\sum_{n=1}^{\infty} \frac{n}{50n+5}$;
B) $\sum_{n=1}^{\infty} \frac{n^2}{3^{n+1}}$; Γ) $\sum_{n=1}^{\infty} \frac{1}{(2n)!}$;

4.Найти интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{(x+5)^n n}{n^5}$

Вариант №9

- 1.Найти формулу n-го члена ряда $\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \cdots$
- 2.Написать 5 членов ряда по общему члену $a_n = \frac{3^{n-1}}{n!}$
- 3. Исследовать на сходимость ряды:

a)
$$\sum_{n=1}^{\infty} \frac{(n+1)}{n^2(n+2)};$$
 6) $\sum_{n=1}^{\infty} \frac{(-1)^n 3n^3}{(n+3)^3};$
B) $\sum_{n=1}^{\infty} \frac{1}{(n+1)^3};$ 7) $\sum_{n=1}^{\infty} \frac{n!}{5n^2};$

4.Найти интервал сходимости ряда $\sum_{n=1}^{\infty} rac{(x-1)^n}{3^{n+1}}$

- 1.Найти формулу n-го члена ряда $\frac{1}{2} + \frac{1 \cdot 3}{4} + \frac{1 \cdot 3 \cdot 5}{8} + \frac{1 \cdot 3 \cdot 5 \cdot 7}{16} + \cdots$;
- 2. Написать 5 членов ряда по общему члену $a_n = \frac{1}{\sqrt{2n+1}}$
- 3. Исследовать на сходимость ряды:

a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{5}\right)^n$$
; 6) $\sum_{n=1}^{\infty} \frac{3n^2}{3+n^2}$;

B)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 2^{n+1}}{(n+1)^2}$$
; $\qquad \qquad \Gamma$) $\sum_{n=1}^{\infty} \frac{n+3}{n!}$;

4.Найти интервал сходимости ряда
$$\sum_{n=1}^{\infty} \frac{(x+4)^n 2^n}{n+1}$$

КОНТРОЛЬНАЯ РАБОТА №10 (Б)

Вариант №1

1.Исследовать

сходимость

ряды:

a)
$$\sum_{n=1}^{\infty} \frac{3-n}{(n+3)(n+1)n};$$
 b) $\sum_{n=1}^{\infty} \frac{2n!}{(3n+5)3^n};$ c) $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{(n+1)!};$

6)
$$\sum_{n=1}^{\infty}$$

B)
$$\sum_{n=1}^{\infty} \frac{2n!}{(3n+5)3^n}$$
;

$$\Gamma$$
) $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{(n+1)!}$

2.Найти интервал сходимости ряда: $\sum_{n=1}^{\infty} \frac{n^2(x-3)^n}{(n^4+1)^2}$

3. Разложить в ряд Маклорена функцию $y = x\cos(\sqrt{x})$

Вариант №2

сходимость

ряды:

$$a)\sum_{n=3}^{\infty} rac{4}{n(n-1)(n-2)};$$
 $b)\sum_{n=1}^{\infty} 2^n e^{-t}$ $c)\sum_{n=1}^{\infty} 2^n e^{-t}$ $c)\sum_{n=1}^{\infty} (-1)^n rac{n+5}{n!};$ $c)\sum_{n=1}^{\infty} (-1)^n \frac{n+5}{n!};$ $c)\sum_{n=1}^{\infty} (-1)^n \frac{n+5}{n!};$

6)
$$\sum_{n=1}^{\infty} 2^n e^{-n}$$
;

$$B) \sum_{n=2}^{\infty} \frac{3}{n \ln^2 n};$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n!}$$

2.Найти интервал сходимости

ряда: $\sum_{n=1}^{\infty} \frac{(x+2)^n}{(2n+1)^{2n}}$;

3. Разложить в ряд Маклорена функцию $y = \sin(x^2)$

Вариант №3

ряды:

6)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1) \ln(n-1)}$$

$$\mathrm{B})\sum_{n=1}^{\infty}\frac{3}{(2n+1)^n};$$

$$\Gamma) \sum_{n=1}^{\infty} \frac{\sin(3^n)}{3^n};$$

2.Найти интервал сходимости ряда: $\sum_{n=1}^{\infty} \frac{n!(x-4)^{2n}}{n^3}$; 3.Разложить в ряд Маклорена функцию $y=\mathrm{e}^{-\mathrm{x}^4}$

Вариант №4

сходимость

ряды:

a)
$$\sum_{n=2}^{\infty} \frac{n+1}{n(n^3-1)}$$
;

б)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln^3 n}$$

$$B) \sum_{n=1}^{\infty} \frac{n!}{3^n n!};$$

$$\begin{array}{ccc} 1. \text{Исследовать} & \text{на} \\ a) \sum_{n=2}^{\infty} \frac{n+1}{n(n^3-1)}; & \text{б}) \sum_{n=2}^{\infty} \frac{1}{n \ln^3 n}; \\ \text{в}) \sum_{n=1}^{\infty} \frac{n^n}{3^n n!}; & \text{г}) \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + \sin^2(n)}; \end{array}$$

2.Найти интервал сходимости

ряда: $\sum_{n=1}^{\infty} \frac{4^n (x+1)^{2n}}{x}$;

3. Разложить в ряд Маклорена функцию $y = \sqrt[4]{1+x}$

Вариант №5

ряды:

$$\begin{array}{lll} & \text{1.Исследовать} & \text{ на } & \text{сходимость} \\ a) \sum_{n=1}^{\infty} \frac{2-n}{n(n+1)(n+2)}; & \text{ б}) \sum_{n=1}^{\infty} \frac{1}{(n+2)\sqrt{\ln(n+2)}}; \\ \text{ в}) \sum_{n=1}^{\infty} \frac{n!}{(2n)!5^n}; & \text{ г}) \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)2^n}; \end{array}$$

6)
$$\sum_{n=1}^{\infty} \frac{1}{(n+2)\sqrt{\ln(n+2)}}$$

$$\mathrm{B})\sum_{n=1}^{\infty}\frac{n!}{(2n)!5^n};$$

$$\Gamma$$
) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)2^n}$

2.Найти интервал сходимости ряда: $\sum_{n=1}^{\infty} \frac{(x-4)^{n^2}}{n^{n+1}}$; 3. Разложить в ряд Маклорена функцию $y = \cos \frac{2x^3}{3}$

Вариант №6

 $\begin{array}{lll} & \text{1.Исследовать} & \text{ на } & \text{сходимость} \\ a) \sum_{n=1}^{\infty} \frac{2}{(n+2)(n+1)n}; & \text{ б}) \sum_{n=4}^{\infty} \frac{1}{(n-2)\ln^2(n-2)}; \\ \text{ в}) \sum_{n=2}^{\infty} \frac{6^n(n^2-1)}{n!}; & \text{ г}) \sum_{n=1}^{\infty} (-1)^n \frac{n+1}{\sqrt{n^3}}; \end{array}$

2.Найти интервал сходимости ряда: $\sum_{n=1}^{\infty} \frac{(x-5)^n}{(n+4)\ln(n+4)}$;

3. Разложить в ряд Маклорена функцию $y = \frac{1}{\sqrt{e^x}}$

Вариант №7

1.Исследовать

на

сходимость

ряды:

ряды:

a) $\sum_{n=2}^{\infty} \frac{5n-2}{(n-1)n(n+2)};$ 6) $\sum_{n=1}^{\infty} \left(\frac{n}{10n+5}\right)^{n^2};$

B) $\sum_{n=1}^{\infty} \frac{n!}{2^{n+1}}$; Γ) $\sum_{n=1}^{\infty} (-1)^n \frac{2^{n-1}}{2^n}$;

2.Найти интервал сходимости ряда: $\sum_{n=1}^{\infty} \frac{(3n-2)(x-3)^n}{(n+1)^2 2^{n+1}}$;

3. Разложить в ряд Маклорена функцию $y = \frac{x^2}{1+x}$

Вариант №8

1.Исследовать

сходимость

ряды:

a) $\sum_{n=1}^{\infty} \frac{2}{3n^2 - 8n + 15}$; 6) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} \frac{1}{4^n}$;

B) $\sum_{n=1}^{\infty} \frac{(n+1)!}{n^n}$;

 Γ) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n+1)}$;

2.Найти интервал сходимости ряда: $\sum_{n=1}^{\infty} \frac{n^5(x+5)^{2n+1}}{(n+1)!}$;

3. Разложить в ряд Маклорена функцию $y = x^3 arct g(x)$

Вариант №9

1. Исследовать на сходимость ряды.

a) $\sum_{n=2}^{\infty} \frac{3n-5}{n(n^2-1)}$; 6) $\sum_{n=1}^{\infty} \frac{1}{3n} (\frac{n}{n+1})^{-n^2}$;

B) $\sum_{n=1}^{\infty} \frac{5^n}{(n+1)!}$; Γ) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n(n+1)}$;

2.Найти интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{(x+2)^{n^2}}{n^n}$;

3. Разложить в ряд Маклорена функцию $y = \frac{e^{x}-1}{x}$

Вариант №10

1.Исследовать на сходимость ряды:

a) $\sum_{n=1}^{\infty} \frac{3n}{n^2 - 5n - 7}$; 6) $\sum_{n=2}^{\infty} (\frac{2n - 1}{3n + 1})^{\frac{n}{2}}$;

B) $\sum_{n=1}^{\infty} \frac{6^n \sqrt{n}}{(n+2)!}$, Γ) $\sum_{n=1}^{\infty} (-1)^{n+1} (\frac{n}{2n+1})^n$;

2.Найти интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{(x-2)^n}{(3n+1)2^n}$;

3. Разложить в ряд Маклорена функцию $y = x^5 ln(1 + x^2)$

КОНТРОЛЬНАЯ РАБОТА №11

Данные для контрольной работы находятся в прилагаемой таблице.

Задача №1

В коробке имеется m одинаковых изделий, из которых n окрашены. Найти вероятность того, что среди 5 извлеченных из коробки изделий равно L.

Задача №2

Два стрелка стреляют по мишени. Вероятность попадания в мишень для первого стрелка p1, а для второго p2. Найти вероятность того, что при одном залпе в мишень попадет:

- 1) только один стрелок;
- 2)хотя бы один стрелок.

Задача №3

Рабочий обслуживает три станка, на которых обрабатываются однотипные детали. Вероятность брака для 1 станка р1, для 2 станка р2, для 3 станка р3. Обработанные детали складываются в один ящик. Производительность 1 станка в 3 раза больше, чем 2го, а 3 станка в 2 раза больше чем 2го. Найти вероятность того, что взятая наудачу деталь оказалась годной.

Задача №4

На склад поступает продукция двух фабрик, причем продукция 1й фабрики составляет К%. Известно, что средний прирост нестандартных изделий для 1й фабрики равен L%, для 2й n%. Найти вероятность того, что наудачу взятое изделие изготовлено на 2й фабрике, если оно оказалось нестандартным.

Задача №5

Устройство состоит из n независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Найти вероятность того, что в одном опыте откажут ровно k элементов.

Таблица к контрольной работе №11

	Table of the control												
	1			2		3			4			5	
	m	n	е	p1	p2	p1	p2	р3	k	е	n	n	k
1	20	10	3	0.7	0.8	0.1	0.08	0.09	20	3	2	5	3
2	15	8	4	0.8	0.6	0.07	0.12	0.1	30	2	1	5	2
3	18	12	5	0.6	0.7	0.08	0.1	0.2	45	1	3	3	3
4	13	10	2	0.9	0.8	0.2	0.09	0.1	35	5	2	5	4
5	10	8	3	0.7	0.9	0.99	0.2	0.12	70	2	3	3	2
6	19	7	2	0.8	0.7	0.1	0.12	0.1	80	2	4	6	3
7	20	11	4	0.6	0.9	0.2	0.07	0.15	65	1	2	6	4

8	15	8	1	0.7	0.6	0.15	0.1	0.08	55	3	1	6	5
9	17	10	3	0.5	0.9	0.12	0.15	0.09	40	3	4	6	4
10	12	10	5	0.7	0.5	0.1	0.2	0.08	60	4	1	3	2

КОНТРОЛЬНАЯ РАБОТА №12 (А) Вариант №1

- 1. $z = \frac{2i}{\sqrt{3}+i}$. Найти \bar{z} , ReZ, $Im\bar{z}$, |z|, argZ.
- 2. Вычислить: $(-\frac{1}{2} + i\frac{\sqrt{3}}{2})^6$
- 3. Решить уравнение: $z^4 + 3z^2 + 2 = 0$
- 4. Изобразить на комплексной плоскости множество точек удовлетворяющих неравенствами:

$$\begin{cases} |z - 1| < 2 \\ -\frac{\pi}{4} \le \arg Z \le \frac{\pi}{4} \end{cases}$$

- 1. $z=e^{1+\pi i}$. Найти \bar{z} , ReZ, $Im\bar{z}$, |z|, argZ. 2. Вычислить: $\left(\frac{\sqrt{3}-i}{2}\right)^3$
- 3. Решить уравнение: $z^4 6iz^2 8 = 0$
- 4. Изобразить на комплексной плоскости множество точек, удовлетворяющих неравенствам:

$$\begin{cases} 1 < |z| < 2 \\ -\frac{\pi}{2} < argZ < \frac{\pi}{2} \end{cases}$$

- 1. $z = \frac{2}{1+i\sqrt{3}}$. Найти \bar{z} , ReZ, $Im\bar{z}$, |z|, argZ.
- 2. Вычислить: $(1+i)^{10}$
- 3. Решить уравнение: $z^6 + z^3 6 = 0$
- 4. Изобразить на комплексной плоскости множество точек, удовлетворяющих неравенствам

$$\begin{cases} |z - 2| < 3 \\ ReZ > 1 \end{cases}$$

- 1. $z = \frac{4}{1+i}$. Найти \bar{z} , ReZ, $Im\bar{z}$, |z|, argZ.
- 2. Вычислить: $\left(\frac{1-i}{1+i}\right)^{18}$
- 3. Решить уравнение: $z^4 + 4z^2 3 = 0$
- 4. Изобразить на комплексной плоскости множество точек, удовлетворяющих неравенствам:

- 1. $z = (1-i)^3$. Найти \bar{z} , ReZ, $Im\bar{z}$, |z|, argZ.
- 2. Вычислить: $\left(\frac{2i}{\sqrt{3}+i}\right)^4$

- 3. Решить уравнение: $z^6 + 2z^3 15 = 0$
- 4. Изобразить на комплексной плоскости множество точек, удовлетворяющих неравенствам:

$$\{ |z-i| < 2 \\ 0 < ImZ < 2 \}$$

- 1. $z=e^{\frac{\pi}{4}i}$. Найти \bar{z} , ReZ, $Im\bar{z}$, |z|, argZ.
- 2. Вычислить: $(-2 + 2i)^4$
- 3. Решить уравнение: $z^4 + iz^2 + 2 = 0$
- 4. Изобразить на комплексной плоскости множество точек, удовлетворяющих неравенствам:

$${-2 < ImZ < 1 \over ReZ > 2}$$
 Вариант №7

- 1. $z = (2 2i)^2$. Найти \bar{z} , ReZ, $Im\bar{z}$, |z|, argZ.
- 2. Вычислить: $\left(\frac{2}{i+\sqrt{3}}\right)^3$
- 3. Решить уравнение: $z^4 3z^2 4 = 0$
- 4. Изобразить на комплексной плоскости множество точек, удовлетворяющих неравенствам:

$$|z-1-2i| < 3$$
 $Im Z > 2$
Baduaht Nº8

- 1. $z = \frac{2}{\sqrt{3}}$. Найти \bar{z} , ReZ, $Im\bar{z}$, |z|, argZ.
- 2. Вычислить: $\left(\frac{1+i}{1-i}\right)^{15}$
- 3. Решить уравнение: $z^6 + 4z^3 + 3 = 0$
- 4. Изобразить на комплексной плоскости множество точек, удовлетворяющих неравенствам:

$$\begin{cases} |z - i| < 1 \\ |z + i| > 2 \end{cases}$$

- 1. $z=e^{2-\frac{\pi}{2}i}$. Найти \bar{z} , ReZ, $Im\bar{z}$, |z|, argZ.
- 2. Вычислить: $\left(\frac{1}{1-i}\right)^4$
- 3. Решить уравнение: $z^4 + 3iz^2 + 4 = 0$
- 4. Изобразить на комплексной плоскости множество точек, удовлетворяющих неравенствам:

$$\begin{cases} |z| < 3\\ 0 < argZ < \frac{3}{4}\pi \end{cases}$$

- 1. $z=e^{-1+\frac{\pi}{3}i}$. Найти \bar{z} , ReZ, $Im\bar{z}$, |z|, argZ.
- 2. Вычислить: $\left(\frac{2i}{1-i}\right)^5$
- 3. Решить уравнение: $z^4 5iz^2 4 = 0$
- 4. Изобразить на комплексной плоскости множество точек, удовлетворяющих неравенствам:

$$\begin{cases} |z+i+i| < 1 \\ ReZ > -1 \end{cases}$$

КОНТРОЛЬНАЯ РАБОТА № 12 (Б) Вариант №1

- 1. Найти образ точки $z_0=2-\frac{\pi}{3}i$ при отображении $w=e^z$
- 2. Проверить аналитичность функции $w=z^2+5z-7$ на всей комплексной плоскости. Если возможно, найти производную.
 - $3.\sum_{n=1}^{\infty} \frac{(2+3i)^{2n}}{\frac{14}{\infty}^n}$. Исследовать на сходимость.

$$4.\sum_{n=1}^{\infty} rac{n}{2^n} (z+i)^n$$
 . Найти область сходимости.

Вариант №2

- 1. Найти образ точки $z_0 = \frac{1}{2} 3i$ при отображении $w = z^2 + \frac{3}{4}$
- 2. Проверить аналитичность функции $w = z\overline{z} 2 \operatorname{Re} z$ на всей комплексной плоскости. Если возможно, найти производную.

$$3.\sum_{n=1}^{\infty} rac{n(1-i)^n}{2^n}$$
 . Исследовать на сходимость.

$$4.\sum_{n=1}^{\infty} rac{(z-2+i)^n}{n+4}.$$
 Найти область сходимости.

5. Вычислить
$$\oint\limits_{r} \frac{\sin iz}{z-\pi} dz$$
 , \qquad где L: $\;$ а) $\;$ $|z|=4;$

b) треугольник с вершинами $z_1=2+i; \ \ z_2=2-i; \ \ z_3=0$

Вариант №3

- 1. Найти образ точки $z_0 = 3 i$ при отображении $w = \frac{2z}{z-3}$
- 2. Проверить аналитичность функции $w = \sin 2z$ на всей комплексной плоскости. Если возможно, найти производную.
 - 3. $\sum_{n=1}^{\infty} \frac{4^n}{(4-3\mathrm{i})^n}.$ Исследовать на сходимость
 - 4. $\sum_{n=1}^{\infty} \frac{n+1}{n} (z+2i)^n$. Найти область сходимость
 - 5. Вычислить $\oint_L \frac{z^2+3}{z-2-2i} dz$, где L: a) |z-2|=3; b) |z|=1

- 1. Найти образ точки $z_0=1+2i$ при отображении $w=\frac{\overline{z}}{z}$
- 2. Проверить аналитичность функции $w=e^{-iz+1}$ на всей комплексной плоскости. Если возможно, найти производную.

$$3. \sum_{n=1}^{\infty} \frac{(n+1)(i-2)^2}{5^{n+1}}. \;\; \text{Исследовать на сходимость}.$$

$$4. \sum_{n=1}^{\infty} \frac{z-i^{3n}}{(2+2i)^{2n}}. \;\; \text{Найти область сходимости}.$$

$$5.\,\mathsf{B}\mathsf{ычислить}\,\oint \frac{sh\frac{\mathsf{\Pi}}{4}z}{z^2+1}\mathrm{d}z\,\,,\qquad \mathsf{гдe}\,\,L\colon\,\,a)\,\,|z+i|=1;\ \ \, b)\,\,|z|=\frac{1}{2}$$

Вариант №5

- 1. Найти образ точки $z_0 = \frac{\pi}{2} + i$ при отображении $w = \sin z$
- 2. Проверить аналитичность функции $w=1-3z-z^2$ на всей комплексной плоскости. Если возможно, найти производную.

$$3.\sum_{n=1}^{\infty} \frac{(-1+2i)^n}{n2^n}$$
. Исследовать на сходимость.

$$4.\sum_{n=1}^{\infty} \frac{(z+i)^n}{(n+1)(n+2)}.$$
 Найти область сходимости.

5. Вычислить
$$\oint_L \frac{\cos 2z}{(z-1)(z+2)} dz$$
, где L: a) $|z+1| = \frac{1}{2}$;

b)
$$\Delta$$
 с вершинами $z_1=2+i;\ z_2=-1-i;\ z_3=2-2i$

Вариант №6

- 1. Найти образ точки $z_0 = -2 + i$ при отображении $w = \frac{z+3}{z+1}$
- 2. Проверить аналитичность функции $w = 2 \cos z$ на всей комплексной плоскости. Если возможно, найти производную.

$$3.\sum_{n=1}^{\infty} \frac{(1-i)^n}{n!}$$
. Исследовать на сходимость.

$$4. \sum_{n=1}^{\infty} \frac{n2^n}{(z-1+2i)^n}$$
. Найти область сходимости.

- 1. Найти образ точки $z_0 = \frac{\pi}{4} i$ при отображении $w = e^{iz}$
- 2. Проверить аналитичность функции $w=2z-3\overline{z}+{\rm Jm}\,z$ на всей комплексной плоскости. Если возможно, найти производную.

$$3.\sum_{n=1}^{\infty} \frac{ni^n}{3^n}$$
. Исследовать на сходимость.

$$4. \sum_{n=1}^{\infty} \frac{(z-1-2i)^n}{n^2+1}$$
. Найти область сходимости.

- 5. Вычислить $\oint_L \frac{\operatorname{ch} z}{z^2 + 1} dz$, где L: a) $|z 2| = \frac{1}{2}$;
- b) Δ с вершинами $z_1 = 0$; $z_2 = 1 + 2i$; $z_3 = -1 + 2i$

Вариант №8

- 1. Найти образ точки $z_0 = \frac{\pi}{2} i$ при отображении $w = \cos z$
- 2. Проверить аналитичность функции $w=(2-3i)^2$ на всей комплексной плоскости. Если возможно, найти производную.

$$3.\sum_{n=1}^{\infty} rac{i^n}{2^n(n+1)}.$$
 Исследовать на сходимость.

$$4.\sum_{n=1}^{\infty} \frac{n(n+2)}{(z-2)^n}.$$
 Найти область сходимости.

5. Вычислить $\oint_L \frac{z^2+3}{z-2-2i} dz$, где L: а) квадрат с вершинами $z_1=1;\ z_2=i;\ z_3=-1;z_4=-i;$ b) $|z-1|=\frac{1}{2}$

Вариант №9

- 1. Найти образ точки $z_0 = 1 + i$ при отображении $w = 2^z$
- 2. Проверить аналитичность функции $w=2|z|^2+3z-2i$ на всей комплексной плоскости. Если возможно, найти производную.

$$3. \sum_{n=1}^{\infty} \frac{(2+i)^n}{n!}$$
. Исследовать на сходимость.

$$4.\sum_{n=1}^{\infty} \frac{(z-2i)^n}{\left(1+\sqrt{3}i\right)^n}.$$
 Найти область сходимости.

5. Вычислить
$$\oint \frac{\sin 2iz}{z-1} dz$$
 , где L:

а) ромб с вершинами
$$z_1 = 2; z_2 = i; z_3 = -2; z_4 = -i;$$

b)
$$|z + i| = \frac{1}{2}$$

- 1. Найти образ точки $z_0=2i$ при отображении $w=\ln z$
- 2. Проверить аналитичность функции $w = \cos z + i$ на всей комплексной плоскости. Если возможно, найти производную.

$$3.\sum_{n=1}^{\infty} \left(\frac{2}{2-i}\right)^{n^2}$$
. Исследовать на сходимость.

$$4.\sum_{n=1}^{\infty} rac{(n+2)i^n}{(z+1)^n}.$$
 Найти область сходимости.

5. Вычислить
$$\oint\limits_L \frac{\mathrm{d}z}{z^2+4}$$
 , где L: a)|z| = 3;

b) прямоугольник с вершинами
$$\mathbf{z}_1=2+\mathbf{i};\,\mathbf{z}_2=-2+\mathbf{i};\,\,\,\mathbf{z}_3=-2-\mathbf{i};\,\,\,\mathbf{z}_4=2-\mathbf{i}$$