

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

Кафедра «Прикладная математика»

Учебное пособие

по дисциплине

«Функциональный и асимптотический анализ»

Авторы Рябых Г. Ю., Пристинская О. В., Фролова Н. В.

Аннотация

Учебное пособие предназначено для студентов очной формы обучения направления 01.04.04 «Прикладная математика».

Авторы

к.ф.-м.н., доцент кафедры «Прикладная математика» Рябых Г.Ю., ст. преподаватель кафедры «Прикладная математика» Пристинская О.В., ст. преподаватель кафедры «Прикладная математика» Фролова Н.В.

Оглавление

1.	Линейные пространства	6
1.1	Определение линейного пространства	6
1.2	Подпространства линейного пространства	9
1.3	Линейная зависимость и линейная независимость элем	ен-
	тов	9
1.4	Размерность пространства	10
2.	Метрическое пространство	11
2.1	Определение. Примеры метрических пространств	11
2.2	Сходимость в метрическом пространстве	17
2.3	Замкнутые и открытые множества	18
2.4	Полные метрические пространства	22
2.5	Счетные множества	22
2.6	Сепарабельные пространства	24
2.7	Компактные множества	25
3.	Нормированные пространства	27
3.1	Определение нормированного пространства	27
3.2	Примеры нормированных пространств	28
4.	Пространства со скалярным произведением	29
4.1	Евклидовы пространства	30
4.2	Ортогональные элементы. Ортогональные системы	31
5.	Банаховы пространства	33
5.1	Определение банахова пространства	33
5.2	Примеры банаховых пространств	33
5.3	Ряды в нормированных и банаховых пространствах	33
6.	Гильбертовы пространства	35
6.1	Определение гильбертова пространства	35

6.2	Ряды Фурье в гильбертовом пространстве	.35
7.	Операторы. Линейные операторы	39
7.1	Определение оператора	.39
7.2	Линейные операторы	40
7.3	Примеры линейных ограниченных операторов	.41
7.4	Пространства линейных операторов	. 43
7.5	Обратные операторы	.44
7.6	Примеры обратных линейных операторов	.46
7.7	Сопряженные и самосопряженные операторы	.50
7.8	Вполне непрерывные операторы	.53
7.9	Собственные значения и собственные векторы линейного	
	оператора	.56
7.10	О Собственные значения и собственные векторы линейных	
	операторов в конечномерных пространствах	57
7.1	1 Собственные значения и собственные векторы вполне	
	непрерывных операторов	.59
7.12	2 Принцип сжимающих отображений	.61
7.13	3 Интегральные операторы Вольтерра. Основные понятия	.64
7.14	4 Резольвента интегрального уравнения Вольтерра	65
8.	Задания и примеры решений	68
Спи	сок литературы	81

1. Линейные пространства

1.1 Определение линейного пространства

Определение. Множество L элементов x,y,z... называется линейным пространством, если в нем определены две операции:

- 1) Каждым двум элементам $x, y \in L$ поставлен в соответствие определенный элемент $x+y\in L$, называемый их суммой;
- 2) Каждому элементу $x \in L$ и каждому скаляру λ из некоторого поля (в качестве такого поля будем использовать поле действительных чисел R или поле комплексных чисел C) поставлен в соответствие определенный элемент $\lambda x \in L$ произведение элемента x на скаляр λ .

При этом для любых элементов x,y,z \in L и любых скаляров λ , μ выполняются следующие аксиомы:

- 1) x + y = y + x;
- 2) x + (y + z) = (x + y) + z;
- 3) Существует нулевой элемент $\theta \in L$ такой, что $x + \theta = x$;
- 4) Для любого элемента $x \in L$ существует обратный элемент $x \in L$, такой, что $x+(-x)=\theta$;
- 5) $\lambda(\mu x) = (\lambda \mu) x = \mu(\lambda x);$
- 6) 1x = x, $0x = \theta$;
- 7) $\lambda(x + y) = \lambda x + \lambda y$;
- 8) $(\lambda + \mu)x = \lambda x + \mu x$.

Из определения линейного пространства вытекают следующие следствия:

- 1) Нулевой элемент единственный;
- 2) Если $\lambda x = \mu x$, где $x \neq \theta$, то $\lambda = \mu$;
- 3) Если $\lambda x = \lambda y$, где $\lambda \neq 0$, то x=y.

Рассмотрим некоторые примеры линейных пространств.

Пример 1. Множества векторов на прямой R_1 , на плоскости R_2 или в трехмерном пространстве R_3 образуют линейное пространство. При этом сумма векторов определяется по правилу параллелограмма, а произведение вектора \mathbf{x} на скаляр λ как векторо $\lambda \mathbf{x}$, длина которого есть произведение $|\lambda|$ на длину \mathbf{x} , а направление совпадает с направлением \mathbf{x} , если $\lambda \rangle 0$, и противоположно ему, если $\lambda \langle 0$. Аксиомы линейного пространства — это известные свойства операций над векторами.

Пример 2. Множество n – мерных векторов R_n образует линейное пространство. При этом суммой векторов $\mathbf{x} = (x_1, x_2, ..., x_n)$ и $\mathbf{y} = (y_1, y_2, ..., y_n)$ называется вектор $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$; вектором $\mathbf{x} = (\lambda x_1, \lambda x_2, ..., \lambda x_n)$.

Пример 3. Рассмотрим пространство $P_n(x)$ всех многочленов степени не выше n: $x(t) = x_0 + x_1 t + ... + x_n t^n$ (где $x_0, x_1, ... x_n$ – произвольные вещественные числа, $t \in (-\infty, \infty)$) с обычными операциями сложения и умножения на число. Так как произведение многочлена на вещественное число и сумма двух многочленов являются многочленами степени не выше n, то имеем линейное пространство многочленов.

Пример 4. Пространство функций, непрерывных на отрезке [a,b], обозначается C[a,b]. Так как x(t)+y(t) непрерывна на [a,b], как сумма непрерывных функций, и $\lambda x(t)$ также непрерыв-

на $(\lambda \in R)$, то C[a,b] является линейным пространством (справедливость аксиом очевидна).

Пример 5. Рассмотрим множество M_{mn} всех прямоугольных матриц размерностью $m \times n$ со скалярными элементами

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & . & a_{1n} \\ a_{21} & a_{22} & . & a_{2n} \\ . & . & . & . \\ a_{m1} & a_{m2} & . & a_{mn} \end{pmatrix};$$

$$B = (b_{ij}) = egin{pmatrix} b_{11} & b_{12} & . & b_{1n} \ b_{21} & b_{22} & . & b_{2n} \ . & . & . & . \ b_{m1} & b_{m2} & . & b_{mn} \end{pmatrix}$$
 .

Определим в множестве M_{mn} операции сложения и умножения на число следующим образом:

$$A + B = (a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij}), \lambda A = \lambda(a_{ij}) = (\lambda \cdot a_{ij}).$$

Поскольку операции над матрицами сводятся к операциям над числами, то справедливость аксиом очевидна.

Пример 6. Через s будем обозначать множество всех векторов c бесконечным множеством координат: $a=(a_1,a_2,...,a_i,...)$. (Члены последовательности $a_1,a_2,...,a_i,...$ называются координатами вектора a.). Равенство векторов, их сложение и умножение на вещественное число определим по тому же принципу, что и в R_n . Именно, если $a=(a_1,a_2,...,a_i,...)$ и $b=(b_1,b_2,...,b_i,...)$, то a=b означает, что $a_i=b_i$ при всех $i=1,2,\ldots;$

$$a + b = (a_1 + b_1, a_2 + b_2, ..., a_i + b_i, ...);$$

 $\lambda a = (\lambda a_1, \lambda a_2, ..., \lambda a_i, ...).$

Очевидно, ѕ является линейным пространством.

1.2 Подпространства линейного пространства

Определение. Подмножество L_0 линейного пространства L , которое само является линейным пространством относительно введенных в L операций, называется его подпространством.

Пример. Рассмотрим в линейном пространстве L систему элементов

Всякая сумма вида $c_n = \sum_{k=1}^n a_k x_k$ где $a_k \in R_1$, называется линейной комбинацией элементов $x_1, x_2, ... x_n$. Множество элементов c_n называется линейной оболочкой, натянутой на систему элементов $x_1, x_2, ... x_n$. Очевидно, линейная оболочка является подпространством L.

1.3 Линейная зависимость и линейная независимость элементов

Определение. Элементы $x_1, x_2, ... x_n$ называются линейно зависимыми, если существует их линейная комбинация, $\sum_{k=1}^n a_k x_k = 0, \text{ где не все } \mathsf{a}_\mathsf{K} \text{ равны нулю (т.е. } \sum_{k=1}^n \left| a_k \right| > 0 \text{). Если ра-}$

венство
$$\sum_{k=1}^{n} a_k x_k = 0$$
 возможно только при условии

 $a_1 = a_2 = \ldots = a_n = 0$, то элементы $x_1, x_2, \ldots x_n$ называются линейно независимыми.

1.4 Размерность пространства

Определение. Линейное пространство называется n-мерным, если в нем существует n линейно независимых элементов, а всякие n+1 элементов линейно зависимы.

Определение. Набор любых п линейно независимых элементов в n- мерном пространстве L называется базисом в L.

Рассмотрим в n-мерном пространстве L какой-либо базис $\{e_k\}_{k=1}^n$. Возьмем произвольный элемент $x \in L$. Вследствие n-мерности пространства L элементы e_1 , e_2 , ... e_n , x линейно зависимы. Это значит, что найдутся такие скаляры a_1 , a_2 , ... a_{n+1} , не все равные нулю, что справедливо равенство

$$a_1 e_1 + a_2 e_2 + ... + a_n e_n + a_{n+1} x = \theta$$

При этом $a_{n+1} \neq 0$, так как иначе элементы $e_1, e_2, ...e_n$ были бы линейно зависимы. Следовательно, для элемента x можно записать представление

$$x = \xi_1 e_1 + \xi_2 e_2 + \dots + \xi_n e_n$$

где $\xi_k = -a_k \ / \ a_{k+1} k = 1,2,...,n.$ Полученное представление произвольного элемента n-мерного пространства L называется разложением элемента x по базису $\{e_k\}_{k=1}^n$. Числа $\xi_1,\xi_2,...,\xi_n$ называются координатами элемента x в базисе $\{e_k\}_{k=1}^n$.

Определение. Линейное пространство L называется бесконечномерным, если для каждого натурального n в L существует n линейно независимых элементов.

Пример. Пространство C[a,b] бесконечномерное. Действительно, рассмотрим последовательность функций $1,t^2,...,t^n,...$ Тогда равенство

$$a_1 + a_2 t + a_3 t^2 + \dots + a_{n+1} t^n = 0$$

выполняется только в том случае, если $a_k = 0 (k = 1, 2, ..., n, orall n)$.

2. Метрическое пространство

2.1 Определение. Примеры метрических пространств

Определение. Множество М называется метрическим пространством, если каждой паре его элементов x и у поставлено в соответствие вещественное число $\rho(x,y)$, удовлетворяющее аксиомам:

- 1) $\rho(x,y) \ge 0$, где $\rho(x,y) = 0$ тогда и только тогда, когда x = y (аксиома тождества);
- 2) $\rho(x,y) = \rho(y,x)$ (аксиома симметрии);
- 3) $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ (аксиома треугольника).

Пример 1. Пусть M=R. Если x, y \in R, то положим $\rho(x,y)=|x-y|$. Справедливость аксиом метрики очевидна.

Пример 2. Пусть M= C[a,b]. Введем метрику, полагая $\rho(x,y) = \max_t |x(t) - y(t)|, \ t \in [a,b].$ Очевидно, $\rho(x,y) \ge 0$, причем $\rho(x,y) = 0$ тогда и только тогда, когда x(t) = y(t). Справедлива также аксиома симметрии $\rho(x,y) = \rho(y,x)$. Проверим аксиому треугольника. Для $\forall t \in [a,b]$ имеем

$$|x(t) - z(t)| \le |x(t) - y(t)| + |y(t) - z(t)| \le$$

$$\le \max_{t} |x(t) - y(t)| + \max_{t} |y(t) - z(t)| = \rho(x, y) + \rho(x, z)$$

Поэтому

$$\rho(\mathbf{x},\mathbf{z}) = \max_{t} |x(t) - z(t)| \le \rho(x,y) + \rho(y,z).$$

Пример 3. Пусть $M=R_n$. Для x, $y \in R_n$ положим

$$\rho(x,y) = \left(\sum_{k=1}^{n} (x_k - y_k)^2\right)^{1/2}.$$

Для доказательства аксиомы треугольника предварительно докажем важное неравенство Коши-Буняковского

$$(\sum_{i=1}^{n} a_i b_i)^2 \le (\sum_{i=1}^{n} a_i^2) (\sum_{i=1}^{n} b_i^2),$$

справедливое для любых вещественных чисел a_i и b_i . Доказательство этого неравенства основывается на следующем замечании: если квадратный трехчлен с вещественными коэффициентами $Ax^2 + 2Bx + C$ неотрицателен при всех вещественных x, то его дискриминант $B^2 - AC \le 0$. Составим вспомогательную функцию $\phi(x)$ от вещественной переменной x, сводящуюся κ квадратному трехчлену:

$$\phi(x) = \sum_{i=1}^n (a_i x + b_i)^2 = (\sum_{i=1}^n a_i^2) x^2 + 2(\sum_{i=1}^n a_i b_i) x + \sum_{i=1}^n b_i^2$$

_{Здесь}
$$A = \sum_{i=1}^{n} a_i^2$$
 $B = \sum_{i=1}^{n} a_i b_i$ $C = \sum_{i=1}^{n} b_i^2$

Из определения $\phi(x)$ видно, что $\phi(x) \geq 0$ при всех x. Тогда, на основании предыдущего замечания,

$$(\sum_{i=1}^{n} a_i b_i)^2 - (\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2) \le 0,$$

а это и есть иначе записанное неравенство Коши. Теперь покажем, что

$$\sqrt{\sum_{i=1}^{n} (a_i + b_i)^2} \le \sqrt{\sum_{i=1}^{n} a_i^2} + \sqrt{\sum_{i=1}^{n} b_i^2} \ .$$

Для его доказательства извлечем, квадратные корни из обеих частей неравенства выше, затем обе части полученного нового неравенства удвоим и прибавим к ним выражение

$$\sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2$$

В результате получим

$$\sum_{i=1}^n a_i^2 + 2 \sum_{i=1}^n a_i b_i + \sum_{i=1}^n b_i^2 \leq \sum_{i=1}^n a_i^2 + 2 \sqrt{\sum_{i=1}^n a_i^2} \sqrt{\sum_{i=1}^n b_i^2} + \sum_{i=1}^n b_i^2$$

Это неравенство можно переписать и так

$$\sum_{i=1}^{n} (a_i + b_i)^2 \le \left(\sqrt{\sum_{i=1}^{n} a_i^2} + \sqrt{\sum_{i=1}^{n} b_i^2}\right)^2$$

Легко видеть, что из него следует неравенство треугольника.

Пример 4. Пространство $\,l^2\,$

Выделим из s множество векторов, более близкое по своим свойствам к

конечно-мерному векторному пространству. Именно, обозначим

через l^2

множество всех векторов a из s, для которых

$$\sum_{i=1}^{\infty} a_i^2 < +\infty$$

Ясно, что если a входит в l^2 , то и λa входит в l^2 при любом λ . Менее

очевидно, что и операция сложения векторов не выводит из $\,l^2\,.\,$ Докажем это.

Пусть a и b — два вектора из l^2 . При любом натуральном n по неравенству треугольника, доказанному выше,

$$\sum_{i=1}^{n} (a_i + b_i)^2 \le \left(\sqrt{\sum_{i=1}^{n} a_i^2} + \sqrt{\sum_{i=1}^{n} b_i^2} \right)^2.$$

Тем более,

$$\sum_{i=1}^{n} (a_i + b_i)^2 \le \left(\sqrt{\sum_{i=1}^{\infty} a_i^2} + \sqrt{\sum_{i=1}^{\infty} b_i^2} \right)^2.$$

Так как в правой части неравенства стоит постоянная, а для положительных

рядов ограниченность частичных сумм влечет сходимость ряда, то ряд

$$\sum_{i=1}^{\infty} (a_i + b_i)^2$$

сходится, и при этом

$$\sqrt{\sum_{i=1}^{\infty} (a_i + b_i)^2} \le \sqrt{\sum_{i=1}^{\infty} {a_i}^2} + \sqrt{\sum_{i=1}^{\infty} b_i^2}.$$

Тем самым доказано, что вектор a+b входит в $\,l^2\,$, а заодно неравенство

треугольника обобщено на бесконечные суммы.

Для x, y
$$\in$$
 l^2 положим ρ (x,y)= $\left(\sum_{k=1}^{\infty}(x_k-y_k)^2\right)^{1/2}$. Легко видеть,

что l^2 является метрическим пространством.

Пример 5. Пусть множество **/** состоит из всех бесконечных числовых последовательностей $x = (\xi_1, \xi_2, ..., \xi_i, ...)$ (или векторов с бесконечным множеством координат), удовлетворяю-

щих условию $\sum_{i=1}^{\infty} \left| \xi_i \right| < +\infty$. Положим для любых двух элементов

$$x = \{\xi_i\}$$
 и $y = \{\eta_i\}$ из /: $\rho(x, y) = \sum_{i=1}^{\infty} |\xi_i - \eta_i|$.

Выполнение первых двух аксиом метрического пространства очевидно. Аксиома треугольника следует из неравенства:

$$\rho(x, y) = \sum_{i=1}^{\infty} \left| \xi_{i} - \eta_{i} \right| \leq \sum_{i=1}^{\infty} \left(\left| \xi_{i} - \zeta_{i} \right| + \left| \zeta_{i} - \eta_{i} \right| \right) = \sum_{i=1}^{\infty} \left| \xi_{i} - \zeta_{i} \right| + \sum_{i=1}^{\infty} \left| \zeta_{i} - \eta_{i} \right| = \rho(x, z) + \rho(z, y)$$

Таким образом, / — метрическое пространство.

Пример 6. Используя понятие интеграла Лебега, можно построить еще некоторые функциональные метрические пространства. Именно, зададим число $p \ge 1$ и обозначим через L^p

множество всех функций x(t), заданных и измеримых на отрезке [a,b] и таких, что

$$\int_{a}^{b} \left| x(t) \right|^{p} dt < +\infty$$

Про такие функции говорят, что они суммируемы с p-й степенью. При этом условимся отождествлять друг с другом эквивалентные между собой функции, т. е. считать их одним и тем же элементом множества \mathcal{L}^p . Таким образом, каждый элемент множества \mathcal{L}^p изображается не одной определенной, а любой функцией из целого класса эквивалентных между собой функций.

Введем метрику в множестве L^p , полагая

$$\rho(x, y) = \left(\int_{a}^{b} |x(t) - y(t)|^{p} dt\right)^{\frac{1}{p}}$$

Чтобы проверить, что введенное таким способом расстояние удовлетворяет всем аксиомам метрического пространства, следует воспользоваться одним неравенством, которое называется неравенством Минковского, и которое мы приведем без доказательства. Именно, для любых двух измеримых функций f(t) и g(t)

$$\left(\int_{a}^{b} |f(t) + g(t)|^{p} dt\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} |f(t)|^{p} dt\right)^{\frac{1}{p}} + \left(\int_{a}^{b} |g(t)|^{p} dt\right)^{\frac{1}{p}},$$

$$p \geq 1.$$

Из этого неравенства, в частности, следует, что если функции $x,\ y\in L^p$, то и их сумма $\ x+y\in L^p$. Заменяя $\ y$ на —

y, мы получим, что и разность $x-y\in L^p$. А тогда расстояние, определенное выше, имеет конечное значение для любых $x,y\in L^p$.

Таким образом, \mathcal{L}^p при $p \geq 1$ — метрические пространства.

Наиболее простым среди пространств L^p . является то, которое получается при p=1, т. е. пространство всех функций, суммируемых на отрезке [a,b]. Его обозначают просто \boldsymbol{L} . Среди всех L^p наиболее широкие применения находит пространство L^2 .

2.2 Сходимость в метрическом пространстве

Наличие расстояния позволяет определить в метрическом пространстве понятие предела.

Определение. Точка x метрического пространства E называется *пределом* бесконечной последовательности точек $x_n \in E$ (пишем $x_n \to x$ или $x = \lim x_n$), если $\rho(x_n, x) \to 0$.

Определенную таким образом сходимость последовательности точек будем иногда называть *сходимостью по расстоянию* (или *по метрике* пространства E).

Докажем, что *у данной последовательности точек может* существовать только один предел. Пусть $x_n \to x$ и $x_n \to y$. По аксиоме треугольника $\rho(x,y) \le \rho(x,x_n) + \rho(x_n,y)$. Но правая часть стремится к нулю при $n \to \infty$, а левая неотрицательна, следовательно, $\rho(x,y) = 0$ и x = y.

Покажем, что расстояние ho(x,y) - *непрерывная функция* от x и y в том смысле, что если $x_n \to x$ и $y_n \to y$, то

$$\rho(x_n, y_n) \to \rho(x, y)$$
.

Действительно,

$$|\rho(x_n, y_n) - \rho(x, y)| \le \rho(x_n, x) + \rho(y_n, y) \to 0$$

Заметим также, что если $x_n \to x$, то и любая частичная последовательность точек $x_{n_k} \, (n_1 < n_2 < ... < n_k < ...)$, выделенная из $\{x_n\}$, тоже сходится к x. Это очевидно, так как из $\rho(x_n,x) \to 0$ следует, что и $\rho(x_{n_k},x) \to 0$.

Если $x_{\Pi} = x$ при всех π , то и $\lim x_{\Pi} = x$.

2.3 Замкнутые и открытые множества

Определение. Открытым шаром с центром $a \in E$ и радиусом r>0 называется множество S(a,r) всех точек $x \in E$, удовлетворяющих условию $\rho(x,a) < r$. Аналогично, замкнутым шаром S*(a,r) (r>0) называется множество всех точек $x \in E$, удовлетворяющих условию $\rho(x,a) \le r$.

В R, т. е. на числовой прямой, открытым шаром будет интервал

$$(a - r, a + r), a замкнутым — отрезок $[a - r, a + r].$$$

В C[a,b] шар S(y,r) состоит из всех функций x(t), удовлетворяющих условию $\big|x(t)-y(t)\big| < r$ на всем отрезке [a,b].

Понятие шара позволяет дать следующую характеристику предела сходящейся последовательности точек: для того чтобы x = $\lim x_n$, необходимо и достаточно, чтобы, каков бы ни был шар S (открытый или замкнутый) c центром в точке x, cуществовало tа-

кое N, что x_n ∈ S при $n \ge N$.

Определение. Множество **F**, содержащееся в E ($F \subset E$), называется *замкнутым*, если, какова бы ни была сходящаяся к пределу последовательность точек $x_n \in F$, ее предел тоже входит в F.

Из определения следует, что всё E замкнуто; пустое множество тоже считается замкнутым, так как из него вообще нельзя выделить никакой последовательности точек. Конечное множество $F = \{ y_1, ..., y_k \}$ замкнуто, так как если последовательность $\{x_n\}$ состоит из точек этого множества, то по крайней мере одна из точек, пусть это будет y_i , повторяется среди x_n бесконечное множество раз, а тогда и предел (если он существует) должен совпасть с y_i .

Примерами замкнутых множеств в R_1 могут также служить любой отрезок $a \le x \le b$, множества всех чисел $x \ge a$ или всех чисел $x \le b$.

В любом метрическом пространстве замкнутый шар $S^*(a,r)$ всегда представляет замкнутое множество. Действительно, пусть $x_n \in S^*(a,r)$; тогда $\rho(x_n,a) \le r$. Если при этом $x_n \to x$, то по непрерывности расстояния $\rho(x,a) = \lim \rho(x_n,a) \le r$, следовательно, и $x \in S^*(a,r)$.

С понятием замкнутого множества тесно связано понятие предельной точки. Именно, пусть A — произвольное множество точек из E; точка $x \in E$ называется *предельной точкой* множества A, если существует такая последовательность точек $x_n \in A$,

среди которых имеется бесконечное множество различных, что x = $\lim x_n$. Например, в R точка x=0 является предельной для интервала 0 < x < 1, так как можно положить хотя бы $x_n = \frac{1}{2n}$ и тогда $0 < x_n < 1$ и $x_n \to 0$. Вообще, предельными точками интервала a < x < b являются все его точки и два конца x=a и x=b.

В следующих двух теоремах устанавливаются основные свойства замкнутых множеств. При этом рассматриваются множества, содержащиеся в одном и том же метрическом пространстве *E*.

Теорема 1. Объединение конечного числа замкнутых множеств есть замкнутое множество.

Теорема 2. Пересечение любого множества замкнутых множеств замкнуто.

В дальнейшем важную роль будет играть операция замыкания произвольного множества $A \subset E$, заключающаяся в присоединении к множеству A пределов всех сходящихся последовательностей его точек. Получаемое таким способом множество обозначается [A] и называется замыканием множества A.

Таким образом, всегда $A \subset [A]$. Из определения замыкания сразу следует, что множество A замкнуто тогда и только тогда, когда A = [A].

В R замыканием интервала (a,b) будет отрезок [a,b]. Однако в произвольном метрическом пространстве для замыкания открытого шара имеет место лишь включение $[S(a,r)] \subset S^*(a,r)$, но равенство не обязательно.

Лемма 1. Всякая точка $x \in [A]$ представима в виде $x = \lim_{n \to \infty} x_n$, где $x_n \in A$.

Лемма 2. Для того чтобы $x \in [A]$, необходимо и достаточно, чтобы, каково бы ни было $\varepsilon > 0$, существовала такая точка $x' \in A$, что $\rho(x', x) < \varepsilon$.

Теорема 3. Замыкание любого множества замкнуто.

Теорема 4. Замыкание [A] есть наименьшее замкнутое множество, содержащее A.

Определение. Пусть A — произвольное множество точек из E. Точка $x \in A$ называется *внутренней точкой* множества A, если при некотором $\varepsilon > 0$ шар $S(x, \varepsilon) \subset A$. Множество $G \subset E$, все точки которого внутренние, называется *открытым*.

Всё E — открытое множество; пустое множество также причисляется к открытым. В R примерами открытого множества могут служить любой интервал a < x < b, множества, определяемые неравенствами x > a или x < b.

Покажем, что в любом метрическом пространстве всякий открытый шар S(a,r) — открытое множество. Действительно, пусть $x\in S(a,r)$. Это значит, что $\rho(x,a)< r$. Положим $\varepsilon=r-\rho(x,a)$. Если $y\in S(x,\varepsilon)$, т. е. если $\rho(y,x)<\varepsilon$, то $\rho(y,a)\leq \rho(y,x)+\rho(x,a)< r$, откуда $y\in S(a,r)$. Таким образом, весь шар $S(x,\varepsilon)\subset S(a,r)$, т. е. x — внутренняя точка множества S(a,r).

Связь между открытыми и замкнутыми множествами устанавливается следующей важной теоремой:

Teopema 5. Для того чтобы множество $G \subset E$ было открытым, необходимо и достаточно, чтобы его дополнение F = E | G было замкнутым.

Теорема 6. Объединение любого множества откры-

тых множеств и пересечение конечного числа открытых множеств есть открытые множества.

2.4 Полные метрические пространства

Определение. Последовательность точек x_n метрического пространства E называется фундаментальной (или сходящейся в себе), если $p(x_n, x_\tau) \to 0$ при $n, \tau \to \infty$.

Teopeмa 1. Если последовательность $\{x_n\}$ имеет предел, то она фундаментальна.

Доказательство. Пусть $x_{\Pi} \to x$. Тогда

$$p(x_{\pi}, x_{\tau}) \leq p(x_{\pi}, x) + p(x, x_{\tau}) \xrightarrow[\pi, m \to \infty]{} 0.$$

Определение. Множество точек метрического пространства называется *ограниченным по расстоянию* (говорят и просто — ограниченным), если оно содержится в каком-нибудь шаре.

Для числовых множеств (т. е. множеств в R) это определение ограниченности совпадает с обычным.

Теорема 2. Всякая фундаментальная последовательность $\{x_n\}$ ограничена.

Определение. Метрическое пространство называется *полным*, если в нем всякая фундаментальная последовательность имеет предел.

2.5 Счетные множества

Если элементы бесконечного множества могут быть перенумерованы с помощью всех натуральных чисел, т. е. могут быть

расположены в виде некоторой бесконечной последовательности $x_1,\ x_2,\ \dots,\ x_n,\ \dots$, то такое множество называется счетным. Среди различных бесконечных множеств счетные оказываются во многих отношениях наиболее простыми.

Приведем некоторые примеры счетных множеств.

- **1) Натуральный ряд чисел**. Натуральные числа можно перенумеровать в порядке возрастания: $x_1 = 1$, $x_2 = 2, \ldots, x_n = n, \ldots$ Тогда номер каждого числа совпадает с его величиной.
- **2) М н о ж е с т в о** в с е х ч е т н ы х ч и с е л . Четные числа тоже можно перенумеровать в порядке возрастания: $x_1 = 2, x_2 = 4, \ldots, x_n = 2n, \ldots$

Укажем некоторые свойства счетных множеств.

Теорема 1. *Из всякого бесконечного множества* можно выделить счетное подмножество.

Теорема 2. Всякое бесконечное подмножество счетного множества тоже счетно.

Теорема 3. Объединение конечного числа счетных множеств — тоже счетное множество.

Теорема 4. Объединение счетного множества счетных множеств — тоже счетное множество.

Теорема 5. Объединение конечного или счетного множества множеств, каждое из которых конечно или счетно, есть конечное или счетное множество.

Важную роль в функциональном анализе играет следующая теорема:

Теорема 6. *Множество всех рациональных чисел счетно.*

Теорема 7. Пусть элементы множества А характеризуются конечным числом параметров, каждый из которых независимо от остальных может принимать значения из некоторой счетной совокупности. Тогда множество А счетно.

Дадим одно важное применение теоремы 7.

Теорема 8. *Множество Рвсех алгебраических поли*номов с рациональными коэффициентами счетно.

2.6 Сепарабельные пространства

В множестве всех вещественных чисел R подмножество Q всех рациональных чисел обладает следующим важным свойством: каждое вещественное число представимо как предел последовательности рациональных чисел. Таким образом, [Q] = R. Это свойство называют плотностью множества рациональных чисел в R. Перенесем понятие плотности в произвольные метрические пространства.

Определение. Множество A точек метрического пространства E называется всюду плотным (в E), если $[A\]=E$.

Согласно леммам 1 и 2, равенство [A] = E означает, что каждый $x \in E$ представим в виде $x = \lim x_n$, где $x_n \in A$, или что для каждого $x \in E$ по любому $\varepsilon > 0$ можно найти $x' \in A$ так, что $\rho(x, x') < \varepsilon$. Если же сказанное сейчас верно только для тех x, которые принадлежат некоторому открытому или замкнутому шару $S \subset E$, то говорят, что A плотно в S.

Определение. Метрическое пространство называется *се- парабельным*, если в нем существует счетное или конечное всюду плотное подмножество.

Так как конечное множество замкнуто, то его замыкание совпадает с ним самим. Поэтому наличие в пространстве конечного всюду плотного подмножества означает, что все пространство состоит из конечного числа точек. Сепарабельность же пространства, содержащего бесконечное множество точек, означает, что в этом пространстве существует именно с ч е т н о е всюду плотное подмножество.

В R_n каждый вектор представим в виде предела последовательности векторов с рациональными координатами. А векторы с рациональными координатами образуют счетное множество. Следовательно, R_n — сепарабельно.

Пространство \mathcal{C} сепарабельно. В нем счетным всюду плотным множеством является, например, множество \mathcal{P} всех алгебраческих полиномов с рациональными коэффициентами.

Teopema 1. Всякое подмножество E_1 сепарабельного метрического пространства E само является сепарабельным пространством.

Теорема 2. Если всюду плотное подмножество E_1 метрического пространства E является сепарабельным пространством, то и E сепарабельно.

2.7 Компактные множества

Одной из важных теорем математического анализа является теорема Больцано — Вейерштрасса: из всякой ограниченной бесконечной последовательности чисел $x_1, x_2, \ldots, x_n, \ldots$ можно выделить частичную $x_{n1}, x_{n2}, \ldots, x_{nk} \ldots$ ($n_1 < n_2 < \ldots < n_k < \ldots$), сходящуюся к конечному пределу. Если A — произвольное ограниченное множество чисел, то теорема Больцано —

Вейерштрасса применима к любой последовательности, составленной из чисел множества A. С другой стороны, если A не ограничено, то из него можно выделить последовательность, стремящуюся к ∞ , а из такой последовательности нельзя выделить никакой частичной, сходящейся к конечному пределу. Таким образом, в пространстве R можно сформулировать следующий результат. Пусть множество $A \subset R$. Для того чтобы из любой последовательности $\{x_n\}$, все члены которой $x_n \in A$, можно было выделить частичную, сходящуюся к конечному пределу, необходимо и достаточно, чтобы множество A было ограничено.

Определение. Множество A, содержащееся в метрическом пространстве E, называется κ омпактным, если из любой бесконечной последовательности точек $x_n \in A$ можно выделить частичную последовательность $x_{n1}, x_{n2}, \ldots, x_{nk} \ldots (n_1 < n_2 < \ldots < n_k < \ldots)$, сходящуюся в E к некоторому пределу. В частности, если само пространство E обладает этим свойством, то оно называется κ омпактным пространством.

Из сказанного выше ясно, что в R свойство компактности равносильно ограниченности множества.

Заметим, что всякое конечное множество точек метрического пространства компактно.

Отметим некоторые простые свойства компактных множеств.

Теорема 3. Компактное множество ограничено по расстоянию.

Определение. Пусть $A \subset E$ (E — метрическое пространство) и $\varepsilon > 0$ — заданное число. Множество $B \subset E$ назы-

вается ε -сетью множества A, если для любого $x \in A$ существует такая точка $y \in B$, что ρ $(x, y) < \varepsilon$.

Teopema 4. Всякое компактное множество при любом $\varepsilon > 0$ имеет содержащуюся в нем самом конечную ε -сеть (т. е. ε -сеть состоящую из конечного числа точек).

Следствие. *Компактное пространство сепарабельно.*

Теорема 5. Если для множества A, содержащегося в полном метрическом пространстве E, при любом $\varepsilon > 0$ существует конечная ε -сеть, то A компактно.

Следствие. Если множество А, содержащееся в полном метрическом пространстве E, при любом $\varepsilon > 0$ имеет компактную ε -сеть (τ . e. ε -сеть, являющуюся компактным множеством), то само E также компактно.

3. Нормированные пространства

3.1 Определение нормированного пространства

Определение. Линейное пространство L называется нормированным пространством, если каждому $x \in L$ поставлено в соответствие число ||x|| (норма x) так, что выполнены три следующие аксиомы:

- 1) $||x|| \ge 0$, ||x|| = 0 в том и только в том случае, когда x=0;
- 2) $\|\lambda x\| = \|\lambda\| \|x\|$;
- 3) $||x+y|| \le ||x|| + ||y||$.

В нормированном пространстве можно ввести расстояние между любыми его элементами по формуле:

$$\rho(x,y)=||x-y||.$$

Метрическое пространство является обобщением нормированного пространства. Элементы метрического пространства будем называть также точками.

3.2 Примеры нормированных пространств

В приведенных выше метрических пространствах определим норму.

Пример 1. Норма в R: ||x|| = |x|.

Пример 2. Норма в C[a,b]: $||x|| = \max |x(t)|$, $t \in [a,b]$.

Пример 3. Для
$$\mathbf{x} \in R_n$$
 положим $\|\mathbf{x}\| = \left(\sum_{k=1}^n x_k^2\right)^{1/2}$.

Пример 4. Для векторов из l^2 определим норму по фор-

муле
$$\|a\| = \sqrt{\sum_{i=1}^{\infty} a_i^2}$$

Пример 5. Норма в **/**: $||x|| = \sum_{i=1}^{\infty} |\xi_i|$.

Введем норму в пространстве L^p:
$$||x|| = \left(\int_a^b |x(t)|^p dt\right)^{\frac{1}{p}}$$

Рассмотрим в нормированном пространстве L открытый шар

$$S_r(x_0) = \{x \in L : ||x - x_0|| < r\},\$$

где $\ x_0 \in L$ -фиксированная точка, а r>0, а также замкнутый шар

$$S_r*(x_0) = \{x \in L: \mid x-x_0\mid \mid \leq r \}.$$
 Множество
$$\sigma(x_0) = \{x \in L: \mid x-x_0\mid \mid = r \} \text{ называется сферой.}$$

Рассмотрим в нормированном пространстве L последовательность элементов $\{x_n\}$.

Определение. Элемент $x_0 \in L$ называется пределом последовательности $\{x_n\}$, если $\|x_n-x_0\| \to 0$ при $n \to \infty$. Окрестностью точки x_0 назовем любой открытый шар $S_r(x_0)$.

4. Пространства со скалярным произведением 4.1 Евклидовы пространства

Определение. Линейное пространство L называется евклидовым, если каждой паре его элементов x и у поставлено в соответствие вещественное число, обозначаемое (x,y) и называемое скалярным произведением, так что выполнены следующие аксиомы:

- 1) $(x,x) \ge 0$, (x,x)=0 в том и только в том случае когда x=0;
- 2) (x,y)=(y,x);
- 3) $(\lambda x, y) = \lambda (x, y);$
- 4) (x+y,z)=(x,z)+(y,z).

Понятие скалярного произведения естественным образом обобщает понятие скалярного произведения векторов.

Любое евклидово пространство можно превратить в нормированное пространство, определив в нем норму по формуле

$$\parallel x \parallel = \sqrt{(x,x)}.$$

Аксиомы 1) и 2) нормы, очевидно, выполняются. Докажем

аксиому треугольника:

$$||x + y||^2 = (x + y, z + y) = (x, x) + 2(x, y) + (y, y) \le$$

 $\le ||x||^2 + 2||x||||y|| + ||y||^2 = (||x|| + ||y||)^2$

Извлекая корень, получаем неравенство

$$||x + y|| \le ||x|| + ||y||$$
.

При доказательстве использовано неравенство Коши – Буняковского

$$|(x, y)| \le ||x|| ||y||$$
.

При y=0 оно, очевидно, выполняется. Пусть теперь y \neq 0 . Из первого свойства скалярного произведения для любого вещественного λ можем записать

$$(x - \lambda y, z - \lambda y) \ge 0$$

Преобразуем левую часть неравенства, используя свойства скалярного произведения:

$$(x,x) - 2\lambda(x,y) + \lambda^2(y,y) \ge 0$$

Так как квадратный трехчлен неотрицателен при любых λ , то для его дискриминанта можем записать

$$(x, y)^2 - (x, x)(y, y) \le 0$$

откуда и следует неравенство Коши – Буняковского.

Пример 1. Евклидово пространство R_n . Введем в линейном пространстве R_n скалярное произведение по формуле

$$(x, y) = \sum_{k=1}^{n} \xi_k \eta_k$$

Аксиомы скалярного произведения очевидны. Норма в

пространстве R_n имеет вид

$$||x|| = \sqrt{\sum_{k=1}^{n} \xi_k^2}$$

Неравенство Коши – Буняковского запишется следующим образом

$$\mid \sum_{k=1}^{n} \xi_k \eta_k \mid \leq \sqrt{\sum_{k=1}^{n} \xi_k^2} \sqrt{\sum_{k=1}^{n} \eta_k^2}$$

Пример 2. Введем в линейном пространстве $\,l^2\,$ скалярное произведение по формуле

$$(x,y) = \sum_{k=1}^{\infty} \xi_k \eta_k$$

Пример 3. Пространство L^2 . Пусть L^2 [a,b]- линейное пространство функций, для которых $\int\limits_a^b f^2(x) dx$ сходится. Скалярное произведение в L^2 [a,b] равно

$$(f,\varphi) = \int_{a}^{b} f(x)\varphi(x)dx.$$

4.2 Ортогональные элементы. Ортогональные системы

Пусть L – пространство со скалярным произведением. Если (x,y)=0, то элементы x и y называются ортогональными и записывают $x\perp y$. Очевидно, что нуль пространства L ортогонален лю-

бому элементу.

Рассмотрим в L элементы $x_1, x_2, ... x_n$, все не равные 0. Если $(x_k, x_l) = 0$ при любых k,l = 1,2,...,n, $k \neq l$, то система элементов $x_1, x_2, ... x_n$ называется ортогональной системой.

Теорем а. Пусть $x_1, x_2, ... x_n$ - ортогональная система; тогда $x_1, x_2, ... x_n$ линейно независимы.

Доказательство. Пусть существуют скаляры $\lambda_1, \lambda_2, ..., \lambda_n$ такие, что

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = 0$$

Умножив это равенство на x_k скалярно, получим $\lambda_k(x_k,x_k)=0$, но $(x_k,x_k)=\|x_k\|^2>0$.

Следовательно, λ_k =0. Это справедливо для любого k=1,2,...,n. Значит, все λ_k =0, т.е. элементы $x_1,x_2,...x_n$ линейно независимы.

Пример. Покажем, что система функций

$$1, \cos(t), \sin(t), \cos(2t), \sin(2t), \dots$$

ортогональна в $L_2[-\pi,\pi]$. Действительно, для orall k, l(k
eq l)

$$\int_{-\pi}^{\pi} \cos(kx) \cos(lx) dx = 0,$$

$$\int_{-\pi}^{\pi} \cos(kx) \sin(lx) dx = 0, \int_{-\pi}^{\pi} \sin(kx) \sin(lx) dx = 0.$$

5. Банаховы пространства

5.1 Определение банахова пространства

Полное линейное нормированное пространство называется банаховым пространством.

5.2 Примеры банаховых пространств

Пространство вещественных чисел R – банахово. Действительно, на вещественной числовой оси имеет место критерий Коши: для того чтобы последовательность $\{x_n\} \in R$ была сходящейся, необходимо и достаточно, чтобы она была фундаментальной.

Нормированные пространства, приведенные выше: R_n , I^2 , I, C [a,b], L^p являются банаховыми.

5.3 Ряды в нормированных и банаховых пространствах

Пусть X — нормированное пространство $x_k \in X$, где k=1,2,... Формальная сумма $\sum_{k=1}^\infty x_k$ называется рядом в X. Обо-

значим
$$s_n = \sum_{k=1}^n x_k$$
 - частичные суммы ряда $\sum_{k=1}^\infty x_k$.

Определение. Ряд $\sum_{k=1}^{\infty} x_k$ называется сходящимся в X, если сходится последовательность его частичных сумм $\{s_n\}$, т.е.

$$s_n o s \in X, n o \infty$$
 . Элемент s называется суммой ряда $\sum_{k=1}^\infty x_k$.

Запись $\sum_{k=1}^{\infty} x_k = s$ означает, что ряд сходится и его сумма равна s.

В этом случае критерий Коши формулируется следующим образом:

Теорема 1. Пусть X — нормированное пространство.

Для того, чтобы ряд $\sum_{k=1}^{\infty} x_k$ сходился, необходимо, а если X — ба-

нахово, то и достаточно, чтобы для любого $\, arepsilon > \! 0 \,$ нашелся номер N такой, что при всех n>N и при всех натуральных р выполнилось неравенство

$$\|\sum_{k=n+1}^{n+p} x_k\| < \varepsilon$$

Доказательство следует из определения сходимости ряда и связи между понятиями сходящейся и фундаментальной последовательности в применении к последовательности частичных сумм.

Определение. Если сходится числовой ряд $\sum_{k=1}^{\infty} \parallel x_k \parallel$, то

говорят, что ряд $\sum_{k=1}^{\infty} x_k$ сходится абсолютно.

Теорема 2. Если в нормированном пространстве X каждый абсолютно сходящийся ряд сходится, то X — банахово.

6. Гильбертовы пространства

6.1 Определение гильбертова пространства

Линейное пространство со скалярным произведением называется гильбертовым, если оно полно в норме, порожденной скалярным произведением.

Пространства R_n , I^2 , L^2 , рассмотренные выше, являются гильбертовыми.

6.2 Ряды Фурье в гильбертовом пространстве

Пусть в бесконечномерном пространстве E со скалярным произведением дана ортогональная система $\{\varphi_k\}$, т.е. $\varphi_k \neq 0_(k=1,2,...), _(\varphi_k,\varphi_l) = 0_l \neq k.$

Ряд вида $\sum_{k=1}^\infty lpha_k arphi_k$ называется рядом по ортогональной системе $\{arphi_k\}$.

Пусть $x\in E$. Числа $c_k=(x,\varphi_k)/\|\varphi_k\|^2$, k=1,2,..., называются коэффициентами Фурье элемента x по ортогональной системе φ_k , а ряд $\sum_{k=1}^\infty c_k \varphi_k$ называется рядом Фурье, составленным для элемента x.

Многочлен $\sum_{k=1}^n c_k \cdot \varphi_k$ - частичная сумма ряда Фурье – называется многочленом Фурье элемента х.

Рассмотрим первые п векторов ортогональной системы φ_{k} : $\varphi_{1}, \varphi_{2}, ..., \varphi_{n}$. Образуем всевозможные их линейные комбина-

ции вида $u_n = \sum_{k=1}^n \alpha_k \varphi_k$. В результате получим n — мерное подпространство L_n в E.

Можно определить расстояние от точки x до подпространства M следующим образом:

$$\rho(x,M) = \inf_{y \in M} ||x-y||.$$

Возьмем теперь элемент $x \in E$ и вычислим квадрат расстояния между x и u_n :

$$\Delta_n^2 = \parallel x - u_n \parallel^2.$$

Используя свойства скалярного произведения, получаем

$$\Delta_n^2 = (x - \sum_{k=1}^n \alpha_k \varphi_k, x - \sum_{k=1}^n \alpha_k \varphi_k = (x,x) - \sum_{k=1}^n \alpha_k (\varphi_k,x) - \sum_{k=1}^n \alpha_k (x,\varphi_k) + \sum_{k=1}^n \alpha_k^2 (\varphi_k,\varphi_k).$$

Так как $(x, \varphi_k) = c_k \parallel \varphi_k \parallel^2$, где c_k - коэффициенты Фурье элемента x, то,

$$\Delta_n^2 = ||x||^2 - 2\sum_{k=1}^n \alpha_k c_k ||\varphi_k||^2 + \sum_{k=1}^n \alpha_k^2 \cdot ||\varphi_k||^2.$$

Далее,

$$|a_k - c_k|^2 = (a_k - c_k)^2 = |a_k|^2 - 2a_k \cdot c_k + |c_k|^2$$
.

Тогда

$$\Delta_{n}^{2} = \parallel x \parallel^{2} - \sum_{k=1}^{n} \mid c_{k} \mid^{2} \cdot \parallel \varphi_{k} \parallel^{2} + \sum_{k=1}^{n} \mid a_{k} - c_{k} \mid^{2} \cdot \parallel \varphi_{k} \parallel^{2}$$

Теперь можно получить для расстояния

$$d_n = \rho(x, L_n) = \inf_{u_n \in L_n} ||x - u_n|| = \inf_{a_1, a_2, \dots, a_n} \Delta_n.$$

Здесь
$$\Delta_n$$
 зависит от $u_n = \sum_{k=1}^n \alpha_k \cdot \varphi_k$, то есть от n пере-

менных $a_1,a_2,...,a_n$. Из формулы, полученной для Δ^2_n , следует, что d_n достигается при $a_k=c_k,k=1,2,...,n$. Это свойство коэффициентов $c_1,c_2,...,c_n$ называется минимальным свойством коэффициентов Фурье. Таким образом, имеет место следующее утверждение:

Теорема 1. Пусть система $\{\varphi_k\}$ ортогональна в пространстве со скалярным произведением E, а L_n - подпространство, натянутое на

$$\varphi_1, \varphi_2, ..., \varphi_n$$

Тогда $d_n = \rho(x, L_n)$ дается следующими формулами

$$d_n = ||x - \sum_{k=1}^n c_k \cdot \varphi_k||;$$
 $d_n^2 = ||x||^2 - \sum_{k=1}^n |c_k|^2 \cdot ||\varphi_k||^2,$

где c_k , k=1,2,..., - коэффициенты ряда Фурье элемента х по системе $\{\varphi_k\}$.

Таким образом, наилучшее приближение элемента х посредством элементов из $L_{\scriptscriptstyle n}$ есть многочлен Фурье элемента

$$x: \sum_{k=1}^{n} c_k \cdot \varphi_k.$$

Так как $d_n^2 > 0$, то можно записать

$$\sum_{k=1}^{n} |c_{k}|^{2} \cdot ||\varphi_{k}||^{2} \le ||x||^{2}.$$

Слева стоит частичная сумма числового ряда $\sum_{k=1}^n \mid c_k\mid^2 \cdot \parallel \varphi_k \parallel^2 \text{ с неотрицательными членами; кроме того, записанная оценка верна для любого n.}$

Числовой ряд с неотрицательными членами сходится тогда и только тогда, когда последовательность его частичных сумм ограничена. Следовательно, получаем сходимость ряда

$$\sum_{k=1}^{n} \mid c_{k} \mid^{2} \cdot \mid\mid arphi_{k} \mid\mid^{2}$$
 и неравенство для его суммы

$$\sum_{k=1}^{\infty} |c_k|^2 \cdot ||\varphi_k||^2 \le ||x||^2$$

Это неравенство называется неравенством Бесселя. Оно справедливо для любой ортогональной системы в любом бесконечном пространстве со скалярным произведением.

Из неравенства Бесселя вытекает важное следствие:

Следствие. Если $\parallel \varphi_k \parallel \geq \varepsilon > 0, k=1,2,...$, то коэффициенты Фурье c_k любого элемента $x \in H$ стремятся к нулю при $k \to \infty$.

Определение. Ортогональная система $\{ \varphi_k \}$ из гильбертова пространства H называется полной, если для любого $x \in H$

$$\sum_{k=1}^{\infty} c_k \varphi_k = x.$$

Иными словами, если ряд Фурье, составленный для x, сходится κ x.

Полная ортогональная система называется полным ортогональным базисом гильбертова пространства Н.

Из формул для $d_{\scriptscriptstyle n}$ можно записать

$$\parallel x - \sum_{k=1}^{n} c_k \cdot \varphi_k \parallel^2 = \parallel x \parallel^2 - \sum_{k=1}^{n} \mid c_k \mid^2 \cdot \parallel \varphi_k \parallel^2.$$

Отсюда можно сделать следующее заключение:

Для того, чтобы $\{ \varphi_k \}$ была полной, необходимо и достаточно, чтобы

$$\sum_{k=1}^{\infty} |c_k|^2 \cdot ||\varphi_k||^2 = ||x||^2$$

Следовательно, в случае полной системы (и только в этом случае) неравенство Бесселя превращается в равенство. Это равенство называется равенством Парсеваля-Стеклова.

На основании всего сказанного можно заключить, что если система $\{\varphi_k\}$ полная, то ряд Фурье для любого $x\in H$ сходится к x.

7. Операторы. Линейные операторы

7.1 Определение оператора

Пусть X и Y - множество произвольной природы. Пусть в X выделено подмножество $D \subset X$. Если каждому элементу $x \in D$ ставится в соответствие определенный элемент $y \in Y$, то говорят, что задан оператор y = F(x). При этом множество D называется областью определения оператора F и обозначается D(F), и это будем обозначать $F:D(F) \to Y$.

Множество

$$R = R(F) = \text{Im } F = \{ y \in Y; y = F(x), x \in D \}$$

называется областью значений (образом) оператора F.

Фиксируем $y \in R(F)$ и рассмотрим множество всех прообразов элемента y, которое будем обозначать $F^{-1}(y)$. Очевидно, это множество не пусто. Важным является случай, когда $F^{-1}(y)$ состоит ровно из одного элемента, который обозначаем через x.

Определение. Оператор y=F(x) называется взаимно однозначным, если каждому образу $y\in R(F)$ соответствует единственный прообраз $\tilde{o}=F^{-1}(y)$. Если F взаимно однозначен, то формула $\tilde{o}=F^{-1}(y)$, где y пробегает R, определяет оператор $F^{-1}:Y\to X$, который называется обратным к F. Очевидны равенства

$$R(F^{-1}) = D(F), D(F^{-1}) = R(F).$$

7.2 Линейные операторы

Пусть Xи Y - нормированные пространства.

Определение. Оператор $A: X \to Y$ с областью определения D(A) называется *линейным*, если

- 1) D(A) линейное многообразие;
- 2) $A(\lambda_1x_1+\lambda_2x_2)=\lambda_1A(x_1)+\lambda_2A(x_2) \qquad \text{для} \qquad \text{лю-}$ бых $x_1,x_2\in D$ и любых скаляров λ_1,λ_2 .

Пример 1. Пусть $X=C^1ig[a,big],Y=Cig[a,big]$. На множестве $D(A)=\Big\{\!\!\!\! u\mid u\in C^1ig[a,big],u(a)=u(b)=0\Big\}$ определим линейный оператор A следующим образом:

$$Au = \frac{du}{dx}$$

Пример 2. Пусть V — замкнутая ограниченная область R_3 , X = Y = C(V) . На множестве

$$D(A) = \{ u \mid u \in C(V), V \subset R_3 \}$$

определим линейный оператор

$$Au = \int_{V} K(x, y)u(y)dV_{y},$$

где
$$K(x, y) \in C(V) \times C(V)$$
.

Определение. Линейный оператор A:X o Y называется непрерывным в x_0 , если $\|Ax_n-Ax_0\| o 0$, когда $\|x_n-x_0\| o 0$ при $n o \infty$.

Определение. Оператор $A:X\to Y$ называется ограниченным если $\exists M>0: \forall x\in D(A)\Rightarrow \|Ax\|\leq M\|x\|$.

T е о р е м а 1. Пусть X,Y – банаховы пространства, $A: X \to Y$ - линейный оператор; D(A) = X . Для того чтобы оператор A был непрерывен, необходимо и достаточно, чтобы он был ограничен.

7.3 Примеры линейных ограниченных операторов

1. В линейном пространстве R_n $x = (\xi_i)_1^n, y = (\eta_i)_1^n \dots$ равенство y = Ax ,

где $A=(a_{i,j})$, $i,j=1,2,\ldots,n$ - квадратная матрица порядка n , понимаемое как матричное равенство, задает линейный опе-

ратор. В координатах последнее равенство запишется следующим образом:

$$\eta_i = \sum_{i=1}^n a_{ij} \xi_i , i = 1, 2, ..., n.$$

Этот оператор, очевидно, ограничен в $\,R_{\scriptscriptstyle n}^{}$.

2. Рассмотрим интегральный оператор y = Ku,

$$K: C[a,b] \rightarrow C[a,b]$$

$$(Ku)(x) = \int_{a}^{b} K(x,s)u(s)ds.$$

Функция K(x,s) называется ядром оператора и предполагается непрерывной в квадрате $[a,b] \times [a,b]$. Рассматривая K как оператор из C[a,b] в C[a,b], можно получить оценку

$$||Ku||_{C[a,b]} \le \max_{x \in [a,b]} \int_{a}^{b} |K(x,s)| ds ||u||_{C[a,b]}.$$

Следовательно, K ограниченный оператор из C[a,b] в C[a,b].

3. Рассмотрим линейный дифференциальный оператор, определяемый выражением

$$Au = \sum_{0 \le \|\alpha\| \le l} a_{\alpha}(x) D^{\alpha} u ,$$

где для простоты коэффициенты $a_{lpha}(x)$ непрерывны в ограниченной замкнутой области \overline{G} . Имеем следующую оценку:

$$||Au||_{C(\overline{G})} \le \max_{\overline{G}} \sum_{||\alpha|| \le l} |a_{\alpha}(x)||D^{\alpha}u| \le$$

$$\leq \max_{|\alpha|\leq l} \left\|a_{\alpha}(x)\right\|_{C(\overline{G})} \max_{\overline{G}} \sum_{\|\alpha\|\leq l} \left|D^{\alpha}u\right| \leq K \left\|u\right\|_{C^{1}(\overline{G})}$$

где $K=\max_{|\alpha|\leq l}\|a_\alpha\|_{C^l\overline{G})}$. Следовательно, \mathcal{A} – линейный ограниченный оператор, действующий из $C^l(\overline{G})$ в $C(\overline{G})$.

7.4 Пространства линейных операторов

Пусть A,B,C,... - линейные непрерывные операторы, определенные всюду в нормированном пространстве X и со значениями в нормированном пространстве Y. Определим на множестве всевозможных таких операторов операции сложения операторов и умножения оператора на число. Положим по определению

$$(A+B)x = Ax + Bx$$
$$(\lambda A)x = \lambda Ax.$$

В линейном пространстве операторов L(X,Y) можно ввести количественную характеристику, называемую нормой:

$$||A|| = \sup_{\|x\| \le 1} ||Ax||.$$

1. Пусть $A = \left\{a_{ij}\right\}_{i,j=1}^n$ - квадратная матрица, тогда её норму можно определить равенством

$$||A|| = \max_{i} \sum_{i=1}^{n} |a_{ij}|.$$

2. Если
$$Ax = \int_{0}^{1} K(t,s)x(s)ds$$
, $A: C[0,1] \to C[0,1]$, яд-

ро K(t,s) непрерывно, тогда

$$||A|| = \max_{t} \int_{0}^{1} |K(t,s)| ds.$$

7.5 Обратные операторы

Системы линейных алгебраических уравнений, интегральные уравнения, а так же различные задачи для обыкновенных дифференциальных уравнений и уравнений с частными производными могут быть записаны в виде линейного операторного уравнения Ax=y. Если существует обратный оператор A^{-1} , то решение задачи записывается в явном виде: $x=A^{-1}$.

Пусть задан линейный оператор $A: X \to Y$, где X,Y - линейные нормированные пространства, причем область определения оператора $D(A) \subseteq X$, а область значений $R(A) \subseteq Y$.

Введем множество $N(A)=\ker A=\big\{x\in D(A):Ax=0\big\}$ -ядро оператора A. Заметим, что N(A) не пусто, так как $0\in N(A)$, и N(A) является линейным многообразием.

Легко проверяется следующая

Теорема 1. Если оператор A линеен, то $\ker A$ является подпространством в X , а $\operatorname{Im} A$ - подпространством в Y .

Пример 1. Пусть
$$X=C^2[0,1]\,Y=C[0,1]\,A:X\to Y$$

$$Au=\frac{d^2u}{dx^2}+4u\;,$$
 $N(A)=\{0,\sin 2x,\cos 2x\}\;.$

Вопрос о том, когда \boldsymbol{A} осуществляет взаимно однозначное со-

ответствие между D(A) и R(A) , решается следующей теоремой.

Теорема 2. Оператор A переводит D(A) в R(A) взачимно однозначно тогда и только тогда, когда $N(A) = \left\{0\right\}$ (т.е. множество нулей A состоит только из элемента 0).

Пусть линейный оператор A отображает D(A) на R(A) взаимно однозначно. Тогда существует обратный оператор A^{-1} , отображающий R(A) взаимно однозначно на D(A). Покажем, что оператор A^{-1} также является линейным оператором. Для этого вспомним, что R(A) является линейным многообразием.

Пусть $y_1,y_2\in R(A)$, $x_1=A^{-1}y_1$, $x_2=A^{-1}y_2$ - их прообразы. Для любых скаляров λ_1 и λ_2 имеем $A(\lambda_1x_1+\lambda_2x_2)=\lambda_1y_1+\lambda_2x_2$ или $\lambda_1A^{-1}y_1+\lambda_2A^{-1}y_2=\lambda_1x_1+\lambda_2x_2=A^{-1}(\lambda_1y_1+\lambda_2y_2)$, что и означает линейность A^{-1} .

Определение. Будем говорить, что линейный оператор $A: X \to Y$ непрерывно обратим, если R(A) = Y , D(A) = X , оператор A обратим и $A^{-1}: Y \to X$ непрерывен.

Если A непрерывно обратим, то уравнение

$$Ax = y$$

имеет единственное решение $x=A^{-1}y$ для любой правой части y . Если при этом $\widetilde{x}=A^{-1}\widetilde{y}$ (решение того же уравнения с правой частью \widetilde{y}) , то $\|x-\widetilde{x}\| \leq \|A^{-1}\| \|y-\widetilde{y}\|$. Это означает, что малое изменение правой части y влечет малое изменение реше-

ния, или, как принято говорить, задача Ax = y корректно разрешима.

7.6 Примеры обратных линейных операторов

1. В линейном пространстве Q^n n - мерных столбцов $x=(\xi_j)_1^n\ y=(\eta_j)_1^n$ рассмотрим линейный оператор y=Ax , записываемый в координатном виде

$$\eta_i = \sum_{j=1}^n a_{ij} \xi_j, \quad i = 1, 2, ..., n.$$

Пусть $\det(a_{ij}) \neq 0$. Тогда, согласно правилу Крамера, систему y = Ax можно однозначно разрешить относительно переменных ξ_1, \dots, ξ_n и найти обратный оператор $x = A^{-1}y$, причем A^{-1} задается обратной к $\left\{a_{ij}\right\}$ матрицей.

2. Рассмотрим задачу Коши для линейного дифференциального уравнения n - порядка. Пусть функции y(t) и $a_i(t)$, $i=1,2,\ldots,n$ непрерывны на $\left[0,T\right]$. Рассмотрим дифференциальное уравнение

$$Ax \equiv x^{(n)}(t) + a_1(t)x^{(n-1)}(t) + \dots + a_n(t)x(t) = y(t)$$
 (1)

Найдем решение этого уравнения, удовлетворяющее начальным условиям

$$x(0) = x'(0) = \dots = x^{(n-1)}(0) = 0$$
 (2)

С операторной точки зрения это означает следующее: область определения D(A) пусть состоит из n раз непрерывно

дифференцируемых на $\left[0,T\right]$ функций x(t) , удовлетворяющих условиям (2).

Пусть $x_1(t),\dots,x_n(t)$ - система из n линейно независимых решений соответствующего (1) однородного уравнения, т.е. уравнения с $y\equiv 0$. Составим определитель Вронского

$$W(t) = \begin{vmatrix} x_1(t) & \dots & x_n(t) \\ x'_1(t) & \dots & x'_n(t) \\ \vdots & \ddots & \vdots \\ x_1^{(n-1)}(t) \dots x_n^{(n-1)}(t) \end{vmatrix}.$$

Известно, что $W(t) \neq 0$ на $\left[0,T\right]$. Согласно методу Лагранжа вариации произвольных постоянных, решение задачи (1) – (2) ищется в виде

$$x(t) = c_1(t)x_1(t) + ... + c_n(t)x_n(t)$$

причем для произвольных известных функций $\, \tilde{n}_i(t) \,$ получается следующая система уравнений:

$$c'_{n}(t)x_{1}(t) + \dots + c'_{n}(t)x_{n}(t) = 0,$$

$$c'_{n}(t)x'_{1}(t) + \dots + c'_{n}(t)x'_{n}(t) = 0,$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$c'_{1}(t)x_{1}^{(n-1)}(t) + \dots + c'_{n}(t)x_{n}^{(n-1)}(t) = y(t).$$

Решая ее по правилу Крамера, находим

$$c'_{k}(t) = \frac{\varpi_{k}(t)}{W(t)} y(t), \qquad k = 1, 2, ..., n,$$

где $\varpi_k(t)$ - алгебраическое дополнение k -го элемента n -й строки определителя W(t) .

Учитывая начальное условие (2), находим решение задачи Коши в явном виде:

$$x(t) = \sum_{k=1}^{n} x_k(t) \int_{0}^{t} \frac{\overline{\sigma}_k(s)}{W(s)} y(s) ds.$$

Это решение единственно, что следует из общей теоремы: существования и единственности решения задачи Коши.

Из последней формулы вытекает непрерывная обратимость оператора *А*. Действительно,

$$||x||c[0,T] \le c||y||c[0,T],$$

где

$$c = \max_{t \in [0,T]} \sum_{k=1}^{n} \left| x_k(t) \right| \int_{0}^{t} \left| \frac{\overline{\omega}_k(s)}{W(s)} \right| ds.$$

Пусть X,Y - нормированные пространства. Имеют место следующие теоремы об обратных операторах:

- 1. Пусть $A:X\to Y$ и $\exists m>0: \forall x\in D(A)$ выполняется $\|Ax\|\geq m\|x\|$. Тогда существует ограниченный обратный оператор A^{-1} .
- 2. Пусть $A: X \to Y$, $\|A\| \le q < 1$. Тогда оператор I+A имеет ограниченный обратный оператор (I тождественный оператор).

Пример 1.

$$(I+A)x = x(t) + \lambda \int_{0}^{1} K(t,s)x(s)ds, \lambda \in R_{1}.$$

Если $|\lambda| \max_t \int\limits_0^1 |K(t,s)| ds < 1$, то оператор I+A имеет ограни-

ченный обратный оператор.

Имеют место случаи, когда оператор, обратный к ограниченному линейному оператору, оказывается, хотя и линейным, но определенным не на всем Y, а лишь на его части, и неограниченным.

Пусть X - вещественное нормированное пространство, а R - множество вещественных чисел.

Определение. Всякий оператор вида $f: X \to R$ называется *функционалом*. Значение функционала на элементе $x \in X$ обозначается (x,f).

Будем рассматривать линейные функционалы, т.е. такие, область определения которых D(f) является линейным многообразием, причем для любых $x,y\in D(f)$ и любых $\alpha,\beta\in R$:

$$(\alpha x + \beta y, f) = \alpha(x, f) + \beta(y, f).$$

Кроме того, рассматриваются функционалы, для которых $\|f\| = \sup_{x \in D(f), \|x\| \le 1} \left| (x,f) \right| \text{ является конечной величиной.}$

Одной из основных теорем функционального анализа, имеющей многочисленные приложения, является теорема Ф.Рисса об общем виде линейных функционалов в гильбертовом пространстве:

Теорема 1. Пусть H - гильбертово пространство. Для любого линейного ограниченного функционала f , заданного всюду на H , существует единственный элемент $y \in H$, такой, что для всех $x \in H$

$$(x, f) = (x, y).$$

При этом ||f|| = ||y||.

Теорема Рисса дает явное выражение произвольного линейного ограниченного функционала в гильбертовом пространстве через скалярное произведение.

7.7 Сопряженные и самосопряженные операторы

Рассмотрим L(X,R) - банахово пространство линейных ограниченных функционалов, заданных на X . Это пространство называется сопряженным к X и обозначается X^* . Итак, $X^* = L(X,R)$. Значение линейного функционала $f \in X^*$ на элементе $x \in X$ будем, как и раньше, обозначать (x,f) или f(x) .

Пусть $A\in L(X,Y)$, где X,Y - банаховы пространства. Составим выражение (Ax,f) где $x\in X,f\in Y^*$. Определим функционал φ формулой

$$\varphi(x) = (x, \varphi) = (Ax, f)$$
.

Для функционала $\, \phi \,$ очевидны следующие свойства:

- 1) $D(\varphi) = X$;
- 2) φ линейный, так как

$$\varphi(a_1, x_1 + a_2, x_2) = (A(a_1, x_1 + a_2, x_2), f) =$$

$$= a_1(Ax_1, f) + a_2(Ax_2, f) =$$

$$= a_1\varphi(x_1) + a_2\varphi(x_2);$$

3) φ - ограниченный, так как

$$|\varphi(x)| = |(Ax, f)| \le ||Ax|| ||f|| \le ||A|| ||f|| ||x||.$$

Следовательно, $\varphi \in X^*$. Таким образом, каждому $f \in Y^*$ поставлен в соответствие элемент $\varphi \in X^*$. Следовательно, задан линейный непрерывный оператор $\varphi = A^*f$. Оператор $A^* \in L(Y^*,X^*)$ называется сопряженным к оператору A .

Пример 1. Пусть $X = Y = R_n$ - n -мерное евклидово пространство. Рассмотрим линейный оператор

$$y = Ax$$
, где $x = (\xi_j)_1^n, y = (\eta_i)_1^n$;

$$\eta_i = \sum_{j=1}^n a_{ij} \xi_j .$$

Пусть $z=({\cal G}_k)_1^n\in (R_n)^\circ=R_n$. Тогда, так как в гильбертовом пространстве действие функционала z на элемент Ax выражается их скалярным произведением, получим

$$(Ax, z) = (Ax, z) = \sum_{i=1}^{n} \eta_{i} \varsigma_{i} = \sum_{i=1}^{n} (\sum_{j=1}^{n} a_{ij} \xi_{j}) \varsigma_{i} =$$

$$= \sum_{i=1}^{n} (\sum_{j=1}^{n} a_{ij} \varsigma_{i}) \xi_{j} = (x, A^{\circ} z) = (x, A^{\circ} z)$$

Где оператор $\varpi=A^*z$ определяется равенствами

$$\boldsymbol{\varpi}_{j} = \sum_{i=1}^{n} a_{ij} \boldsymbol{\varsigma}_{i} \quad j = 1, 2, \dots, n,$$

то есть A^{*} задается матрицей, транспонированной к A .

Пример 2. Пусть X,Y - вещественные пространства, $X=Y=L_2\big[a,b\big].$ Рассмотрим интегральный оператор y=Kx :

$$y(t) = \int_{a}^{b} K(t, s) x(s) ds$$

С ядром K(t,s) непрерывным в квадрате $[a,b] \times [a,b].$ Имеем равенство

$$(Kx,z) = \int_{a}^{b} \left\{ \int_{a}^{b} K(t,s)x(s)ds \right\} x(t)dt =$$

$$= \int_{a}^{b} \left\{ \int_{a}^{b} K(t,s)z(t)dt \right\} x(s)ds = (x,K^*z)$$

Таким образом, сопряженный оператор $\varpi=K^*z$ также является интегральным оператором:

$$\varpi(t) = \int_{a}^{b} K(s,t)z(s)ds.$$

Его ядро транспонировано к ядру оператора K(t,s) .

Обозначим L(H,H) = L(H).

Определение. Оператор $A \in L(H)$ называется *самосо-пряженным* (или *эрмитовым*), если $A^* = A$, т.е. если A совпадает со своим сопряженным. Согласно определению A - самосопряженный, если для любых $x,y \in H$.

$$(Ax, y) = (x, Ay)$$
.

Пример 3. Пусть оператор A определен в $L_2[0,\!1]$ на множестве функций, имеющих непрерывные вторые производные на $[0,\!1]$ и удовлетворяющих условиям u(0)=u(1)=0 , и действует по формуле

$$Au = -\frac{d^2u}{dx^2}.$$

Найдем

$$(Au, v) = -\int_{0}^{1} \frac{d^{2}u}{dx^{2}} v dx = -\frac{du}{dx} v \Big|_{0}^{1} + \int_{0}^{1} \frac{du}{dx} \cdot \frac{dv}{dx} dx = -\frac{du}{dx} v \Big|_{0}^{1} + u \cdot \frac{dv}{dx} \Big|_{0}^{1} - \int_{0}^{1} u \frac{d^{2}u}{dx} dx = -\frac{du}{dx} v \Big|_{0}^{1} - \int_{0}^{1} u \frac{d^{2}v}{dx^{2}} dx = (u, A^{\circ}v)$$

если
$$\upsilon(0) = \upsilon(1) = 0$$

$$A^* \upsilon = -\frac{d^2 \upsilon}{dx^2}, \upsilon(0) = \upsilon(1) = 0.$$

Оператор A - самосопряженный.

Оператор A из примера 1 будет самосопряженным тогда и только тогда, когда $a_{ij}=a_{ji}$, т.е. когда матрица $\left\{a_{ij}\right\}$ симметрична.

Интегральный оператор K (пример 2) будет самосопряжен в $L_2[a,b]$ в том и только в том случае, когда его ядро симметрично, т.е. K(t,s)=K(s,t)

7.8 Вполне непрерывные операторы

Среди линейных операторов очень важное место занимают вполне непрерывные операторы, которые по своим свойствам близки к конечномерным.

Определение. Оператор A называется вырожденным или конечномерным, если он может быть представлен в виде

$$Au = \sum_{k=1}^{n} (u, \psi_k) \varphi_k ,$$

где n - конечно, φ_k и ψ_k - данные элементы рассматриваемого гильбертова пространства.

Пример 1. Интегральный оператор

$$Au = \int_{0}^{1} \sin(t+s)u(s)ds = c_{1} \sin t + c_{2} \cos t$$

где

$$c_1 = \int_0^1 u(s) \cos s ds$$
 $c_2 = \int_0^1 u(s) \sin s ds$

является вырожденным.

Определение. Оператор A называется вполне непрерывным, если он может быть представлен в виде

$$Au = Ku + Tu$$
,

где Ku - вырожденный оператор, а норма оператора T может быть сделана меньше наперед заданного числа $\varepsilon>0, \|T\|<\varepsilon$.

Отметим свойства вполне непрерывных операторов.

- 1. Всякий вырожденный оператор вполне непрерывен.
- 2. Вполне непрерывный оператор ограничен.
- 3. Сумма конечного числа вполне непрерывных операторов вполне непрерывна.
- 4. если оператор A ограничен, а B вполне непрерывен, то операторы AB и BA вполне непрерывны.

Важный пример вполне непрерывного оператора — интегральный оператор Фредгольма: пусть $X=Y=L^2[0,\!1]$,

$$Au = \int_{0}^{1} K(t,s)u(s)ds,$$

где

$$\int_{0}^{1} \int_{0}^{1} |K(t,s)|^2 ds dt < \infty.$$

Имеет место следующая теорема Фредгольма[4]:

Теорема. Пусть X - банахово пространство,

 $A: X \to X$ - вполне непрерывный оператор, $A^*: X^* \to X^*$ - ему сопряженный. Рассмотрим уравнения

$$Ax - x = f ; (3)$$

$$A^*y - y = g. (4)$$

Тогда

- 1) либо уравнения (3), (4) разрешимы для любых правых частей и однородные уравнения Ax-x=0, $A^*y-y=0$ имеют лишь нулевые решения;
- 2) либо однородные уравнения имеют одинаковое конечное число линейно независимых решений

 x_1, x_2, \dots, x_n , y_1, y_2, \dots, y_n , и в этом случае, чтобы уравнения (3), (4) имели решения, необходимо и достаточно, чтобы выполнялись условия $(f, y_i) = 0$,

 $j=1,2,\dots,n$, $(g,x_j)=0$, $i=1,2,\dots,n$ и общие решения уравнений тогда имеют вид:

$$x = x_0 + \sum_{i=1}^n \alpha_i x_i ;$$

$$y = y_0 + \sum_{j=1}^n \beta_j y_j$$
.

Здесь x_0, y_0 - частные решения (3), (4).

7.9 Собственные значения и собственные векторы линейного оператора

Пусть X - линейное пространство и A - линейный оператор, действующий в X , с областью определения D(A) .

Определение. Число λ называется *собственным значением* оператора A , если существует вектор $x \neq 0, x \in D(A)$, такой, что

$$Ax = \lambda x$$
. (5)

При этом вектор x называется co6cтвенным вектором оператора A , соответствующим собственному значению λ .

T е о р е м а 1. Собственные векторы линейного оператора, отвечающие различным его собственным значениям, линейно независимы.

Доказательство проведем методом математической индукции. Один собственный вектор линейного оператора x_1 , отвечающий собственному значению λ_1 , линейно независим, так как $x_1 \neq 0$. Пусть известно, что любые k собственных векторов оператора A, соответствующих различным собственным значениям, линейно независимы. Допустим, что существует линейно независимая система из (k+1) собственных векторов $x_1, x_2, \ldots, x_k, x_{k+1}$, отвечающих собственным значениям $\lambda_1, \lambda_2, \ldots, \lambda_k, \lambda_{k+1}$, где

 $\lambda_i \neq \lambda_j$, если $i \neq j$, $ij=1,2,\ldots,k+1$. Тогда найдутся скаляры $c_1,c_2,\ldots,c_k,c_{k+1}$, не все равные нулю одновременно, и такие, что

 $c_1 x_1 + c_2 x_2 + \ldots + c_k x_k + c_{k+1} x_{k+1} = 0.$ (6)

Действуя на это равенство оператором $A-\lambda_{\ddot{e}+1}I$, получим

$$(A - \lambda_{e+1}I) \sum_{i=1}^{k+1} c_i x_i = \sum_{i=1}^{k+1} c_i A x_i - \sum_{i=1}^{k+1} c_i \lambda_{k+1} x_i =$$

$$= \sum_{i=1}^{k+1} c_i (\lambda_i - \lambda_{k+1}) x_i = \sum_{i=1}^{k} c_i (\lambda_i - \lambda_{k+1}) x_i = 0$$

Но $x_1,x_2,\dots x_k$ линейно независимы, следовательно, $c_i(\lambda_i-\lambda_{k+1})=0$, $i=1,2,\dots,k$. Отсюда $c_i=0,i=1,2,\dots,k$, так как $\lambda_i\neq\lambda_{k+1}$ при $i\leq k$. Теперь из (2) получим $c_{k+1}=0$. Оказалось, что все $c_i=0$, $i=1,2,\dots,k+1$. Получили противоречие. Следовательно, x_1,x_2,\dots,x_{k+1} - линейно независимые.

7.10 Собственные значения и собственные векторы линейных операторов в конечномерных пространствах

Пусть X - m -мерное линейное пространство и A - линейный оператор: D(A)=X ; $R(A)\subset X$. Фиксируем в X базис $\{e_{_L}\}_{_L}^m$. Пусть

$$Ae_{j} = \sum_{i=1}^{m} \alpha_{ij}e_{i}$$
, $i = 1, 2, ..., m$

(разложение образов базисных векторов по базису)

Матрица $\left\{ lpha_{ij} \right\}$ называется матрицей оператора A (в базисе $\left\{ e_k \right\}$). Для любого $x = \sum_{j=1}^n \xi_j e_j \in X$ справедливо соотношение

$$Ax = \sum_{i=1}^{m} (\sum_{j=1}^{m} \alpha_{ij} \xi_{j}) e_{i}$$
.

Следовательно, уравнение $Ax=\lambda x$ в координатах имеет вид

$$\sum_{j=1}^{m} \alpha_{ij} \xi_{j} = \lambda \xi_{i}$$

Или

$$\sum_{j=1}^{m} (\alpha_{ij} - \lambda \delta_{ij}) \xi_{j} = 0, \ i = 1, ..., m,$$
 (7)

где
$$\delta_{ij}$$
 - символ Кронекера, $\delta_{ij} = \begin{cases} 1, i = j; \\ 0, i \neq j. \end{cases}$

Для того, чтобы система (7) имела нетривиальное решение (ищем векторы $x \neq 0$), необходимо и достаточно, чтобы

$$\det(\alpha_{ii} - \lambda \delta_{ii}) = 0.$$
 (8)

Полученное уравнение называется характеристическим уравнением и представляет собой уравнение m-й степени относительно λ . Корнями характеристического уравнения являются собственные значения A. В случае комплексного X характеристическое уравнение имеет m корней с учетом их кратности.

Пусть λ_0 - одно из собственных значений A . Тогда система (7) определяет собственное линейное многообразие, отвеча-

ющее λ_0 . Тогда собственные векторы, отвечающие различным собственным значениям, линейно независимы. Наибольший интерес представляет случай, когда из собственных векторов оператора A можно набрать базис в X. В этом случае матрица оператора A диагональна и

$$Ax = \sum_{i=1}^{m} \lambda_i \xi_i e_i$$

Так, в частности, обстоит дело, когда пространство X евклидово, и A самосопряжен, т.е. для всех $x,y\in X$ имеет место равенство

$$(Ax, y) = (x, Ay)$$
.

Кроме того, собственные значения самосопряженного оператора все вещественные, а базис из собственных векторов оператора A можно выбрать ортогональным или ортонормированным.

7.11 Собственные значения и собственные векторы вполне непрерывных операторов

Пусть X - банахово пространство, и A - вполне непрерывный оператор, действующий в X . Пусть λ - собственное значение оператора A , а X_{λ} - собственное подпространство, отвечающее λ .

T е о р е м а 1. Если A вполне непрерывен, то его собственное подпространство X_{λ} , отвечающее собственному значению $\lambda \neq 0$, конечномерно.

Теорема 2. Пусть A - вполне непрерывный оператор в X . Тогда для любого $\varepsilon>0$ вне круга $|\lambda|\leq \varepsilon$ комплексной плоскости (вещественной оси) может содержаться лишь конечное число собственных значений A .

Пример 1. Рассмотрим интегральный оператор Фредгольма

$$Kx = \int_{a}^{b} K(t, s) x(s) ds$$

с непрерывным в квадрате $[a,b] \times [a,b]$ ядром K(t,s) . Пусть X = C[a,b] . Рассмотрим задачу нахождения собственных значений оператора K :

$$\int_{a}^{b} K(t,s)x(s)ds = \lambda x(t).$$
 (9)

Согласно теореме 2, приведенной выше, могут иметь место следующие три возможности:

1) задача имеет лишь нулевое решение:

$$x(t) = 0$$
 при $\lambda \neq 0$;

- 2) существует конечное число собственных значений оператора K , отличных от нуля;
- 3) существует последовательность $\{\lambda_n\}$ собственных значений оператора K , причем $\lambda_n \to 0$ при $n \to \infty$.

При этом в случаях 2) и 3), согласно теореме 1, собственные подпространства, отвечающие ненулевым собственным значениям, конечномерны.

Если рассмотреть гильбертово пространство H и в нем

A - оператор вполне непрерывный и самосопряженный, то будет справедливо следующее утверждение:

Теорема 3 (Гильберта-Шмидта). Если A - вполне непрерывный самосопряженный оператор в H , то при всяком $x \in H$ элемент Ax разлагается в сходящийся ряд Фурье по ортонормированной системе собственных векторов оператора A .

7.12 Принцип сжимающих отображений

Пусть в банаховом пространстве X действует оператор $\Phi(x)$ (не обязательно линейный) с областью определения $D(\Phi) \subset X$ и областью значений $R(\Phi) \subset X$. Предположим, что множество $M = D(\Phi) \cap R(\Phi)$ не пусто. Точка x° называется неподвижной точкой оператора Φ , если

$$\Phi(x^{\circ}) = x^{\circ}$$

Таким образом, неподвижные точки $\,\Phi\, ext{-}\,$ это решения операторного уравнения

$$x = \Phi(x)$$

Рассмотрим некоторое множество $\mathcal{Q} \subset D(\Phi)$.

Определение. Будем говорить, что оператор Φ отображает замкнутое в банаховом пространстве X множество Q в себя и является на Q сжимающим оператором с коэффициентом сжатия q . Тогда в Q оператор Φ имеет единственную неподвижную точку x° .

Пусть $x_0 \in Q$ произвольно. Образуем последовательность

$$x_n = \Phi(x_{n-1}), n = 1, 2, \dots$$
 (10)

Тогда $\{x_n\}$ с Q и $x_n \to x^\circ$ при $n \to \infty$. Кроме того, справедлива оценка скорости сходимости.

$$||x_n - x^\circ|| \le \frac{q^n}{1 - q} ||\Phi(x_0) - x_0||.$$
 (11)

Доказательство. Так как $\Phi(Q) \subset Q$, то $\left\{x_n\right\} \subset Q$. Положим $\theta = \|x_1 - x_0\| = \|\Phi(x_0) - x_0\|$. Используя сжимаемость Φ на Q , последовательно находим:

$$||x_{2} - x_{1}|| = ||\Phi(x_{1}) - x_{0}|| \le q||x_{1} - x_{0}|| = \theta_{q};$$

$$||x_{3} - x_{2}|| = ||\Phi(x_{2}) - x_{1}|| \le q||x_{2} - x_{1}|| = \theta_{q}^{2};$$
.....

$$||x_{n+1}-x_n|| \le \theta_q^n.$$

Строгое обоснование этой оценки можно получить методом полной математической индукции. Оценим

$$||x_{n+1} - x_n|| \le ||x_{n+p} - x_{n+p-1}|| + ||x_{n+p-1} - x_{n+p-2}|| + \dots + ||x_{n+1} - x_n|| \le \theta_q^{n+p-1} + \theta_q^{n+p-2} + \dots + ||x_{n+1} - x_n|| \le \theta_q^{n-q-1} + \theta_q^{n+p-2} + \dots + ||x_{n+1} - x_n|| \le \theta_q^{n-q-1} + \theta_q^{n-q-1} \le \theta_q^{n-q-1} \le \theta_q^{n-q-1}$$

Следовательно,

$$||x_{n+p} - x_n|| \le \frac{||\Phi(x_0) - x_0|| q^n}{1 - q}$$

Отсюда вытекает фундаментальность $\{x_n\}$, а вследствие

полноты X - сходимость $\left\{x_n\right\}$ в X к некоторому элементу $x^\circ \in X$. Так как Q замкнуто, то $x^\circ \in Q$.

Из условия сжимаемости Φ на Q вытекает непрерывность Φ в каждой точке Q . Перейдя в равенстве $x_n = \Phi(x_{n-1})$ к пределу при $n \to \infty$, получим $x^\circ = \Phi(x^\circ)$. Следовательно, x° неподвижная точка Φ на Q .

Докажем единственность точки x° . Пусть \widetilde{x} - еще одна неподвижная точка оператора Φ , т.е. имеем равенство $x^\circ = \Phi(x^\circ)$ и $\widetilde{x} = \Phi(\widetilde{x})$. Вычитая из одного равенства другое, получим

$$||x^{\circ} - \widetilde{x}|| = ||\Phi(x^{\circ}) - \Phi(\widetilde{x})|| \le q||x^{\circ} - \widetilde{x}||.$$

Это неравенство возможно только при $\left\|x^\circ-\widetilde{x}\right\|=0$, от куда $\widetilde{x}=x^\circ$. Для доказательства оценки (10) достаточно в (11) перейти к пределу при $p\to +\infty$.

Метод сжимающих отображений применяется очень широко.

Пример. Рассмотрим решение системы m линейных уравнений с m неизвестными. Пусть H - m -мерное пространство, y - заданный вектор в H , а $B \in L(H,H)$. Для решения уравнения

$$x - Bx = y \tag{12}$$

часто применяется *метод простой итерации*. При этом решение уравнения (5) разыскивается как предел последовательности

$$x_{n+1} = Bx_n + y, \quad n = 0,1,...,$$
 (13)

а начальное приближение x_0 задано. Если $x_n \to x$ при $n \to \infty$ (где x_n - решение (13), а x - решение (12)), то говорят, что метод простой итерации сходится.

С точки зрения принципа сжимающих отображений уравнение (12) следует в виде $x^\circ = \Phi(x)$, где $\Phi(x) = Bx + y$. При этом

$$\|\Phi(x') - \Phi(x'')\| = \|Bx' - Bx''\| \le \|B\| \|x' - x''\|.$$

Если $\|B\| < 1$, то оператор Φ является сжимающим и метод простых итераций сходится. Это условие выполняется, если все собственные значения матрицы B по модулю были меньше 1.

7.13 Интегральные операторы Вольтерра Основные понятия

Уравнение

$$\varphi(x) = f(x) + \lambda \int_{a}^{x} K(x, f) \varphi(f) dt, \tag{14}$$

где f (x), K (x,t) — известные функции, φ (x) — искомая функция, λ — числовой параметр, называется линейным интегральным уравнением Вольтерра 2-го рода. Функция K (x,t) называется ядром уравнения Вольтерра. Если f(x)=0, то уравнение (1) принимает вид.

$$\varphi(x) = \lambda \int_{a}^{x} K(x, f) \varphi(f) dt, \tag{15}$$

и называется однородным уравнением Вольтерра 2-го рода.

Уравнение

$$\int_{a}^{x} K(x, f)\varphi(f)dt = f(x), \tag{16}$$

где $\varphi(x)$ — искомая функция, называется интегральным уравнением Вольтерра 1-го рода. Не нарушая общности, можем считать нижний предела равным нулю, что мы и будем предполагать в дальнейшем.

Решением интегрального уравнения (14) или (16) называют функцию $\varphi(x)$, которая при подставлении в это уравнение обращает его в тождество (по x).

7.14 Резольвента интегрального уравнения Вольтерра

Решение интегрального уравнения с помощью резольвенты. Пусть имеем интегральное уравнение Вольтерра 2-го рода

$$\varphi(x) = f(x) + \lambda \int_0^x K(x, f) \varphi(f) dt,$$

где K(x,t) есть непрерывная функция при $0 \le x \le a$, $0 \le t \le x$, а f(x) непрерывна при $0 \le x \le a$,

Будем искать решение интегрального уравнения (1) в виде бесконечного степенного ряда по степеням λ :

$$\varphi(x) = \varphi_0(x) + \lambda \varphi_1(x) + \lambda^2 \varphi_2(x) + \dots + \lambda^n \varphi_n(x) + \dots$$

Подставляя формально этот ряд в (1), получим

$$\varphi_0(x) + \lambda \varphi_1(x) + \dots + \lambda^n \varphi_n(x) + \dots = f(x) + \lambda \int_0^x K(x, t) [\varphi_0(t) + \lambda \varphi_1(t) + \dots + \lambda^n \varphi_n(x) + \dots] dt$$
(17)

Сравнивая коэффициенты при одинаковых степенях ightarrow, найдем

$$\varphi_{0}(x) = f(x),
\varphi_{1}(x) = \int_{0}^{x} K(x, t) \varphi_{0}(t) dt = \int_{0}^{x} K(x, t) f(t) dt,
\varphi_{2}(x) = \int_{0}^{x} K(x, t) \varphi_{1}(t) dt = \int_{0}^{x} K(x, t) \int_{0}^{x} K(x, t) f(t_{1}) dt_{1} dt$$
, (18)

Соотношения (18) дают способ последовательного определения функций $\varphi_n(x)$. Можно показать, что при сделанных предположенных относительно f(x) и K(x,t) полученный таким образом ряд сходится равномерно по x и $x \in [0,a]$ и его сумма есть единственное решение уравнения (14).

Далее, из (18) следует:

$$\begin{aligned} \varphi_1(x) &= \int_0^x K(x,t) f(t) dt, \\ \varphi_1(x) &= \int_0^x K(x,t) [\int_0^t K(t,t_2) f(t_1) dt_1] dt = \\ \int_o^x f(t_1) dt_1 \int_{t_1}^x K(x,t) K(t,t_1) dt &= \int_0^x K_2(x,t_1) f(t_1) dt_1 \end{aligned}$$

где $K_2(x, t_1) = \int_{t_1}^x K(x, t) K(t, t_1) dt$

Аналогично устанавливается, что вообще

$$\varphi_n(x) = \int_0^x K_n(x,t)f(t)dt$$
 $(n = 1,2,...)$ (19)

Функции $K_n(x,t)$ называются повторными или итерированными ядрами. Они, как нетрудно показать, определяются при помощи рекуррентных формул

$$K_n(x,t) = K(x,t),$$

$$K_{n+1}(x,t) = \int_{t}^{x} K(x,z)K_{n}(z,t)dt (n = 1,2,...)$$
 (20)

Используя (6) и (7), равенство (4) можно записать так:

$$\varphi(x) = f(x) + \sum_{v=0}^{\infty} \lambda^v K_{v+1}(x,t) f(t) dt.$$

Функция R (x,t, λ), определяемая при помощи ряда

$$R(x,t,\lambda) = \sum_{\nu=0}^{\infty} \lambda^{\nu} K_{\nu+1}(x,t), \qquad (21)$$

называется резольвентой (или разрешающим ядром) интегрального уравнения (14). Ряд (8) в случае непрерывного ядра K(x,t) сходится абсолютно и равномерно.

Резольвента R(x,t, λ) удовлетворяет следующему функциональному уравнению:

R(x,t,
$$\lambda$$
)=K(x,t)+ $\lambda \int_{t}^{x} K(x,s)R(s,t;\lambda)ds$.

С помощью резольвенты решение интегрального уравнения (14) запишется в виде

$$\varphi(x) = f(x) + \lambda \int_0^x R(x, t; \lambda) f(t) dt.$$

Пример 1. Найти резольвенту интегрального уравнения Вольтерра с ядром K(x,t)=1.

Решение. Имеем $K_1(x,t)=K(x,t)=1$. Далее, согласно формулам (19),

$$K_{2}(x,t) = \int_{t}^{x} K(x,z)K_{1}(z,t)dz = \int_{t}^{x} dz = x - t,$$

$$K_{3}(x,t) = \int_{t}^{x} 1 \cdot (z - t)dz = \frac{(x - t)^{2}}{2},$$

$$K_{4}(x,t) = \int_{t}^{x} 1 \cdot \frac{(z - t)^{2}}{2} dz = \frac{(z - t)^{2}}{3t},$$

$$K_n$$
(x,t)=
$$\int_t^x 1\cdot K_{n-1}(z,t)dz = \int_t^x 1\cdot \frac{(z-t)^{n-2}}{(n-2)!}dz = \frac{(x-t)^{n-1}}{(n-1)!}$$
 Таким образом, согласно определению

$$R(x,t;\lambda) = \sum_{n=0}^{\infty} \lambda^n K_{n+1}(x,t) = \sum_{n=0}^{\infty} \frac{\lambda^n (x-t)^n}{n!} = e^{\lambda(x-t)}$$

8. Задания и примеры решений

Найти с помощью резольвент решения следующих интегральных уравнений:

1.
$$\varphi(x) = e^x + \int_0^x e^{x-t} \varphi(t) dt$$
.
2. $\varphi(x) = \sin x + 2 \int_0^x e^{x-t} \varphi(t) dt$
3. $\varphi(x) = x3^x - \int_0^x 3^{x-1} \varphi(t) dt$
4. $\varphi(x) = e^x \sin x + \int_0^x \frac{2 + \cos x}{2 + \cos t} \varphi(t) dt$
5. $\varphi(x) = 1 - 2x - \int_0^x e^{x^2 - t^2} \varphi(t) dt$
6. $\varphi(x) = e^{x^2 + 2x} + 2 \int_0^x e^{x^2 - t^2} \varphi(t) dt$
7. $\varphi(x) = 1 + x^2 + \int_0^x \frac{1 + x^2}{1 + t^2} \varphi(t) dt$

Компактные интегральные операторы с вырожденным ядром

Ядро K(x,t) интегрального уравнения Фредгольма 2-го ро-

да называется вырожденным, если оно является суммой конечного числа произведений функций только от x на функции только от x, т.е. если оно имеет вид

$$K(x,t) = \sum_{k=1}^{n} a_k(x)b_k(t);$$
 (22)

Функции $a_k(x)$ и $b_k(t)$ (k=1,2,...,n) будем считать непрерывными в основном квадрате $a \le x, t \le b$ и линейно независимыми между собой. Интегральное уравнение с вырожденным ядром

$$\varphi(x) - \lambda \int_{a}^{b} \left[\sum_{k=1}^{n} a_{k}(x) b_{k}(t) \right] \varphi(t) dt = f(x)$$

решается следующим образом.

Перепишем (15) в виде

$$\varphi(x) = f(x) + \lambda \sum_{k=1}^{n} a_k(x) \int_a^b b_k(t) \varphi(t) dt$$
 (23)

и введем обозначение

$$\int_{a}^{b} b_{k}(t)\varphi(t)dt = C_{k}.$$

Тогда (23) примет вид

$$\varphi(x) = f(x) + \lambda \sum_{k=1}^{n} C_k a_k(x), \quad (24)$$

где \mathcal{C}_k - неизвестные постоянные (так как функция $\varphi(x)$ неизвестна).

Таким образом, решение интегрального уравнения с вырожденным ядром сводится к нахождению постоянных \mathcal{C}_k (k=1,2,...,n).

Подставляя выражение (24) в интегральное уравнение

(23), после несложных выкладок получим

$$\sum_{m=1}^{n} \left\{ C_m - \int_a^b b_m(t) \left[f(t) + \lambda \sum_{k=1}^{n} C_k a_k(t) \right] dt \right\} a_m(x) = 0.$$

В силу линейной независимости функций $a_m(x)$ (m=1,2,...,n) отсюда следует, что

$$C_{m} - \int_{a}^{b} b_{m}(t) \left[f(t) + \lambda \sum_{k=1}^{n} C_{k} a_{k}(t) \right] dt$$

$$= 0. \tag{25}$$

 $C_1, C_2, ..., C_n$, получаем по формулам Крамера:

$$C_{k} = \frac{1}{\Delta(\lambda)} \begin{vmatrix} 1 - \lambda a_{11} \dots - \lambda a_{1k-1} f_{1} - \lambda a_{1k+1} \dots - \lambda a_{1n} \\ -\lambda a_{12} \dots - \lambda a_{2k-1} f_{2} - \lambda a_{2k+1} \dots - \lambda a_{2n} \\ -\lambda a_{n1} \dots - \lambda a_{nk-1} f_{n} - \lambda a_{nk+1} \dots 1 - \lambda a_{nn} \end{vmatrix} (26)$$

$$(k=1,2,...,n)$$

Решением интегрального уравнения (23) будет функция $m{arphi}(x)$, определенная равенством

$$\varphi(x) = f(x) + \lambda \sum_{k=1}^{n} C_k a_k(x),$$

где коэффициенты $\mathsf{C}_k(k=1,...,n)$ определяются по формулам (26).

Замечание. Систему (25) можно получить, если обе части равенства (24) последовательно умножить на $a_1(x), a_2(x), ..., a_n(x)$, и проинтегрировать в пределах от а до b, либо же подставить выражение (24) для $\varphi(x)$ в равенство (10), заменив x на t.

Пример 1. Решить интегральное уравнение

$$\varphi(x) - \lambda \int_{-\pi}^{\pi} (x \cos t + t^2 \sin x + \cos x \sin t) \varphi(t) dt = x$$
(27)

Решение. Запишем уравнение в следующем виде:

$$\varphi(x) = \lambda x \int_{-\pi}^{\pi} \varphi(t) \cos t dt + \lambda \sin x \int_{-\pi}^{\pi} t^{2} \varphi(t) dt + \int_{-\pi}^{\pi} \varphi(t) \sin t dt + x$$

Введем обозначения:

$$C_{1} = \int_{-\pi}^{\pi} \varphi(t) \cos t dt C_{2} = \int_{-\pi}^{\pi} t^{2} \varphi(t) dt C_{1} = \int_{-\pi}^{\pi} \varphi(t) \sin t dt,$$
 (28)

где C_1, C_2, C_3 — неизвестные постоянные. Тогда (28) примет вид

$$\varphi(x) = C_1 \lambda x + C_2 \lambda \sin x + C_3 \lambda \cos x + x \quad (29)$$

Подставляя выражение (29) в равенства (28), получим

$$C_1 = \int_{-\pi}^{\pi} (C_1 \lambda t + C_2 \lambda \sin t + C_3 \lambda \cos t + t) \cos t dt$$

$$C_2 = \int_{-\pi}^{\pi} (C_2 \lambda t + C_2 \lambda \sin t + C_3 \lambda \cos t + t) t^2 dt,$$

$$C_3 = \int_{-\pi}^{\pi} (C_1 \lambda t + C_2 \lambda \sin t + C_3 \lambda \cos t + t) \sin t dt$$

.Или

$$C_1 \left(1 - \lambda \int_{-\pi}^{\pi} t \cos t dt \right) - C_2 \lambda \int_{-\pi}^{\pi} \sin t \cos t dt - C_2 \lambda \int_{-\pi}^{\pi} \cos^2 t dt = \int_{-\pi}^{\pi} t \cos t dt$$

,

$$C_{1} \lambda \int_{-\pi}^{\pi} t^{3} dt + C_{2} \left(1 - \lambda \int_{-\pi}^{\pi} t^{2} \sin t dt \right) - C_{3} \lambda \int_{-\pi}^{\pi} t^{2} \cos t dt = \int_{-\pi}^{\pi} t^{2} dt$$

,

$$\begin{aligned} &C_1 \lambda \int_{-\pi}^{\pi} t \sin t dt - C_2 \lambda \int_{-\pi}^{\pi} \sin^2 t dt + C_3 \left(1 - \lambda \int_{-\pi}^{\pi} \sin t \cos t dt\right) = \int_{-\pi}^{\pi} t \sin t dt \end{aligned}$$

Вычислив входящие в этих уравнениях интегралы, мы получим систему алгебраических уравнений для нахождения неизвестных C_1, C_2, C_3 :

Определитель этой системы

$$\Delta(\lambda) = \begin{vmatrix} 1 & 0 & -\pi\lambda \\ 0 & 1 & 4\pi\lambda \\ -2\lambda\pi & \lambda\pi & 1 \end{vmatrix} = 1 + 2\lambda^2\pi^2 \neq 0.$$

Система (16) имеет единственное решение

$$C_{1} = \frac{2\lambda\pi^{2}}{1 + 2\lambda^{2}\pi^{2}}, \quad C_{2} = \frac{8\lambda\pi^{2}}{1 + 2\lambda^{2}\pi^{2}}, \quad C_{3} = \frac{\pi}{1 + 2\lambda^{2}\pi^{2}}$$
$$\varphi(x) = \frac{\pi}{1 + 2\lambda^{2}\pi^{2}}(\lambda\pi x - 4\lambda\pi\sin x + \cos x) + x.$$

Решить следующие интегральные уравнение с вырожденными ядрами:

1.
$$\varphi(x) - 4 \int_0^{\pi/2} \sin^2 x \varphi(t) dt = 2x - \pi$$
.

$$2. \varphi(x) - \int_{-1}^{1} e^{\arcsin x} \varphi(t) dt = tgx.$$

$$3.\varphi(x) - \lambda \int_{-\pi/4}^{\pi/4} tgt\varphi(t)dt = ctgx.$$

$$4.\varphi(x) - \lambda \int_0^1 \cos(g \ln t) \, \varphi(t) dt = 1.$$

5.
$$\varphi(x) - \lambda \int_0^1 arc \cos t \varphi(t) dt = \frac{1}{\sqrt{1-x^2}}$$

6.
$$\varphi(x) - \lambda \int_0^1 \left(\ln \frac{1}{t} \right)^p \varphi(t) dt = 1$$
 (p> -1).

$$7.\varphi(x) - \lambda \int_0^1 (x \ln t - t \ln x) \varphi(t) dt = \frac{6}{5} (1 - 4x)$$

8.
$$\varphi(x) - \lambda \int_0^{\pi/2} \sin x \cos t \, \varphi(t) dt = \sin x$$

9.
$$\varphi(x) - \lambda \int_0^{2\pi} |\pi - t| \sin x \varphi(t) dt = x$$

10.
$$\varphi(x) - \lambda \int_0^{\pi} \sin(x - t) \varphi(t) = \cos x$$

11.

$$\varphi(x) - \lambda \int_0^{2\pi} (\sin x \cos t - \sin 2x \cos 2t + \sin 3x \cos 3t) \varphi(t) dt = \cos x$$
12.

$$\varphi(x) - \frac{1}{2} \int_{-1}^{1} \left[x - \frac{1}{2} (3t^2 - 1) + \frac{1}{2} t (3x^2 - 1) \right] \varphi(t) dt = 1.$$

Характеристические числа и собственные функции

Однородное интегральное уравнение Фредгольма 2-го ро-

да

$$\varphi(x) - \lambda \int_{a}^{b} K(x, t) \varphi(t) dt = 0 \quad (14)$$

всегда имеет очевидное решение $\varphi(x)=0$, которое называют нулевым (тривиальным) решением.

Значения параметра λ , при которых это уравнение имеет ненулевые решения, называются характеристическими числами уравнения K(x,t), а каждое ненулевое решение этого уравнения называется собственной функцией, соответствующей характеристическому числу λ .

Число $\lambda=0$ не является характеристическим числом, так как при $\lambda=0$ из (14) следует $\, arphi(x)=0. \,$

Если ядро K(x,t) непрерывно в квадрате $Q\{a \le x, t \le b\}$ или квадратично суммируемо в Q, причем числа a и b конечны, то каждому характеристическому числу λ соответствует конечное число линейно независимых собственных функций; число таких функций называется рангом характеристического числа. Разные характеристические числа могут иметь разные ранги. Для уравнения с вырожденным ядром

$$\varphi(x) - \lambda \int_{a}^{b} \left[\sum_{k=1}^{n} a_{k}(x) b_{k}(t) \right] \varphi(t) dt = 0$$
 (30)

характеристические числа являются корнями алгебраического уравнения

$$\Delta(\lambda) = \begin{bmatrix} 1 - \lambda a_{11} & -\lambda a_{12} \dots & -\lambda a_{1n} \\ -\lambda a_{21} & 1 - \lambda a_{22} \dots & -\lambda a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ -\lambda a_{nn} & -\lambda a_{nn} \dots & 1 - \lambda a_{nn} \end{bmatrix} = 0$$
 (31)

степень которого $p \leq n$. Здесь $\Delta(\lambda)$ — определитель однородный линейной системы

$$(1 - \lambda a_{11}) C_1 - \lambda a_{12} C_2 - \dots - \lambda a_{1n} C_n = 0$$

$$-\lambda a_{21} C_1 + (1 - \lambda a_{22}) C_2 - \dots - \lambda a_{2n} C_n = 0$$

$$-\lambda a_{n1} C_1 - \lambda a_{n2} C_3 - \dots + (1 - \lambda a_{nn}) C_n = 0$$
(32)

Пример 1. Найти характеристические числа и собственные функции интегрального уравнения

$$\varphi(x) - \lambda \int_0^{\pi} (\cos^2 x \cos 2t + \cos 3x \cos^3 t) \varphi(t) dt = 0,$$

Решение. Имеем

$$\varphi(x) = \lambda \cos^2 x \int_0^\pi \varphi(x) \cos 2t dt + \lambda \cos 3x \int_0^\pi \varphi(t) \cos^2 t dt.$$

Вводя обозначения

$$C_1 = \int_0^\pi \varphi(x) \cos 2t dt, C_2 = \int_0^\pi \varphi(t) \cos^2 t dt, \tag{33}$$

будем иметь

$$\varphi(x) = C_1 \lambda \cos^2 x + C_2 \lambda \cos 3x \tag{34}$$

Подставляя (34) в (33), получим линейную систему однородных уравнений

$$C_{1}(1-\lambda \int_{0}^{\pi} \cos^{2}t \cos 2t dt) - C_{2}\lambda \int_{0}^{\pi} \cos 3t \cos 2t dt = 0$$

$$-C_{1}\lambda \int_{0}^{\pi} \cos^{3}dt + C_{2}(1-\lambda \int_{0}^{\pi} \cos^{3}t \cos 3t dt) = 0$$
(35)

Так как

$$\int_{0}^{\pi} \cos^{2}t \cos 2t dt = \frac{\pi}{4}, \qquad \int_{0}^{\pi} \cos 3t \cos 2t dt = 0,$$

$$\int_{0}^{\pi} \cos^{3}dt = 0, \qquad \int_{0}^{\pi} \cos^{3}t \cos 3t dt = \frac{\pi}{8},$$

то система (35) примет вид

$$\begin{pmatrix}
1 - \frac{\lambda \pi}{4} \end{pmatrix} C_1 = 0 \\
\left(1 - \frac{\lambda \pi}{8} \right) C_2 = 0
\end{pmatrix}$$
(36)

Уравнение для нахождение характеристических чисел:

$$\begin{vmatrix} 1 - \frac{\lambda \pi}{4} & 0 \\ 0 & 1 - \frac{\lambda \pi}{8} \end{vmatrix} = 0.$$

Характеристические числа: $\lambda_1 = \frac{4}{\pi}$, $\lambda_2 = \frac{8}{\pi}$.

При
$$\lambda = \frac{4}{\pi}$$
система (36) принимает вид $\begin{cases} 0 \cdot C_1 = 0, \\ \frac{1}{2} \cdot C_2 = 0, \end{cases}$

откуда $C_2=0$, C_1 произвольно, и, значит, собственная функция будет $\varphi(x)=C_2\lambda cos3x$, или, полагая $C_2\lambda=1$, получим $\varphi_2(x)=cos3x$.

Итак, характеристические числа:

$$\lambda_1 = \frac{4}{\pi}$$
, $\lambda_1 = \frac{8}{\pi}$;

соответствующие им собственные функции:

$$\varphi_1(x) = \cos^2 x, \varphi_2(x) = \cos 3x.$$

Однородное интегральное уравнение Фредгольма может вообще не иметь характеристических чисел и собственных функций.

Пример 2. Однородное интегральное уравнение

$$\varphi(x) - \lambda \int_0^1 (3x - 2)t\varphi(t)dt = 0$$
 (37)

не имеет характеристических чисел и собственных функций.

В самом деле, имеем

$$\varphi(x) = \lambda(3x - 2) \int_{0}^{1} t\varphi(t) dt.$$
 (38)

Полагая $C = \int_0^1 t \varphi(t) \, dt = 0$, получим $\varphi(x) = C \lambda (3x - 2)$

Подставляя (38) в (37), получим

$$\left[1 - \lambda \int_{0}^{1} (3t^{2} - 2t) dt\right] \cdot C = 0$$
 (39)

Но так как $\int_0^1 (3t^2-2t)\ dt=0$, то уравнение (26) дает C=0, и, следовательно, $\varphi(\mathbf{x})=0$.

Итак, данное уравнение при любых $\mathfrak Z$ имеет только одно нулевое решение $\varphi(\mathfrak X)=0$, а значит, оно не имеет характеристи-

ческих чисел и собственных функций.

Найти характеристические числа и собственные функции для следующих интегральных уравнений с вырожденным ядром:

$$1.\varphi(x) - \lambda \int_0^{\pi/2} \sin^2 x \, \varphi \, dt = 0$$

$$2. \varphi(x) - \lambda \int_0^{2\pi} \sin x \cos t \varphi(t) dt = 0$$

3.
$$\varphi(x) - \lambda \int_0^{2\pi} \sin x \sin t \varphi(t) dt = 0$$

$$4. \varphi(x) - \lambda \int_0^{\pi} \cos(x+t) \varphi dt = 0$$

5.
$$\varphi(x) - \lambda \int_0^1 (45x^2 \ln t - 9t^2 \ln x) dt = 0$$

6.
$$\varphi(x) - \lambda \int_0^1 (2xt - 4x^2) \varphi(t) dt = 0$$

7.
$$\varphi(x) - \lambda \int_{-1}^{1} (5xt^2 + 4x^3t) \varphi(t) dt = 0$$

8.
$$\varphi(x) - \lambda \int_{-1}^{1} (5xt^2 + 4x^3t + 3xt) \varphi(t) dt = 0$$

9.
$$\varphi(x) - \lambda \int_{-1}^{1} (x \, cht - tshx) \varphi(t) \, dt = 0$$

$$10.\varphi(x) - \int_{-1}^{1} (xch - t^2 shx) \varphi(t) dt = 0$$

$$11.\varphi\left(x - \int_{-1}^{1} (xcht - tchx)\varphi(t)dt = 0\right)$$

Пример 3. Решить интегральное уравнение

$$\int_0^x e^{x-t} \varphi(t) dt = x \tag{40}$$

Решение. применяя преобразование Лапласа к обеим частям (40), получим

$$rac{1}{p-1}$$
 $\phi(p) = rac{1}{p^2}$, откуда $\phi(p) = rac{p-1}{p^2} = rac{1}{p} - rac{1}{p^2} = 1 - x$

Функция $\varphi(x) = 1 - x$ есть решение уравнения (40).

Решить интегральные уравнения:

$$1.\int_0^x \cos(x-t) \varphi(t) dt = \sin x$$

$$2.\int_{0}^{x} e^{x-t} \varphi(t) dt = shx$$

$$3.\int_{0}^{x} (x-t)^{\frac{1}{2}} \varphi(t) dt = x^{\frac{5}{2}}$$

$$4.\int_{0}^{x} e^{x-t} \varphi(t) dt = sin x$$

$$5.\int_{0}^{x} e^{x-t} \varphi(t) dt = x^{2}$$

$$6.\int_{0}^{x} cos(x-t) \varphi(t) dt = x sin x$$

$$7.\int_{0}^{x} sh(x-t) \varphi(t) dt = x^{2}e^{-x}$$

$$8.\int_{0}^{x} J_{0}(x-t) \varphi(t) dt = sin x$$

$$9.\int_{0}^{x} ch(x-t) \varphi(t) dt = x$$

$$10.\int_{0}^{x} cos(x-t) \varphi(t) dt = x + x^{2}$$

$$11.\int_{0}^{x} (x^{2}-t^{2}) \varphi(t) dt = \frac{x^{3}}{2}$$

$$12.\int_{0}^{x} (x^{2}-4xt+3t^{2}) \varphi(t) = \frac{x^{4}}{12}$$

$$13.\int_{0}^{x} (x^{2}-4xt+3t^{2}) \varphi(t) = x^{2} J_{4}(2\sqrt{x})$$

$$14.\int_{0}^{x} (x-2t) \varphi(t) dt = -\frac{x^{2}}{6}$$

Рассмотрим интегральное уравнение

$$\int_0^x (x-t)\varphi(t) dt = x. \tag{41}$$

Здесь f(x)=x. Очевидно, f(x) имеет производные всех порядков, но ее первая производная $f'(x)=1\neq 0$, т.е. необходимое условие не выполняется.

Применяя формально к обеим часть уравнения (28) преобразование Лапласа, получим

$$rac{1}{p^2} \Phi(p) = rac{1}{p^2},$$
 откуда $\Phi(p) = 1$. это есть изображение σ -функции $\sigma(x)$.

Напомним, что

$$\sigma(x) = 1,$$
 $\sigma^{(m)}(x) = p^m,$

v-целое≥ **0.**

Итак, решение интегрального уравнение (28) есть сигмафункция:

$$\Phi(x) = \sigma(x)$$
.

В этом можно убедиться непосредственной проверкой, если учесть, что свертка -функция со всякой гладкой функцией g(x) определяется так:

$$g(x)^* \sigma(x) = g(x),$$

 $\sigma^{(k)}(x) * g(x) = g^{(k)}(x)$ $(k = 1, 2, ...,)$

В самом деле, в нашем случае g(x)=K(x)=x и

$$\int_0^x K(x-t) \, \sigma(t) \, dt = K(x) = x.$$

Таким образом, решение уравнение (41) существует, но уже в классе обобщенных функций.

Решить интегральные уравнения:

$$1.\int_0^x (x-t)\varphi(t) \, dt = x^2 + x - 1$$

$$2. \int_0^x (x-t)\varphi(t) dt = \sin x$$

$$3.\int_0^x (x-t)^2 \varphi(t) dt = x^2 + x^2$$

$$4.\int_0^x \sin(x-t)\varphi(t)dt = x+1$$

$$5.\int_0^x \sin(x-t)\varphi(t)dt = 1 - \cos x$$

Пример 4. Решить интегральное уравнение Вольтер- $\mathrm{pa:}\ x(t) = 2\cos t + 2\int_0^t \cos(t-\tau)x(\tau)d\tau\ .$

Решение. Для данного уравнения

$$L(2\cos t) = \frac{2p}{p^2 + 1}, \ L(\cos t) = \frac{p}{p^2 + 1}.$$

Поэтому, переходя к изображениям в исходном уравнении, получим:

$$X(p) = \frac{2p}{p^2 + 1} + 2L[\cos t * x(t)],$$

$$X(p) = \frac{2p}{p^2 + 1} + 2\frac{p}{p^2 + 1} \cdot X(p),$$

тогда

$$X(p) = \frac{\frac{2p}{p^2+1}}{1 - \frac{2p}{p^2+1}} = \frac{2p}{(p-1)^2} = \frac{2}{p-1} + \frac{2}{(p-1)^2},$$

переходя к оригиналу, получим:

$$x(t) = L^{-1} \left[\frac{2}{p-1} + \frac{2}{(p-1)^2} \right] = 2e^t + 2te^t = 2e^t (1+t).$$

Операционным методом решить интегральные уравнения:

1.
$$y(t) = e^{2t} + \int_0^t e^{\tau - t} y(\tau) d\tau$$
.

2.
$$y(t) = t + \int_0^t \sin(t - \tau) y(\tau) d\tau$$
.

3.
$$y(t) = e^t + 2 \int_0^t \cos(t - \tau) y(\tau) d\tau$$
.

4.
$$y(t) = \cos t + \int_0^t y(\tau) d\tau.$$

5.
$$y(t) = e^{-t} + \int_0^t e^{-(t-\tau)} \sin(t-\tau) y(\tau) d\tau$$
.

6.
$$y(t) = \cos t - \int_0^t (t - \tau) \cos(t - \tau) y(\tau) d\tau$$
.

7.
$$y(t) = \sin t + \int_0^t \cos(t - \tau) y(\tau) d\tau$$
.

8.
$$y(t) = t - \int_0^t e^{t-\tau} y(\tau) d\tau$$
.

9.
$$y(t) = e^t - \int_0^t e^{t-\tau} y(\tau) d\tau$$
.

10.
$$y(t) = e^t + \int_0^t e^{t-\tau} y(\tau) d\tau$$
.

СПИСОК ЛИТЕРАТУРЫ

- 1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1972.
- 2. Рудин У. Функциональный анализ. М.: Мир, 1975.
- 3. Люстерник Л.А., Соболев В.И. Краткий курс функционального анализа. М.: Высшая школа, 1972.
- 4. Кудрявцев Л.Д. Математический анализ. Т.1,2. М.: Наука, 1975.
- 5. Данфорд Н., Шварц Дж. Линейные операторы. М.: Мир, 1974.
- 6. Ватульян А.О., Михайлова О.П., Румянцева Т.Г. Элементы функционального анализа: учеб. пособие/ Ростов н/Д: ИЦ ДГТУ, 1997.