

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

Кафедра «Прикладная математика»

Учебное пособие

«Векторная алгебра» по дисциплине

«Математика»

Авторы
Рябых Г. Ю.,
Ворович Е. И.,
Тукодова О. М.,
Фролова Н. В.,
Пристинская О. В.

Ростов-на-Дону, 2020

Аннотация

Учебное пособие предназначено для студентов всех направлений и форм обучения.

Авторы

канд.физ.-мат. наук, доцент кафедры «Прикладная математика» Рябых Г.Ю., канд.физ.-мат. наук, доцент кафедры «Высшая математика» Ворович Е.И., канд.физ.-мат. наук, доцент кафедры «Высшая математика» Тукодова О.М., ст. преподаватель кафедры «Прикладная математика» Фролова Н.В., ст. преподаватель кафедры «Прикладная математика» Пристинская О.В.

Оглавление

1.	Элементы векторной алгебры 1.1. Свойства векторов		4
			5
	1.2.Линейная	зависимость	векторов
		нат	
3.	2.1. Декартова система координат		
	3.1. Скалярное прои	зведение векторов	11
	3.2. Векторное прог	14	
3.3. Смешанное произведение векторов			16
Примеры решения задач			
Задачи для самостоятельного решения Типовой расчет			

1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ

Определение. Вектором называется направленный отрезок (упорядоченная пара точек). К векторам относится также и **нулевой** вектор, начало и конец которого совпадают.

Определение. Длиной (модулем) вектора называется расстояние между началом и концом вектора.

$$\left| \overrightarrow{AB} \right| = \left| \overrightarrow{a} \right|$$

Определение. Векторы называются **коллинеарными**, если они расположены на одной или параллельных прямых. Нулевой вектор коллинеарен любому вектору.

Определение. Векторы называются **компланарными**, если существует плоскость, которой они параллельны.

Коллинеарные векторы всегда компланарны, но не все компланарные векторы коллинеарны.

Определение. Векторы называются **равными**, если они коллинеарны, одинаково направлены и имеют одинаковые модули.

Всякие векторы можно привести к общему началу, т.е. построить векторы, соответственно равные данным и имеющие общее начало. Из определения равенства векторов следует, что любой вектор имеет бесконечно много векторов, равных ему.

<u>Определение.</u> Линейными операциями над векторами называется сложение и умножение на число.

Суммой векторов является вектор - $\vec{c} = \vec{a} + \vec{b}$

Произведение -
$$\vec{b}=lpha\; \vec{a};\;\; \left| \vec{b} \right|=lpha \left| \vec{a} \right|$$
 , при этом $\vec{a}\;$ коллине-

арен \vec{b} .

Вектор \vec{a} сонаправлен с вектором \vec{b} ($\vec{a} \uparrow \uparrow \vec{b}$), если $\alpha >$ 0.

Вектор \vec{a} противоположно направлен с вектором \vec{b} ($\vec{a} \uparrow \downarrow \vec{b}$), если α < 0.

1.1. Свойства векторов

1)
$$\vec{a}$$
 + \vec{b} = \vec{b} + \vec{a} - коммутативность.

2)
$$\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$$

3)
$$\vec{a} + \vec{0} = \vec{a}$$

4)
$$\vec{a}$$
 +(-1) \vec{a} = $\vec{0}$

5)
$$(\alpha \cdot \beta)\vec{a} = \alpha(\beta\vec{a})$$
 – ассоциативность

6)
$$(\alpha + \beta)\vec{a} = \alpha \vec{a} + \beta \vec{a}$$
 - дистрибутивность

7)
$$\alpha(\vec{a} + \vec{b}) = \alpha \vec{a} + \alpha \vec{b}$$

8)
$$1 \cdot \vec{a} = \vec{a}$$

Определение.

- 1) **Базисом** в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.
- 2) **Базисом** на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.
- 3) **Базисом** на прямой называется любой ненулевой вектор.

Определение. Если $\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}$ - базис в пространстве и $\overrightarrow{a} = \alpha \overrightarrow{e_1} + \beta \overrightarrow{e_2} + \gamma \overrightarrow{e_3}$, то числа α , β и γ - называются компонентами или координатами вектора \overrightarrow{a} в этом базисе.

В связи с этим можно записать следующие свойства:

- равные векторы имеют одинаковые координаты,
- при умножении вектора на число его компоненты тоже умножаются на это число,

$$\overrightarrow{\lambda a} = \lambda(\alpha \overrightarrow{e_1} + \beta \overrightarrow{e_2} + \gamma \overrightarrow{e_3}) = (\lambda \alpha)\overrightarrow{e_1} + (\lambda \beta) \overrightarrow{e_2} + (\lambda \gamma) \overrightarrow{e_3}.$$

 при сложении векторов складываются их соответствующие компоненты.

$$\vec{a} = \alpha_{1}\vec{e_{1}} + \alpha_{2}\vec{e_{2}} + \alpha_{3}\vec{e_{3}}; \qquad \vec{b} = \beta_{1}\vec{e_{1}} + \beta_{2}\vec{e_{2}} + \beta_{3}\vec{e_{3}};$$

$$\vec{a} + \vec{b} = (\alpha_{1} + \beta_{1})\vec{e_{1}} + (\alpha_{2} + \beta_{2})\vec{e_{2}} + (\alpha_{3} + \beta_{3})\vec{e_{3}}.$$

1.2. Линейная зависимость векторов

Определение. Векторы $a_1,...,a_n$ называются линейно зависимыми, если существует такая линейная комбинация $\alpha_1 \overrightarrow{a_1} + \alpha_2 \overrightarrow{a_2} + ... + \alpha_n \overrightarrow{a_n} = 0$, при не равных нулю одновременно α_i , т.е. $\alpha_1^2 + \alpha_2^2 + ... + \alpha_n^2 \neq 0$.

Если же только при $\alpha_i=0$ выполняется $\alpha_1 \overrightarrow{a_1} + \alpha_2 \overrightarrow{a_2} + ... + \alpha_n \overrightarrow{a_n} = 0$, то векторы называются линейно независимыми.

Свойство 1. Если среди векторов $\overrightarrow{a_i}$ есть нулевой вектор, то эти векторы линейно зависимы.

Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.

Свойство 3. Система векторов линейно зависима тогда и

только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.

Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.

Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.

Свойство 6. Любые 4 вектора линейно зависимы.

2. СИСТЕМА КООРДИНАТ

Для определения положения произвольной точки могут использоваться различные системы координат. Положение произвольной точки в какой- либо системе координат должно однозначно определяться. Понятие системы координат представляет собой совокупность точки начала отсчета (начала координат) и некоторого базиса. Как на плоскости, так и в пространстве возможно задание самых разнообразных систем координат. Выбор системы координат зависит от характера поставленной геометрической, физической или технической задачи. Рассмотрим некоторые наиболее часто применяемые на практике системы координат.

2.1. Декартова система координат

Зафиксируем в пространстве точку O и рассмотрим произвольную точку M.

Вектор \overrightarrow{OM} назовем радиус- вектором точки М. Если в пространстве задать некоторый базис, то точке М можно сопоста-

вить некоторую тройку чисел – компоненты ее радиус- вектора.

<u>Определение.</u> Декартовой системой координат в пространстве называется совокупность точки и базиса. Точка называется началом координат. Прямые, проходящие через начало координат называются осями координат.

1-я ось – ось абсцисс

2-я ось – ось ординат

3-я ось – ось аппликат

Чтобы найти компоненты вектора нужно из координат его конца вычесть координаты начала.

Если заданы точки A(x₁, y₁, z₁), B(x₂, y₂, z₂), то \overrightarrow{AB} = (x₂ - x₁, y₂ - y₁, z₂ - z₁).

Определение. Базис называется **ортонормированным**, если его векторы попарно ортогональны и равны единице.

Определение. Декартова система координат, базис которой ортонормирован называется **декартовой прямоугольной системой координат**.

Пример. Даны векторы \vec{a} (1; 2; 3), \vec{b} (-1; 0; 3), \vec{c} (2; 1; -1) и \vec{d} (3; 2; 2) в некотором базисе. Показать, что векторы \vec{a} , \vec{b} и \vec{c} образуют базис и найти координаты вектора \vec{d} в этом базисе.

Векторы образуют базис, если они линейно независимы, другими словами, если уравнения, входящие в систему:

$$\begin{cases} \alpha-\beta+2\gamma=0\\ 2\alpha+0\cdot\beta+\gamma=0\\ 3\alpha+3\beta-\gamma=0 \end{cases}$$
 линейно независимы.

Тогда
$$\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$$
 .

Это условие выполняется, если определитель матрицы системы отличен от нуля.

$$\begin{vmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 3 & -1 \end{vmatrix} \neq 0$$

$$\begin{vmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 3 & -1 \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ 1 & -1 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 3 & -1 \end{vmatrix} + 2 \begin{vmatrix} 2 & 0 \\ 3 & 3 \end{vmatrix} = -3 + (-2 - 3) + 12 = 4 \neq 0$$

$$\begin{cases} \alpha a_1 + \beta b_1 + \gamma c_1 = d_1 \\ \alpha a_2 + \beta b_2 + \gamma c_2 = d_2 \end{cases}$$
 Для решения этой системы вос-
$$\alpha a_3 + \beta b_3 + \gamma c_3 = d_3$$

пользуемся методом Крамера.

$$\Delta_1 =$$

$$\begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} 3 & -1 & 2 \\ 2 & 0 & 1 \\ 2 & 3 & -1 \end{vmatrix} = 3 \begin{vmatrix} 0 & 1 \\ 3 & -1 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 2 & -1 \end{vmatrix} + 2 \begin{vmatrix} 2 & 0 \\ 2 & 3 \end{vmatrix} = 3(-3) + (-2-2) + 12 = -1.$$

$$\alpha = \frac{\Delta_1}{\Delta} = -1/4;$$

$$\Delta_2 =$$

$$\begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix} = \begin{vmatrix} 1 & 3 & 2 \\ 2 & 2 & 1 \\ 3 & 2 & -1 \end{vmatrix} = (-2 - 2) - 3(-2 - 3) + 2(4 - 6) = -4 + 15 - 4 = 7;$$

$$\beta = \frac{\Delta_2}{\Delta} = 7/4;$$

$$\Delta_3 = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 3 \\ 2 & 0 & 2 \\ 3 & 3 & 2 \end{vmatrix} = -6 + (4 - 6) + 18 = 10;$$

Итого, координаты вектора \vec{d} в базисе \vec{a} , \vec{b} , \vec{c} : \vec{d} { - 1/4, 7/4, 5/2}.

Длина вектора в координатах определяется как расстояние между точками начала и конца вектора. Если заданы две точки в пространстве $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$, то $|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$.

Если точка M(x, y, z) **делит отрезок АВ в соотношении** λ/μ , считая от A, то координаты этой точки определяются как:

$$x = \frac{\mu x_1 + \lambda x_2}{\mu + \lambda}; \quad y = \frac{\mu y_1 + \lambda y_2}{\mu + \lambda}; \quad z = \frac{\mu z_1 + \lambda z_2}{\mu + \lambda}.$$

В частном случае координаты **середины отрезка** находятся как:

$$x = (x_1 + x_2)/2;$$
 $y = (y_1 + y_2)/2;$ $z = (z_1 + z_2)/2.$

3. ЛИНЕЙНЫЕ ОПЕРАЦИИ НАД ВЕКТОРАМИ В КООРДИНАТАХ

Пусть заданы векторы в прямоугольной системе координат $\vec{a}(x_A,y_A,z_A); \ \vec{b}(x_B,y_B,z_B), \$ тогда линейные операции над ними в координатах имеют вид:

$$\vec{a} + \vec{b} = \vec{c}(x_4 + x_R; y_4 + y_R; z_4 + z_R); \quad \vec{\alpha} \cdot \vec{a} = (\alpha x_4; \alpha y_4; \alpha z_4)$$

3.1. Скалярное произведение векторов

Определение. Скалярным произведением векторов

 $ec{a}$ и $ec{b}$ называется число, равное произведению длин этих сторон на косинус угла между ними.

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \varphi$$

Свойства скалярного произведения:

- 1) $\vec{a} \cdot \vec{a} = |\vec{a}|^2$;
- 2) $\vec{a} \cdot \vec{b} = 0$, если $\vec{a} \perp \vec{b}$ или $\vec{a} = 0$ или $\vec{b} = 0$.
- 3) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$;
- 4) $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$;
- 5) $(m\vec{a})\cdot\vec{b} = \vec{a}\cdot(m\vec{b}) = m(\vec{a}\cdot\vec{b});$ m=const Если рассматривать векторы

$$\vec{a}(x_a,y_a,z_a); \quad \vec{b}(x_b,y_b,z_b)$$
 в декартовой прямоугольной системе координат, то $\vec{a}\cdot\vec{b}=x_ax_b+y_ay_b+z_az_b$;

Используя полученные равенства, получаем формулу для вычисления угла между векторами:

$$\cos \varphi = \frac{x_a x_b + y_a y_b + z_a z_b}{|\vec{a}| \cdot |\vec{b}|};$$

<u>Пример.</u> Найти (5 \vec{a} + 3 \vec{b})(2 \vec{a} - \vec{b}), если $|\vec{a}|=2, \ |\vec{b}|=3, \ \vec{a}\bot\vec{b}$.

$$10\vec{a}\cdot\vec{a}-5\vec{a}\cdot\vec{b}+6\vec{a}\cdot\vec{b}-3\vec{b}\cdot\vec{b}=$$

$$10|\vec{a}|^2 - 3|\vec{b}|^2 = 40 - 27 = 13$$
,

т.к.
$$\vec{a} \cdot \vec{a} = |\vec{a}|^2 = 4$$
, $\vec{b} \cdot \vec{b} = |\vec{b}|^2 = 9$, $\vec{a} \cdot \vec{b} = 0$.

П<u>ример.</u> Найти угол между векторами \vec{a} и \vec{b} , если $\vec{a}=\vec{i}+2\vec{j}+3\vec{k}$,

$$\vec{b} = 6\vec{i} + 4\vec{j} - 2\vec{k} .$$

T.e.
$$\vec{a} = (1, 2, 3), \quad \vec{b} = (6, 4, -2)$$

$$\vec{a} \cdot \vec{b} = 6 + 8 - 6 = 8$$
:

$$|\vec{a}| = \sqrt{1+4+9} = \sqrt{14};$$
 $|\vec{b}| = \sqrt{36+16+4} = \sqrt{56}.$

$$cos\phi =$$

$$\frac{8}{\sqrt{14}\sqrt{56}} = \frac{8}{2\sqrt{14}\sqrt{14}} = \frac{4}{14} = \frac{2}{7}; \qquad \varphi = \arccos\frac{2}{7}.$$

<u>Пример.</u> Найти скалярное произведение (3 \vec{a} - 2 \vec{b})·(5 \vec{a} - 6 \vec{b}), если $|\vec{a}|=4, \quad |\vec{b}|=6, \quad \vec{a} \wedge \vec{b}=\pi/3.$

$$15\vec{a} \cdot \vec{a} - 18\vec{a} \cdot \vec{b} - 10\vec{a} \cdot \vec{b} + 12\vec{b} \cdot \vec{b} =$$

$$15|\vec{a}|^2 - 28|\vec{a}||\vec{b}|\cos\frac{\pi}{3} + 12|\vec{b}|^2 = 15 \cdot 16 - 28 \cdot 4 \cdot 6 \cdot \frac{1}{2} +$$

$$+ 12 \cdot 36 = 240 - 336 + 432 = 672 - 336 = 336.$$

<u>Пример.</u> Найти угол между векторами \vec{a} и \vec{b} , если $\vec{a}=3\vec{i}+4\vec{j}+5\vec{k}$,

$$\vec{b} = 4\vec{i} + 5\vec{j} - 3\vec{k} .$$

T.e.
$$\vec{a} = (3, 4, 5), \quad \vec{b} = (4, 5, -3)$$

$$\vec{a} \cdot \vec{b} = 12 + 20 - 15 = 17$$
:

$$|\vec{a}| = \sqrt{9 + 16 + 25} = \sqrt{50};$$
 $|\vec{b}| = \sqrt{16 + 25 + 9} = \sqrt{50}.$

$$\cos \varphi = \frac{17}{\sqrt{50}\sqrt{50}} = \frac{17}{50}; \qquad \varphi = \arccos \frac{17}{50}.$$

<u>Пример.</u> При каком m векторы $\vec{a}=m\vec{i}+\vec{j}$ и $\vec{b}=3\vec{i}-3\vec{j}-4\vec{k}$ перпендикулярны.

$$\vec{a} = (m, 1, 0);$$
 $\vec{b} = (3, -3, -4)$
 $\vec{a} \cdot \vec{b} = 3m - 3 = 0;$ $\Rightarrow m = 1$.

Пример. Найти скалярное произведение векторов
$$2\vec{a}+3\vec{b}+4\vec{c}$$
 и $5\vec{a}+6\vec{b}+7\vec{c}$, если $|\vec{a}|=1,~|\vec{b}|=2,~|\vec{c}|=3,~\vec{a}\wedge\vec{b}=\vec{a}\wedge\vec{c}=\vec{b}\wedge\vec{c}=\frac{\pi}{3}$.
$$(2\vec{a}+3\vec{b}+4\vec{c})(5\vec{a}+6\vec{b}+7\vec{c})=10\vec{a}\cdot\vec{a}+12\vec{a}\cdot\vec{b}+14\vec{a}\cdot\vec{c}+15\vec{a}\cdot\vec{b}+18\vec{b}\cdot\vec{b}+21\vec{b}\cdot\vec{c}+12\vec{a}\cdot\vec{c}+12\vec{a}\cdot\vec{c}+12\vec{a}\cdot\vec{c}+12\vec{a}\cdot\vec{c}+12\vec{c}\cdot\vec{c}+12\vec$$

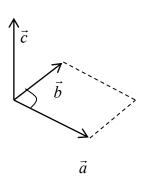
3.2. Векторное произведение векторов

Определение. Векторным произведением векторов

 \vec{a} и \vec{b} называется вектор \vec{c} , удовлетворяющий следующим условиям:

- 1) $|\vec{c}|=|\vec{a}|\cdot|\vec{b}|\sin\, \varphi$, где φ угол между векторами $\,\vec{a}$ и $\,\vec{b}\,$, $\sin\, \varphi\geq 0;\quad 0\leq \varphi\leq \pi$
- 2) вектор \vec{c} ортогонален векторам \vec{a} и \vec{b}
- 3) \vec{a} , \vec{b} и \vec{c} образуют правую тройку векторов.

Обозначается: $\vec{c} = \vec{a} \times \vec{b}$ или $\vec{c} = [\vec{a}, \vec{b}]$.



Свойства векторного произведения векторов:

- 1) $\vec{b} \times \vec{a} = -\vec{a} \times \vec{b}$;
- 2) $\vec{a} imes \vec{b} = 0$, если $\vec{a} \mid \mid \vec{b} \mid$ или $\vec{a} = 0$ или $\vec{b} = 0$;
- 3) $(m\vec{a}) \times \vec{b} = \vec{a} \times (m\vec{b}) = m(\vec{a} \times \vec{b});$
- 4) $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$;
- 5) Если заданы векторы \vec{a} (x_a , y_a , z_a) и \vec{b} (x_b , y_b , z_b) в декартовой прямоугольной системе координат с единичными векторами

$$ec{i}\,,ec{j},ec{k}$$
 , то

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_a & y_a & z_a \\ x_b & y_b & z_b \end{vmatrix}$$

6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах \vec{a} и \vec{b} .

<u>Пример.</u> Найти векторное произведение векторов $\vec{a}=2\vec{i}+5\vec{j}+\vec{k} \ \ \text{и} \ \ \vec{b}=\vec{i}+2\vec{j}-3\vec{k} \ .$

$$\vec{a}=(2,5,1); \quad \vec{b}=(1,2,-3)$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 5 & 1 \\ 1 & 2 & -3 \end{vmatrix} = \vec{i} \begin{vmatrix} 5 & 1 \\ 2 & -3 \end{vmatrix} - \vec{j} \begin{vmatrix} 2 & 1 \\ 1 & -3 \end{vmatrix} + \vec{k} \begin{vmatrix} 2 & 5 \\ 1 & 2 \end{vmatrix} = -17\vec{i} + 7\vec{j} - \vec{k}$$

<u>Пример.</u> Вычислить площадь треугольника с вершинами A(2, 2, 2), B(4, 0, 3), C(0, 1, 0).

$$\overrightarrow{AC} = (0-2;1-2;0-2) = (-2;-1;-2)$$

 $\overrightarrow{AB} = (4-2;0-2;3-2) = (2;-2;1)$

$$\overrightarrow{AC} \times \overrightarrow{AB} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & -1 & -2 \\ 2 & -2 & 1 \end{vmatrix} = \vec{i} \begin{vmatrix} -1 & -2 \\ -2 & 1 \end{vmatrix} - \vec{j} \begin{vmatrix} -2 & -2 \\ 2 & 1 \end{vmatrix} + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = \vec{i}(-1-4) - \vec{j}(-2+4) + \vec{k} \end{vmatrix}$$

$$+\vec{k}(4+2) = -5\vec{i} - 2\vec{j} + 6\vec{k}.$$

$$\left| \overrightarrow{AC} \times \overrightarrow{AB} \right| = \sqrt{25 + 4 + 36} = \sqrt{65}.$$

$$S_{\scriptscriptstyle \Delta} = rac{\sqrt{65}}{2}$$
 (ед²).

<u>Пример.</u> Доказать, что векторы $\vec{a}=7\vec{i}-3\vec{j}+2\vec{k}$, $\vec{b}=3\vec{i}-7\vec{j}+8\vec{k}$ и $\vec{c}=\vec{i}-\vec{j}+\vec{k}$ компланарны.

$$egin{pmatrix} 1 & -1 & 1 \ 3 & -7 & 8 \ 7 & -3 & 2 \end{pmatrix} \sim egin{pmatrix} 1 & -1 & 1 \ 0 & -4 & 5 \ 0 & 4 & -5 \end{pmatrix}$$
, т.к. векторы линейно за-

висимы, то они компланарны.

<u>Пример.</u> Найти площадь параллелограмма, построенного на векторах $\vec{a}+3\vec{b}$; $3\vec{a}+\vec{b}$, если $\left|\vec{a}\right|=\left|\vec{b}\right|=1;$ $\vec{a}\wedge\vec{b}=30^{\circ}.$

$$(\vec{a}+3\vec{b})\times(3\vec{a}+\vec{b})=3\vec{a}\times\vec{a}+\vec{a}\times\vec{b}+9\vec{b}\times\vec{a}+3\vec{b}\times\vec{b}=-\vec{b}\times\vec{a}+9\vec{b}\times\vec{a}=8\vec{b}\times\vec{a}$$

$$S = 8|\overline{b}||\vec{a}|\sin 30^{\circ} = 4$$
 (ед²).

3.3. Смешанное произведение векторов ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задачи на тему "Векторная алгебра"

Задача 1. Дано: точки A(-3 1 2), B(4 -3 2), C(0 -1 3), D(-6 2 1)

Найти: 1) координаты и длину вектора $\overline{AB} - 2\overline{CD}$;

2) направляющие косинусы вектора \overline{AB} ;

- 3) скалярное произведение $\overline{AB} \cdot \overline{CD}$;
- 4) проекцию пр $_{\overline{CD}}$ \overline{AB} .
- 5) угол между векторами \overline{AB} и \overline{CD} ;
- 6) векторное произведение $\overline{AB} \times \overline{CD}$ и его модуль;
- 7) площадь треугольника Δ ABC;
- 8) лежат ли точки A,B,C,D в одной плоскости;
- 9) объем пирамиды ABCD;
- 1) Найдем координаты векторов \overline{AB} и \overline{CD} :

$$\overline{AB}$$
 ={4-(-3); -3-2; 2-2}, \overline{AB} ={7; -4; 0}, \overline{CD} ={-6-0; 2-(-1); 1-3}, \overline{CD} ={-6; 3; -2}.

По правилам действий с векторами, получим

$$2\overline{CD}$$
 ={-12; 6; -4} и \overline{AB} -2 \overline{CD} ={7; -4; 0} - {-12; 6; -4} = {19; -10; 4}.

Теперь находим длину искомого вектора:

$$|\overline{AB} - 2\overline{CD}| = \sqrt{19^2 + (-10)^2 + 4^2} = \sqrt{477}$$
.

2) Так как \overline{AB} ={7;-4; 0 }, $|\overline{AB}| = \sqrt{7^2 + (-4)^2 + 0^2} = \sqrt{65}$, то направляющие косинусы находятся согласно формулам:

$$\cos \alpha = \frac{7}{\sqrt{65}}$$
, $\cos \beta = \frac{-4}{\sqrt{65}}$, $\cos \gamma = 0$.

3) (\overline{AB} ; \overline{CD}) найдем по формуле скалярного произведения векторов, заданных своими координатами. Поскольку \overline{AB} ={7; -4; 0}, \overline{CD} ={-6; 3; -2}, то

$$(\overline{AB}; \overline{CD}) = 7 \cdot (-6) + (-4) + 3 + 0 \cdot (-2) = -54.$$

4) На основании формулы проекции, имеем

$$\operatorname{пр}_{\,\overline{CD}}\,\overline{AB}\,=\frac{\overline{AB}\cdot\overline{CD}}{\left|\overline{CD}\,\right|}\,.$$
 Отсюда, $\operatorname{пр}_{\,\overline{CD}}\,\overline{AB}=\frac{-54}{7}\,.$

5) Заметим, что вектора \overline{AB} ={7 -4 0 } и \overline{CD} ={-6 3 -2} не являются коллинеарными, поскольку не пропорциональны их координаты:

$$\frac{7}{-6} \neq \frac{-4}{3} \neq \frac{0}{-2}$$
.

Эти вектора не являются также перпендикулярными, так как их скалярное произведение $(\overline{AB}\,;\,\overline{CD}\,)\!\neq\!0.$

Угол $\alpha = \angle(\overline{AB}; \overline{CD})$ найдем из формулы:

$$\cos \alpha = \frac{\overline{AB} \cdot \overline{CD}}{\left| \overline{AB} \right| \left| \overline{CD} \right|} - .$$

Ранее было найдено $(\overline{AB} \ \overline{CD})$ = - 54, $|\overline{AB}| = \sqrt{65}$, $|\overline{CD}| = 7$, стало быть,

$$\cos\alpha = \frac{-54}{\sqrt{65} \cdot 7}.$$

6) По формуле векторного произведения, имеем

$$\overline{AD} \times \overline{CD} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 7 & -4 & 0 \\ -6 & 3 & -2 \end{vmatrix} = \overline{i} \begin{vmatrix} -4 & 0 \\ 3 & -2 \end{vmatrix} - \overline{j} \begin{vmatrix} 7 & 0 \\ -6 & -2 \end{vmatrix} + \overline{k} \begin{vmatrix} 7 & -4 \\ -6 & 3 \end{vmatrix}$$

$$= 8\overline{i} + 14\overline{i} - 3\overline{k}.$$

Таким образом, векторное произведение имеет координаты:

$$\overline{AD} imes \overline{CD}$$
 ={8; 14; -3}, а его модуль $\left| \overline{AB} imes \overline{CD} \right| = \sqrt{8^2 + 14^2 + (-3)^2} = \sqrt{269}$.

7) Применив формулу площади для треугольника ABC, построенного на векторах

$$\overline{AB}$$
 , \overline{AC} , получаем $S_{\Delta ABC} = \frac{1}{2} |\overline{AB} \times \overline{AC}|$.

Векторное произведение $\overline{AB} \times \overline{AC}$ и его модуль найдем, аналогично решению задачи 6):

$$\overline{AB} \times \overline{AC} =$$

$$\begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 7 & -4 & 0 \\ 3 & -2 & 1 \end{vmatrix} = \overline{i} \begin{vmatrix} -4 & 0 \\ -2 & 1 \end{vmatrix} - \overline{j} \begin{vmatrix} 7 & 0 \\ 3 & 1 \end{vmatrix} + \overline{k} \begin{vmatrix} 7 & -4 \\ 3 & -2 \end{vmatrix} = -4\overline{i} - 7\overline{j} - 2\overline{k},$$

$$\overline{AB} \times \overline{AC} = \{-4, -7, -2\}, |\overline{AB} \times \overline{AC}| = \sqrt{69}.$$

Отсюда получаем, что $S_{\Delta\!ABC} = \sqrt{69}$ (кв. ед.)

8) Точки А,В,С,D будут лежать в одной плоскости, если три вектора, соединяющие эти точки, являются компланарными. Составим, например, вектора \overline{AB} ={7; -4; 0}, \overline{AC} ={3; -2; 1}, \overline{AD} ={-3; 1; -1} и найдем их смешанное произведение:

$$\overline{AB}$$
; \overline{AC} ; \overline{AD})=

$$\begin{vmatrix} 7 & -4 & 0 \\ 3 & -2 & 1 \\ -3 & 1 & -1 \end{vmatrix} = 7 \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} + 4 \begin{vmatrix} 3 & 1 \\ -3 & -1 \end{vmatrix} + 0 \begin{vmatrix} 3 & -2 \\ -3 & 1 \end{vmatrix} = 7,$$

Поскольку $(\overline{AB};\overline{AC};\overline{AD})\neq 0$, то вектора $\overline{AB},\overline{AC},\overline{AD}$ не компланарны, а стало быть, точки A,B,C,D не лежат в одной плоскости.

9) Так как объем пирамиды равен $\frac{1}{6}$ части объема параллелепипеда, построенного на векторах \overline{AB} , \overline{AC} , \overline{AD} вычисляется по формуле

$$V_{\text{пир}} = rac{1}{6} V_{\text{пар-да}} = rac{1}{6} \left| \left(\overline{AB}, \overline{AC}, \overline{AD}
ight) \right|,$$

то используя решение задачи 8), получим

$$V_{\text{пир}} = \frac{1}{6} \cdot 7 = \frac{7}{6}$$
 (куб.ед.) . ∇

Задача 2. Определить при каких α, β вектора $\overline{a}=-2\overline{i}+3\overline{j}+\beta\overline{k}$ и $\overline{b}=\alpha\overline{i}-6\overline{j}+2\overline{k}$ коллинеарны.

 Δ В случае коллинеарности, соответствующие координаты векторов \bar{a} ={-2;3; β } и \bar{b} ={ α ; -6; 2} должны быть пропорцио-

нальны,

то

есть:

 $\frac{-2}{\alpha} = \frac{3}{-6} = \frac{\beta}{2}$.

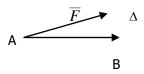
Отсюда α =4 и β =-1 ∇

Задача 3. Определить при каком α вектора $\overline{a}=3\overline{i}-2\overline{j}+\alpha\overline{k}$ и $\overline{b}=\overline{i}+3\overline{j}-\overline{k}$ перпендикулярны.

 Δ Вектора \overline{a} ={3;-2; α } и \overline{b} ={1;3;-1} перпендикулярны, если их скалярное произведение $\overline{a}\cdot\overline{b}$ равно нулю. Из этого условия получаем: $\overline{a}\cdot\overline{b}$ = $3\cdot 1 - 2\cdot 3 + \alpha\cdot (-1)$ =0. Стало быть, α =-3. ∇

Задача 4. Вычислить, какую работу производит сила \overline{F} {-5 2 1}, когда точка ее приложе- ния перемещается из A(3; 0; 3)

в В(-4; 1; 2).



Образуем вектор перемещения $\bar{s}=\overline{AB}$ ={-7; 1; -1}. Тогда работа A= $\overline{F}\cdot\bar{s}$ = 36. ∇

Задача 5. Найти $\left(2\overline{a}-\overline{b}\right)\cdot\left(\overline{a}+3\overline{b}\right)$, если $\left|\overline{a}\right|$ =1, $\left|\overline{b}\right|$ =3,

$$\angle(\overline{a},\overline{b}) = \frac{\pi}{3}.$$

 Δ В силу свойств скалярного произведения, имеем:

$$(2\overline{a} - \overline{b}) \cdot (\overline{a} + 3\overline{b}) = 2\overline{a}\overline{a} + 6\overline{a}\overline{b} - \overline{b}\overline{a} - 3\overline{b}\overline{b} = 2|\overline{a}|^2 + 5\overline{a} \cdot \overline{b} - \overline{b} = 2|\overline{a}|^2 + 5\overline{a} - \overline{b} = 2|\overline{a}|^2 + 5\overline{a} - \overline{b} - \overline{b} = 2|\overline{a}|^2 + \overline{b}|^2 + \overline{b}|^2$$

$$3|\overline{b}|^2=2|\overline{a}|^2+5|\overline{a}||\overline{b}|\cos\angle(\overline{a}\overline{b})-3|\overline{b}|^2$$
.

Подставляя теперь в правую часть данные задачи, получим $(2\bar{a}-\bar{b})\cdot(\bar{a}+3\bar{b})$ = -17,5. ∇

Задача 6. Сила \overline{F} {5;–3; -7} приложена в точке B(2;1;1). Определить момент силы относительно точки K(2; 3; 4).

Образуем вектор \overline{KB} ={0 -2 -3}. Тогда момент относительно точки К вычисляется по формуле: \overline{M} =mom_K \overline{F} = \overline{KB} imes \overline{F} .

Имеем,

$$\overline{M} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 0 & -2 & -3 \\ 5 & -3 & -7 \end{vmatrix} = \overline{i}(14-9) - \overline{j}15 + \overline{k}10$$
, или \overline{M} ={5; -15;

10}. ∇

Задача 7. Найти
$$|\overline{c}|$$
, если $\overline{c}=(2\overline{a}+\overline{b}) imes(\overline{a}-4\overline{b})$, $|\overline{a}|=1$, $|\overline{b}|=3$,

$$\angle(\bar{a},\bar{b}) = \frac{\pi}{6}$$
.

Используя свойства векторного произведения, упростим конструкцию вектора \bar{c} , а именно:

$$\overline{c} = (2\overline{a} + \overline{b}) \times (\overline{a} - 4\overline{b}) = 2\overline{a} \times \overline{a} - 8\overline{a} \times \overline{b} + \overline{b} \times \overline{a} - 4\overline{b} \times \overline{b}$$
.

Так как \bar{a} II \bar{a} , \bar{b} II \bar{b} , то $\bar{a} \times \bar{a} = \bar{b} \times \bar{b} = 0$. Следовательно, $\bar{c} = -8\bar{a} \times \bar{b} + \bar{b} \times \bar{a} = -9\bar{a} \times \bar{b}$.

Теперь по формуле модуля векторного произведения, получаем

$$|\overline{c}|$$
 =I - 9 \overline{a} × \overline{b} I=9I \overline{a} × \overline{b} I=9 $|\overline{a}|$ $|\overline{b}|$ sin $\angle(\overline{a},\overline{b})$ =27 sin $\frac{\pi}{6}$ =13,5.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

ВЕКТОРНАЯ АЛГЕБРА

- 1) Найти $\overline{|a|}$, его направляющие косинусы, орт. \overline{a}
- a) $\bar{a} = 2i j + 3k$ 6) $\bar{a} = i + 2k$
- B) $\bar{a} = i-k$

2) a
$$_{x}$$
 =4, a $_{y}$ =-12, $|\overline{a}|$ =13 Найти а $_{z}$

3) a
$$_{y}$$
 =5, a $_{z}$ =-1 $|a|$ = $\sqrt{35}$ Найти а $_{x}$.

4)
$$lpha$$
 =45 $^{
m o}$, eta =60 $^{
m o}$,ү=120 $^{
m o}$, $\overline{|a|}$ =2. Найти координаты \overline{a}

5)
$$\alpha$$
 =30 $^{\rm O}$, β =60 $^{\rm O}$, ү =90 $^{\rm O}$ $|\overline{a}|$ =3 Найти координаты \overline{a}

6)
$$\overline{|a|}$$
 =4, $~\alpha$ =60 $^{\rm O}$, $~\beta$ =120 $^{\rm O}$. Найти координаты \overline{a}

7)
$$\overline{|a|}$$
 =5, $\,\alpha$ =45 $^{
m o}$, $\,\beta$ =90 $^{
m o}$. Найти координаты \overline{a}

8) Может ли вектор составлять с осями координат углы

a)
$$\alpha = 45^{\circ}$$
 $\beta = 60^{\circ}$ $\gamma = 90^{\circ}$

6)
$$\alpha$$
 =30 $^{\rm O}$ β =120 $^{\rm O}$ γ =0 $^{\rm O}$

B)
$$\alpha = 135^{\circ}$$
 $\beta = 30^{\circ}$ $v = 45^{\circ}$

- 9) Даны координаты вершин ΔABC : A(3,-1,2); B(-1,2,1); C(3,-4,0). Найти координаты векторов \overline{AB} , \overline{BA} , \overline{BC} , \overline{CA} , и \overline{AC} и длины сторон $\angle ABC$.
 - 10) Проверить коллинеарность векторов $\stackrel{-}{a}$ и $\stackrel{-}{e}$

a)
$$\bar{a}(2,-1,3)$$
 $\bar{e}(4,-2,6)$

6)
$$\bar{a}$$
 (3,2,-5) \bar{e} (-9,-6,15)

B)
$$\bar{a}(1,-4,2)$$
 $\bar{e}(2,-8,-4)$

$$\bar{a}$$
 (-3,5,2) \bar{a} (6,-10,4)

11)При каком значении α a параллельно e?

a)
$$\bar{a} = 3i - 2j + \alpha k$$
 $\bar{a} = 6i - 4j + 7k$

6)
$$\bar{a}$$
 =4i-2j+k \bar{e} = α i-j-3k

B)
$$\overline{a} = 8i + 2j - 7k$$
 $\overline{a} = 4i - j + \alpha k$

12) Найти скалярное произведение векторов $\stackrel{-}{a}$ и $\stackrel{-}{e}$, угол между ними,

$$\operatorname{пр}_{\overline{a}} \stackrel{-}{\underline{e}}$$
 и $\operatorname{пр}_{\overline{e}} \stackrel{-}{\underline{a}}$.

a)
$$\stackrel{-}{a}$$
 = i+j+2k $\stackrel{-}{\theta}$ = i-j+4k

6)
$$\bar{a}$$
 (4,-2,3) \bar{e} (1,-2,1)

13)При каком значении параметра β \bar{a} перпендикулярно \bar{e} ?

a)
$$\bar{a} = \beta i + 2j - k$$
 $\bar{a} = 3i + k$

6)
$$\bar{a}$$
 = 9i- β j+k \bar{e} = 4i+2j-k

14) (822) Вычислить внутренние углы ΔABC с вершинами A (1,2,1) B(3,-1,7) C(7,4,-2).

15) B
$$\triangle ABC$$
 A(5,-1,2) B(3,0,1) C(1,-2,5).

Вычислить $\angle ABC$, и внешний угол при вершине C.

16)Вычислить работу, которая которую производит сила \overline{f} , когда её точка приложения, двигаясь прямолинейно перемещается из положения M в прило- жение N

a)
$$\overline{f}$$
 (2,-5,1) M(4,-3,2) N(1,0,-5)

6)
$$\overline{f}$$
 (2,0,4) M(1,3,8) N (2,4,-1)

$$\stackrel{-}{a}$$
 =2i+j+k $\stackrel{-}{a}$ =i+2k Найти $\stackrel{-}{a}$ - $\stackrel{-}{a}$, $\stackrel{-}{a}$ - $\stackrel{-}{a}$, $\stackrel{-}{a}$ -2

18)
$$|a| = 3$$
, $|e| = 4$, $\phi = \frac{2\pi}{3}$. Найти ae , ae , ae , ee , ae

19) Определить при каком значении lpha вектора \overline{a} + lpha \overline{b} и \overline{a} - lpha взаимно перпендикулярны ? $\overline{|a|}$ = 3 $\overline{|b|}$ = 2

20) Найти векторное произведение векторов $\stackrel{-}{a}$ и $\stackrel{-}{s}$

a)
$$\overline{a} = 2i + 3j + 5k$$
 $\overline{e} = i - j$; 6) $\overline{a} = 2j - k$ $\overline{e} = i - k$

21)
$$\stackrel{-}{a}$$
 =i+2j-k $\stackrel{-}{e}$ =i-k Найти $\stackrel{-}{a} \times \stackrel{-}{e}$, $\stackrel{-}{e} \times \stackrel{-}{a}$.

22) Вычислить площадь параллелограмма, построенного на векторах $\stackrel{-}{a}$ и $\stackrel{-}{e}$ как на сторонах

a)
$$\overline{a} = i-2j+2k$$
 $\overline{e} = i+4j$; 6) $\overline{a} = 3j-2k$ $\overline{e} = i+j-k$

23) Вычислить S_{ABC} (задача 14)

24) Вычислить S_{MBC} (задача 15)

- 25) Даны вершины ΔABC . А (1,-1,2), В(5,-6,2), С(1,3,-1) Найти S $_{\Delta ABC}$ и длину его высоты, опущенной из В на АС.
- 26) Сила \overline{f} (2,4,-5) приложена в точке К (4,-2,3). Определить а) величину и направляющие косинусы момента силы \overline{f} относительно точки N(1,3,2), б) момент силы \overline{f} относительно начала координат.

$$\stackrel{-}{a}$$
 = 2i+3j-k , $\stackrel{-}{6}$ (1,-2,1) Вычислить $\sin(\stackrel{-}{a},\stackrel{-}{6})$.

28)
$$|\overline{a}| = 3$$
, $|\overline{e}| = 26$ $|\overline{a} \times \overline{e}| = 72$ $\overline{a} \cdot \overline{e}$?

29)
$$\overline{a}\perp\overline{e}$$
 $|\overline{a}|=3$, $|\overline{e}|=4$. Вычислить $|(\overline{a}+\overline{e})\times(\overline{a}-\overline{e})|$

- 30) Какому условию должны удовлетворять вектора $\stackrel{-}{a}$ и $\stackrel{-}{a}$, чтобы $\stackrel{-}{a}+\stackrel{-}{a}$ и $\stackrel{-}{a}-\stackrel{-}{a}$ были коллинеарные?
 - 31) Выяснить, компланарны ли вектора $\stackrel{-}{a}$, $\stackrel{-}{\kappa}$ и $\stackrel{-}{c}$

1)
$$a(2,3,-1)$$
, $e(1,-1,3)$, $c(1,9,-11)$

$$\bar{a}(3,-2,1)$$
 $\bar{e}(2,1,2)$ $\bar{c}(3,-1,-2)$

3)
$$\bar{a}(2,-1,2)$$
 $\bar{e}(1,2,-3)$ $\bar{c}(3,-4,7)$

32) При каком значении α вектора $a=3i-\alpha j+4$, e=i+j-k и c=2i-j компланарны?

- 33) Показать, что точки A(2,-1,-2), B(1,2,1), C(2,3,0) и Д(5,0,-6) лежат в одной плоскости.
- 34) Вершины тетраэдра находятся в точках A(2,-1,1), B(5,5,4), C(3,2,-1), Д(4,1,3). Вычислить её объём.
- 35) Построить пирамиду с вершинами A(2,0,0), B(0,3,0), C(0,0,6) и D(2,3,8) и вычислить её объём и высоту, опущенную на грань ABC.

ТИПОВОЙ РАСЧЕТ

Даны точки A, B, C, D. Найти:

- а) Координаты, модуль и направляющие косинусы вектора \overline{AB}
 - b) Проекцию вектора \overline{AB} на вектор \overline{CD} ;
- с) Скалярное произведение векторов AB и BC , а также угол между ними;
- d) Векторное произведение векторов \overline{AB} и AC , а также площадь треугольника $\square \, ABC$;
 - е) Смешанное произведение векторов а также объем пирамиды ABCD. $\overline{AB}, \overline{AC}, \overline{AD}$

Вариант 1.

A(2;7;4), B(4;11;7), C(9;15;4), D(11;5;5) . Вариант 2.

 $A(2;7;4), \quad B(4;11;7), \quad C(9;15;4), \quad D(8;5;5).$

Вариант 3.

$$A(2; -2;1), B(7;6;7), C(7;4;3), D(6;0;3).$$

Вариант 4.

$$A(1;4;4)$$
, $B(8;6;7)$, $C(-7;8;6)$, $D(4;6;6)$.

Вариант 5.

$$A(3;2;1)$$
, $B(8;4;-3)$, $C(-5;6;3)$, $D(11;1;3)$.

Вариант 6.

$$A(1;2;1)$$
, $B(10;4;-3)$, $C(-7;6;3)$, $D(9;-7;3)$.

Вариант 7.

$$A(2;2;5)$$
, $B(4;10;8)$, $C(9;7;7)$, $D(8;4;6)$.

Вариант 8.

$$A(2;2;5)$$
, $B(4;10;8)$, $C(5;6;7)$, $D(8;4;6)$.

Вариант 9.

$$A(2;3;1)$$
, $B(3;7;4)$, $C(7;9;3)$, $D(6;5;3)$.

Вариант 10.

$$A(2;2;3)$$
, $B(7;4;7)$, $C(-6;6;5)$, $D(5;4;5)$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Александров П.С. Лекции по аналитической геометрии. Изд. Лань. ISBN: 978-5-8114-4097-9. 2019.
- 2. Ефимов Н.В. Краткий курс аналитической геометрии; Изд. <u>Физматлит</u>. 978-5-9221-1419-6. 2018.
- 3. Сахарников Н.А. Высшая математика. Изд. Ленинградского университета, 1973.