

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ Кафедра «Прикладная математика»

Учебное пособие

по дисциплине

Высшая математика: «Элементы векторной алгебры»

Авторы Ермилова О.В. Азимова Н.Н.

Аннотация

Пособие содержит теоретический и практический материал по векторной алгебре, предусмотренный программой при изучении курса «Высшая математика» и может быть использовано при подготовке и проведении практических и теоретических занятий по разделу «Элементы векторной алгебры». Пособие по векторной алгебре предназначено для преподавателей и студентов всех технических специальностей очного обучения. Определения и доказательства теорем разобраны в полном объеме и дополнены примерами с подробным решением и необходимыми теоретическими обоснованиями этих решений, что значительно поможет в усвоении пройденного материала. В пособие включены задачи для аудиторных занятий и самостоятельной (домашней) работы с ответами, благодаря чему преподавателю не приходится тратить время на составление и решение домашних заданий для студентов, а студентам поможет закрепить пройденный материал и проверить правильность решения задания. Содержится типовой расчет. Достоинство пособия состоит в том, что при наличии такого количества задач оно также может быть использовано как задачник.

Авторы

- ст. преподаватель кафедры «Прикладная математика» Ермилова О.В.,
- ст. преподаватель кафедры «Прикладная математика» Азимова Н.Н.

Оглавление

Глава 1.Векторы4
1.1. Основные понятия
Задания для самостоятельного решения
Глава 2. СКАЛярное произведение Векторов47
2.1. Определение скалярного произведения47 2.2. Выражение скалярного произведения через координаты
2.3. Приложение скалярного произведения
3.1. Определение векторного произведения
3.3.Приложение векторного произведения
4.1. Определение смешанного произведения и его свойства
4.2. Выражение смешанного произведения через координаты
4.3. Приложение смешанного произведения
Задания для типового расчета «Векторная алгебра» 101 Список литературы

ГЛАВА 1.ВЕКТОРЫ

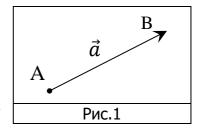
1.1. Основные понятия.

Во многих разделах математики, механики, физики и других технических наук различают величины скалярные и векторные. Величина, для определения которой достаточно задать только ее численное значение, называется скалярной. Примером скалярных величин является длина, площадь, масса, температура, сопротивление и так далее.

Вектором или векторной величиной называется величина, которая характеризуются не только своим численным значением, но и определенным направлением в рассматриваемом пространстве. Примером векторных величин является скорость, сила, ускорение и так далее.

Вектором называется направленный отрезок AB с начальной точкой A и конечной точкой B .

Геометрически вектор изображают в виде стрелки (рис.1). Вектор обозначается двумя большими или одной маленькой буквой.



Обозначение: \overrightarrow{AB} или \overrightarrow{a} .

Нулевой вектор –это вектор, у которого начало и конец совпадают. Нулевой вектор не имеет направления.

Обозначение: $\vec{0}$.

Модуль (длина) вектора – это расстояние между его началом и концом.

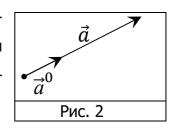
Обозначение: $|\vec{a}|$, $|\overrightarrow{AB}|$.

Модуль нулевого вектора равен нулю.

Единичный вектор – вектор, длина которого равна единице.

Обозначение: \vec{e} .

Единичный вектор, направление которого совпадает с направлением вектора \vec{a} , называется **ортом** вектора \vec{a} (рис.2).



Обозначение: \vec{a}^{0} .

Любой вектор может быть представлен в виде произведения его орта на число, равное его модулю, то есть в виде

$$\vec{a} = \vec{a}^0 \cdot |\vec{a}|$$
 (1.1)

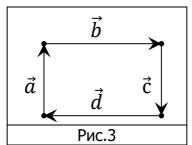
Откуда получим формулу для нахождения орта вектора \vec{a} :

$$\vec{a}^0 = \frac{\vec{a}}{|\vec{a}|}$$
 (1.2)

Два ненулевых вектора называются **противоположными**, если они имеют одинаковую длину и противоположное направление.

Обозначение: вектор \overrightarrow{BA} противоположен вектору \overrightarrow{AB} , то есть $\overrightarrow{BA} = -\overrightarrow{AB}$; $-\overrightarrow{a}$ противоположен вектору \overrightarrow{a} .

Например, на рис.3 векторы \vec{a} и \vec{c} , \vec{b} и \vec{d} противоположные, то есть $\vec{a}=-\vec{c}$, $\vec{b}=-\vec{d}$.



Два вектора \vec{a} и \vec{b} называются **коллинеарными**, если они лежат на одной прямой или на параллельных прямых, при этом если они направлены в одинаковом направлении, то векторы \vec{a} и \vec{b} называются **сонаправлеными**, если направления не совпадают, то векторы будут **противоположно направлеными**.

Обозначения: $\vec{a} \parallel \vec{b}$ -коллинеарные векторы; $\vec{a} \uparrow \uparrow \vec{b}$ -сонаправленные векторы; $\vec{a} \uparrow \downarrow \vec{b}$ - противоположно направленные векторы.

Например, на рис.3 векторы \vec{d} и \vec{b} , \vec{a} и \vec{c} -коллинеарны, при этом, векторы \vec{b} и \vec{d} , \vec{a} и \vec{c} -противоположно направлены ($\vec{a} \uparrow \downarrow \vec{c}$, $\vec{b} \uparrow \downarrow \vec{d}$).

Замечание: нулевой вектор считается коллинеарным любому вектору.

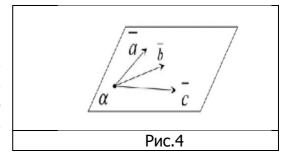
Два коллинеарных вектора \vec{a} и \vec{b} называются **равными**, если они сонаправлены и имеют равные длины.

Обозначение: $\vec{a} = \vec{b}$.

Например, на рис.3 $\vec{a} \neq \vec{c}$, но $\vec{a} = -\vec{c}$; $\vec{d} \neq \vec{b}$, но $\vec{d} = -\vec{b}$;

Из определения равенства векторов следует, что вектор можно переносить параллельно самому себе, не изменяя направления в любую точку пространства. Такие векторы называют **свободными** и для них безразлично, где поместить начало вектора.

Три вектора в пространстве называются **компланарными,** если они лежат в одной плоскости или в параллельных плоскостях. На рис.4 векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны



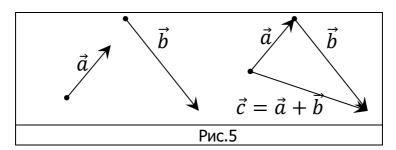
1.2. Линейные операции над векторами и их свойства.

К линейным операциям над векторами относятся операции сложения и вычитания векторов, умножение вектора на число.

Сложение векторов.

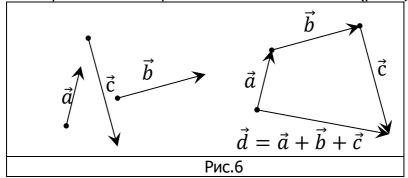
Для геометрического представления суммы векторов используют правило треугольников, многоугольников и правило параллелограмма.

Правило треугольника — рассмотрим два произвольных вектора \vec{a} и \vec{b} .От произвольно выбранной точки откладываем вектор, равный вектору \vec{a} , затем от его конца откладываем вектор, равный вектору \vec{b} . Строим вектор, начало которого совпадает с началом первого вектора, то есть с вектором \vec{a} , а конец — с концом вектора \vec{b} , это и есть вектор суммы $\vec{c} = \vec{a} + \vec{b}$ (см.рис.5).



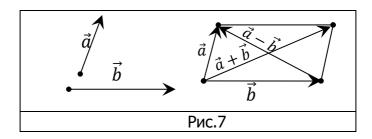
Правило многоугольника- чтобы найти сумму нескольких векторов $\vec{a}, \vec{b}, \vec{c}$ необходимо последовательно поместить

начало следующего вектора в конец предыдущего и провести вектор из начала первого в конец последнего (рис.6).



Аналогично поступаем при нахождении суммы n-го количества векторов.

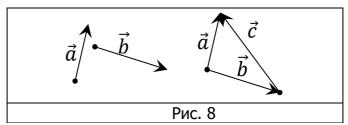
Правило параллелограмма - рассмотрим два произвольных вектора \vec{a} и \vec{b} от произвольно выбранной точки откладываем оба вектора (векторы откладываем от общего начала), на этих двух векторах, как на сторонах, строим параллелограмм. Диагональ этого параллелограмма, выходящая из общего начала векторов \vec{a} и \vec{b} представляет собой вектор суммы $\vec{a} + \vec{b}$ (см.рис.7).



Разность векторов

Рассмотрим два произвольных вектора \vec{a} и \vec{b} отложенных от общего начала.

Под **разностью** двух векторов \vec{a} и \vec{b} понимается вектор $\vec{c} = \vec{a} - \vec{b}$ такой, что $\vec{c} + \vec{b} = \vec{a}$ (см.рис.8).Таким образом, под разностью векторов \vec{a} и \vec{b} понимается вектор \vec{c} идущий из конца вычитаемого вектора (вектора \vec{b}) к концу уменьшаемого вектора (вектора \vec{a}), то есть другая диагональ параллелограмма с направлением от конца вектора \vec{b} к концу вектора \vec{a} .



Отметим, что вычитание векторов можно заменить сложением вектора \vec{a} с вектором, противоположным вектору \vec{b} , то есть $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$.

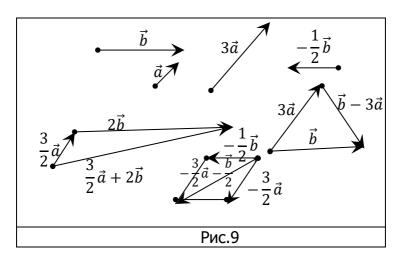
Умножение вектора на число.

Умножением ненулевого вектора $\vec{a} \neq 0$ на число

 $lpha \neq 0$ является вектор $\vec{b} = lpha \cdot \vec{a}$, удовлетворяющий следующим условиям:1) $|\vec{b}| = |lpha| \cdot |\vec{a}|$; 2) $\vec{a} \parallel \vec{b}$; 3)если lpha > 0, то $\vec{a} \uparrow \uparrow \vec{b}$ (векторы \vec{a} и \vec{b} сонаправлены -направления совпадают), если lpha < 0, то $\vec{a} \uparrow \downarrow \vec{b}$ (векторы \vec{a} и \vec{b} противоположно направлены).

Пример 1.1. По данным \vec{a} , \vec{b} , \vec{c} построить векторы: **a)** $3\vec{a}$;**6)** $-\frac{1}{2}\vec{b}$;**B)** $\frac{3}{2}\vec{a}+2\vec{b}$;**Г)** $\vec{b}-3\vec{a}$;**Д)** $-\frac{3}{2}\vec{a}-\frac{1}{2}\vec{b}$. Решение.

Построим произвольно два вектора \vec{a} и \vec{b} и найдем искомые векторы, в соответствии с определением операций над векторами имеем (см.рис.9):



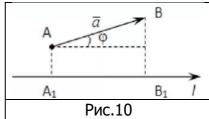
Свойства линейных операции над векторами.

Рассмотрим три произвольных ненулевых вектора $\vec{a}, \vec{b}, \vec{c}$ и α, β -произвольные числа, то справедливы равенства:

- **1)** $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (коммутативность сложения);
- **2)** $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ (ассоциативность сложения);
- **3)** $\vec{a} + \vec{0} = \vec{a}$ (свойство нуля);
- **4)** $1 \cdot \vec{a} = \vec{a}$ (свойство единицы);
- **5)** $\vec{a}+(-\vec{a})=\vec{0}$, где вектор $-\vec{a}$ противоположный вектору \vec{a} ;
- **6)** $\alpha \cdot (\beta \cdot \vec{a}) = (\alpha \cdot \beta) \cdot \vec{a}$; (ассоциативность относительно умножения чисел);
- **7)** $(\alpha + \beta) \cdot \vec{a} = \alpha \cdot \vec{a} + \beta \cdot \vec{a}$ (дистрибутивность умножения на вектор относительно сложения чисел);
- **8)** $\alpha \cdot (\vec{a} + \vec{b}) = \alpha \cdot \vec{a} + \alpha \cdot \vec{b}$ (дистрибутивность умножения на число относительно сложения векторов).

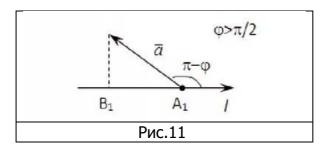
1.3. Проекция вектора на ось.

Проекцией вектора \overrightarrow{AB} на ось l называется число равное длине отрезка A_1B_1 этой оси, взятое со знаком плюс, если направление отрезка совпадает с направлением оси l (см.рис.10) и со знаком минус, если эти направления противоположны (см.рис.11)



Обозначение: $\pi p_l \overrightarrow{AB}$

Чтобы построить проекцию вектора \overrightarrow{AB} на ось l, нужно из точек A и B (начало и конец вектора \overrightarrow{AB} соответственно) опустить перпендикуляры на ось l, основания этих перпендикуляров будут началом и концом искомой проекции



Свойства проекции.

1) Проекция вектора \vec{a} на ось l равна произведению длины вектора \vec{a} на косинус угла между вектором \vec{a} и осью l ($\varphi = (\hat{\vec{a}}, \hat{l})$), то есть

Доказательство.

Если угол между вектором и осью острый, то есть $\varphi = (\widehat{a,l}) < \frac{\pi}{2}$ (от 0 до 90° градусов-см.рис.10),

To πp_l
$$\vec{a} = +|\vec{a}_1| = |\vec{a}| \cdot cos \varphi$$
 ($cos \varphi = \frac{|\vec{a}_1|}{|\vec{a}|}$);

Если угол между вектором и осью тупой, то есть

(от 90° до 180° градусов-см.рис.11), то

$$\pi p_l \vec{a} = -|\vec{a}_1| = -|\vec{a}| \cdot cos(\pi - \varphi) = |\vec{a}| \cdot cos\varphi$$

$$(\cos(\pi-\varphi)=\frac{|\vec{a}_1|}{|\vec{a}|},\cos(\pi-\varphi)=-\cos\varphi);$$

Замечание: если угол между вектором и осью прямой

$$\varphi = \left(\widehat{\vec{a},l}\right) = \frac{\pi}{2}$$
, to $\operatorname{\pip}_l \ \vec{a} = |\vec{a}| \cdot \cos\frac{\pi}{2} = 0$.

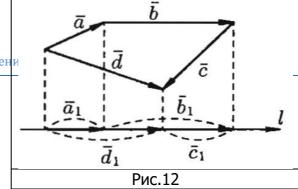
2)При умножении вектора \vec{a} на число его проекция на ось также умножается на то же число, то есть

Доказательство.

При
$$\alpha>0$$
, $\operatorname{пp}_l\ (\alpha\cdot\vec{a})=|\alpha\cdot\vec{a}|\cdot cos\varphi=|\alpha|\cdot|\vec{a}|\cdot cos\varphi=\alpha\cdot|\vec{a}|\cdot cos\varphi=\alpha\cdot\operatorname{пp}_l\vec{a}$;

При
$$\alpha < 0$$
, пр $_l$ $(\alpha \cdot \vec{a}) = |\alpha \cdot \vec{a}| \cdot cos(\pi - \varphi) =$

$$= |\alpha| \cdot |\vec{a}| (-\cos\varphi) = -\alpha \cdot |\vec{a}| \cdot (-\cos\varphi) =$$



$$= \alpha \cdot |\vec{a}| \cdot \cos \varphi = \alpha \cdot \pi p_l \vec{a}.$$

3) Проекция суммы нескольких векторов на одну и ту же ось равна сумме проекций на эту ось, то есть

$$\label{eq:definition} \operatorname{\pip}_{l} \ \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right) = \operatorname{\pip}_{l} \ \overrightarrow{a} + \operatorname{\pip}_{l} \ \overrightarrow{b} + \operatorname{\pip}_{l} \ \overrightarrow{c}$$

Доказательство.

Пусть $\vec{d}=\vec{a}+\vec{b}+\vec{c}$ (см.рис.12), тогда

$$\begin{aligned} &\operatorname{\pip}_{l} \, \vec{d} = \operatorname{\pip}_{l} \, \left(\vec{a} + \vec{b} + \vec{c} \right) = + \left| \overrightarrow{d_{1}} \right| = + \left| \overrightarrow{a_{1}} \right| + \left| \overrightarrow{b_{1}} \right| - \left| \overrightarrow{c_{1}} \right| = \\ &\operatorname{\pip}_{l} \, \vec{a} + \operatorname{\pip}_{l} \, \vec{b} + \operatorname{\pip}_{l} \, \vec{c}. \end{aligned}$$

Аналогично определяется проекция суммы n-векторов.

1.4. Линейное пространство. Линейная зависимость, независимость системы векторов. Базис.

Множество L элементов x,y,z называется линейным пространством, если: 1) каждым двум элементам x,y из L поставлен в соответствие элемент z из L, называемый их суммой z=x+y; 2) каждому элементу x из L и каждому числу

lphaпоставлен в соответствие элемент lpha x из L, называемый произведением элемента на число.

Эти операции и элементы должны удовлетворять аксиомам:

- $\mathbf{1}.x + y = y + x;$
- **2.**(x + y) + z = x + (y + z);
- **3.** Существует нулевой элемент $\theta \in L$: $x + \theta = x$
- **4**. Для каждого элемента $x \in L$ существует противоположный элемент $x \in L$: $x + (-x) = \theta$;
 - **5.** $1 \cdot x = x$;
 - **6.** $\alpha(\beta x) = (\alpha \beta) x$;
 - **7.** $(\alpha + \beta)x = \alpha x + \beta x$;
 - **8.** $\alpha(x+y) = \alpha x + \alpha y$.

В аналитической геометрии перечисленными свойствами обладают векторы, поэтому часто элементы любого линейного пространства называют векторами. В алгебре это строки, столбцы или целые матрицы. В математическом анализе это непрерывные на отрезке функции.

Замечание: если участвующие в определении числа вещественны, линейное пространство называют вещественным, если комплексные — комплексным линейным пространством.

Таким образом, множество n-мерных векторов с введёнными операциями сложения и умножения вектора на

число с выполнением свойств линейных операции над векторами называют n-мерным векторным (линейным) пространством или просто пространством \mathbb{R}^n .

Обозначение: R^n

В частности, R^1 -множество вещественных чисел (множество точек числовой оси), R^2 -множество пар вещественных чисел (множество точек плоскости), R^3 - множество троек вещественных чисел (множество точек трехмерного пространства).

Линейное пространство \mathbb{R}^n называется **действительным**, если \mathbb{R} составляют действительных числа, и **комплексным**, если \mathbb{R} составляют комплексные числа \mathbb{C} .

Пример 1.2. Проверить, являются ли следующие множества линейными пространствами: **a)** Множество n-мерных (арифметических) векторов R^n ;**6)** Множество $M_{m \times n}$ - множество матриц размера $m \times n$ с вещественными элементами; **в)** Множество всех многочленов (полиномов) $P_n(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$.

Решение.

a) Множество n-мерных (арифметических) векторов \mathbb{R}^n является линейным пространством.

Очевидно, что есть возможность складывать элементы (вектора), умножать на число с выполнением свойств линейных операций над векторами 1)-8);

6) $M_{m \times n}$ - множество матриц размера $m \times n$ с вещественными элементами и с операциями сложения матриц и умножения матрицы на число, образует линейное пространство.

Непосредственно исходя из свойств действий над матрицами, убеждаемся, что все свойства 1)-8) выполняются, следовательно, множество $M_{m \times n}$ с рассмотренными операциями является линейным пространством.

в) Множество всех многочленов (полиномов) $P_n(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$ с естественным образом введенными для них операциями сложения и умножения на число образуют линейное пространство.

Действительно, при сложении двух многочленов степень многочлена, полученного в результате, не превосходит наибольшей из степеней n исходных многочленов, и полученный многочлен принадлежит множеству $P_n(x)$, то есть операция сложения определена на $P_n(x)$. Заметим, что и операция умножения многочлена на число не превосходит

наибольшей из степеней n. Роль нуля при этом играет полином, все коэффициенты которого равны нулю $P_0(x)=0$. А в качестве противоположного к многочлену $P_n(x)=a_0x^n+a_1x^{n-1}+\ldots+a_n$ выступает многочлен $-P_n(x)=-a_0x^n-a_1x^{n-1}-\ldots-a_n$.

Таким образом, элементы линейных пространств могут быть совершенно различной природы: векторы, матрицы, многочлены и так далее.

Пример 1.3. Является ли множество A всех векторов с положительными действительными координатами линейным пространством.

Решение

Введём обозначение:

$$A = \{x: x = (x_1, x_2, ..., x_n), x_i \in R, x_i > 0, i = 1, 2, ..., n\}$$
- множество всех векторов с положительными действительными координатами. Данное множество не является линейным пространством, так как операция умножения вектора на число определена некорректно:

Так, например,если
$$\alpha = -1\epsilon R, x = (1,1,...,1)\epsilon A,$$
 $\alpha x = (-1,-1,...,-1,-1) \notin A.$

Линейной комбинацией системы векторов

 $\overrightarrow{e_1},\overrightarrow{e_2},...,\overrightarrow{e_n}$ с коэффициентами $\alpha_1,\alpha_2,...,\alpha_m$ называют вектор $\overrightarrow{x}=\alpha_1\cdot\overrightarrow{e_1}+\alpha_2\cdot\overrightarrow{e_2}+...+\alpha_n\cdot\overrightarrow{e_n}$ (1.3), где $\alpha_i(i=1,2,...,m)$ — некоторые числа.

Пример 1.4. Найти линейную комбинацию векторов $\overrightarrow{e_1} = (3;-1;2), \overrightarrow{e_2} = (5;2;-3), \overrightarrow{e_3} = (-4;1;-1)$ в R^3 с коэффициентами $\alpha_1=2,\alpha_2=-3,\alpha_3=4.$

Решение.

В соответствии с определением, линейная комбинация имеет вид:

$$\vec{x} = \alpha_1 \cdot \vec{e_1} + \alpha_2 \cdot \vec{e_2} + \alpha_3 \cdot \vec{e_3} = 2 \cdot (3; -1; 2) + +(-3) \cdot (5; 2; -3) + 4 \cdot (-4; 1; -1) = (6; -2; 4) + +(-15; -6; 9) + (-16; 4; -4) = (-25; -4; 9).$$

Система n-мерных векторов $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$ называется **линейно независимой** если из равенства линейной комбинации нулю $\alpha_1 \cdot \overrightarrow{e_1} + \alpha_2 \cdot \overrightarrow{e_2} + \cdots + \alpha_n \cdot \overrightarrow{e_n} = 0$ следует, что все коэффициенты равны нулю $\alpha_i = 0, i = 1, 2, ..., n$

 $(\alpha_1 = \alpha_2 = ... = \alpha_n = 0)$,в противном случае, то есть если найдутся такие числа $\alpha_1, \alpha_2, ..., \alpha_n$, из которых хотя бы одно α_i отлично от нуля $(\alpha_i \neq 0)$, система векторов называется **линейно зависимой**.

Теорема 1.1: Система векторов $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, ..., $\overrightarrow{e_n}$ называется линейно зависимой, тогда и только тогда, когда один из этих векторов может быть представлен как линейная комбинация остальных.

Доказательство.

Если система векторов $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, ..., $\overrightarrow{e_n}$ линейно зависима, то по определению, из линейной комбинации равной нулю $\alpha_1 \cdot \overrightarrow{e_1} + \alpha_2 \cdot \overrightarrow{e_2} + \ldots + \alpha_n \cdot \overrightarrow{e_n} = 0$, следует, что существуют хотя бы одно $\alpha_i \neq 0$.

Пусть $\alpha_1 \neq 0$,то $\alpha_1 \cdot \overrightarrow{e_1} = -\alpha_2 \cdot \overrightarrow{e_2} - \ldots - \alpha_n \cdot \overrightarrow{e_n}$, разделим обе части последнего равенства на α_1 , имеем:

$$\overrightarrow{e_1} = -\frac{\alpha_2}{\alpha_1} \cdot \overrightarrow{e_2} - \dots - \frac{\alpha_n}{\alpha_1} \cdot \overrightarrow{e_n}$$
.

Вектор $\overrightarrow{e_1}$ есть линейная комбинация векторов $\overrightarrow{e_2},...,\overrightarrow{e_n}$ с коэффициентами $-\frac{\alpha_2}{\alpha_1},...,\frac{\alpha_n}{\alpha_1}$.

Таким образом, если система векторов линейно зависима, то хотя бы один из векторов линейно выражается через остальные, а если линейно независима, то не выражается.

Пример 1.5. Являются ли линейно зависимыми элементы пространства R^3 и найти эту линейную зависимость:

a)
$$\overrightarrow{e_1} = (1; 1; 1), \overrightarrow{e_2} = (1; 2; 3), \overrightarrow{e_3} = (1; 4; 5);$$

6)
$$\overrightarrow{e_1} = (1; 2; 3), \overrightarrow{e_2} = (3; 5; 1), \overrightarrow{e_3} = (5; 9; 7).$$

Исходя из определения система векторов $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ линейно зависима, если из равенства $\alpha_1 \cdot \overrightarrow{e_1} + \alpha_2 \cdot \overrightarrow{e_2} + \alpha_3 \cdot \overrightarrow{e_3} = 0$, следует, что хотя бы одно из $\alpha_i \neq 0$, i = 1,2,3, подставляя значения векторов в линейную комбинацию, учитывая, что вектор является матрицей-столбцом имеем:

а)
$$\alpha_1 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \alpha_2 \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \alpha_3 \cdot \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, полученное матрич-

ное равенство эквивалентно однородной системе

уравнений:
$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = 0 \\ \alpha_1 + 2 \ \alpha_2 + 4 \ \alpha_3 = 0. \\ \alpha_1 + 3 \ \alpha_2 + 5 \alpha_3 = 0 \end{cases}$$

Решая полученную однородную систему методом Гаусса , найдем $\alpha_1, \alpha_2, \alpha_3$:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 5 \end{pmatrix} c_2 - c_1 \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 4 \end{pmatrix} c_3 - 2c_2 \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & -2 \end{pmatrix}$$

, r=n=3 -ранг матрицы системы равен числу неизвестных, следовательно система $\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}$ имеет только нулевое решение, то есть $\alpha_1=\alpha_2=\alpha_3=0$. Таким образом, из линейной комбинации равной нулю, получили,

что все коэффициенты равны нулю, следовательно, система векторов линейно независима, то есть ни один из векторов $\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}$ линейно не выражается через остальные;

б)
$$\alpha_1 \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \ \alpha_2 \cdot \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} + \ \alpha_3 \cdot \begin{pmatrix} 5 \\ 9 \\ 7 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, получим систему уравнений:
$$\begin{cases} \alpha_1 + 3\alpha_2 + 5\alpha_3 = 0 \\ 2\alpha_1 + 5\alpha_2 + 9\alpha_3 = 0, \text{ находим её решение} \\ 3\alpha_1 + \alpha_2 + 7\alpha_3 = 0 \end{cases}$$

методом полного исключения неизвестных:

$$\begin{pmatrix} (1) & 3 & 5 \\ 2 & 5 & 9 \\ 3 & 1 & 7 \end{pmatrix} c_2 - 2c_1 \sim \begin{pmatrix} 1 & 3 & 5 \\ 0 & -1 & -1 \\ 0 & -8 & -8 \end{pmatrix} \begin{pmatrix} -1)c_2 \\ \frac{c_3}{-8} \sim \\ \sim \begin{pmatrix} 1 & 3 & 5 \\ 0 & (1) & 1 \\ 0 & 1 & 1 \end{pmatrix} c_1 - 3c_2 \sim \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \sim$$

$$\sim ig(egin{matrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$
, $r=2 < n=3$, следовательно, система сов-

местна и неопределенна (имеет бесконечное множество решений), то есть элементы $\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}$ линейно зависимы. Найдем эту линейную зависимость, выражая главные неизвестные α_1, α_2 через свободный $\alpha_3 = c$ имеем:

$$\begin{cases} \alpha_1+2\alpha_3=0\\ \alpha_2+\alpha_3=0 \end{cases} \begin{cases} \alpha_1=-2\alpha_3\\ \alpha_2=-\alpha_3 \end{cases} \begin{cases} \alpha_1=-2c\\ \alpha_2=-c \text{ -общее решение.} \end{cases}$$

Подставляя полученное решение в линейную комбинацию, получим линейную зависимость векторов $\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}$:

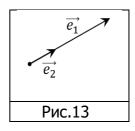
$$lpha_1\cdot\overrightarrow{e_1}+lpha_2\cdot\overrightarrow{e_2}+lpha_3\cdot\overrightarrow{e_3}=-2c\cdot\overrightarrow{e_1}-c\cdot\overrightarrow{e_2}+c\cdot\overrightarrow{e_3}=0$$
, разделим обе части равенства $-2c\cdot\overrightarrow{e_1}-c\cdot\overrightarrow{e_2}+c\cdot\overrightarrow{e_3}=0$ на $-c=const\neq 0$, получим:

 $2\overrightarrow{e_1}+\overrightarrow{e_2}-\overrightarrow{e_3}=0$ - линейную зависимость, из которой любой из векторов $\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}$ можно выразить через два других. Например, выразим вектор $\overrightarrow{e_3}$, через $\overrightarrow{e_1},\overrightarrow{e_2}$, получим $\overrightarrow{e_3}=2\overrightarrow{e_1}+\overrightarrow{e_2}$ и так далее.

Геометрический смысл линейной зависимости и линейной независимости векторов.

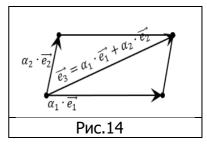
Система, состоящая из одного вектора \vec{e} , линейно зависима тогда и только тогда, когда этот вектор нулевой $\vec{e}=0$.

Для того, чтобы два вектора $\overrightarrow{e_1}, \overrightarrow{e_2}$, были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарные, это означает, что один вектор выражается через другой $\overrightarrow{e_1} = \alpha \cdot \overrightarrow{e_2}$ (см.рис.13), в случае



линейно независимости векторы неколлинеарные.

Для того, чтобы три вектора $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ были линейно зависимы, необходимо чтобы один из них ,например $\overrightarrow{e_3}$, выражается



через два других $\overrightarrow{e_3} = \alpha_1 \cdot \overrightarrow{e_1} + \alpha_2 \cdot \overrightarrow{e_2}$, а это означает компланарность векторов $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ (см.рис.14) или, что тоже самое, векторы лежат в одной плоскости или в параллельных плоскостях.

Базис пространства.

Любая система из n линейно независимых векторов в R^n называется **базисом.**

Базис — это максимальная линейно независимая в данном пространстве система векторов.

Обозначение: $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, ..., $\overrightarrow{e_n}$ - базис в пространстве \mathbb{R}^n .

В частности, при n=2 получим базис на плоскости, то есть упорядоченную пару $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ неколлинеарных векторов этой плоскости. При n=3 получим базис в пространстве, то есть упорядоченную тройку $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ некомпланарных векторов.

В пространстве \mathbb{R}^n существует система п линейно независимых векторов. Любая система из n+1 векторов (и больше) линейно зависима. Таким образом, максимальное число линейно независимых векторов в \mathbb{R}^n равно n. Другими словами, размерность пространства равна максимальному числу содержащихся в нем линейно независимых векторов. Число n называют **размерностью** пространства \mathbb{R}^n . Пространство, имеющее конечную размерность, называется **конечномерным**. Если в пространстве можно найти сколь угодно много линейно независимых векторов, то такое пространство называется **бесконечномерным**.

Теорема 1.2.(о разложении по базису): Если $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$ — базис линейного пространства , то любой вектор \overrightarrow{x} этого пространства можно единственным образом разложить по базисным векторам $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$, то есть представить в виде

$$\vec{x} = \alpha_1 \cdot \overrightarrow{e_1} + \alpha_2 \cdot \overrightarrow{e_2} + \ldots + \alpha_n \cdot \overrightarrow{e_n}$$
 (1.4) Доказательство.

Так как система векторов $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$ является максимальной линейно независимой системой векторов (базисом), то после добавления к ней произвольного вектора линейно получаем уже зависимую систему МЫ векторов $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}, \vec{x}$. Другими словами, найдётся такая равная нулю линейная комбинация этих векторов $\alpha \cdot \vec{x}$ + $\alpha_1 \cdot \overrightarrow{e_1} + \alpha_2 \cdot \overrightarrow{e_2} + \ldots + \alpha_n \cdot \overrightarrow{e_n} = 0$, в которой хотя бы один из коэффициентов α , α_1 , α_2 , ..., α_n отличен от нуля. Очевидно, что коэффициент α не может равняться нулю, так как векторов $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}, \overrightarrow{x}$ будет линейно система независимой, что противоречит предположению о том, что у данной линейной комбинации есть хотя бы один отличный от нуля коэффициент. Таким образом, мы показали, что коэффициент $\alpha \neq 0$. Следовательно, мы можем обе части равенства $\alpha \cdot \vec{x} + \alpha_1 \cdot \overrightarrow{e_1} + \alpha_2 \cdot \overrightarrow{e_2} + \dots + \alpha_n \cdot \overrightarrow{e_n} = 0$ разделить Ha α :

$$\vec{x} + \frac{\alpha_2}{\alpha} \cdot \overrightarrow{e_1} + \frac{\alpha_2}{\alpha} \cdot \overrightarrow{e_2} + \ldots + \frac{\alpha_n}{\alpha} \cdot \overrightarrow{e_n} = 0;$$

найдем \vec{x} :

$$\vec{x} = -\frac{\alpha_1}{\alpha} \cdot \overrightarrow{e_1} - \frac{\alpha_2}{\alpha} \cdot \overrightarrow{e_2} - \dots - \frac{\alpha_n}{\alpha} \cdot \overrightarrow{e_n} ,$$

$$\vec{x} = \beta_1 \cdot \overrightarrow{e_1} + \beta_2 \cdot \overrightarrow{e_2} + \ldots + \beta_n \cdot \overrightarrow{e_n}$$
, где

$$eta_1=-rac{lpha_1}{lpha}$$
, $eta_2=-rac{lpha_2}{lpha}$, . . , $eta_n=-rac{lpha_n}{lpha}$ -некоторые числа.

Таким образом, вектор \vec{x} может быть представлен в виде линейной комбинации векторов $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$.

Покажем теперь, что это представление единственно. Действительно, пусть имеется два представления для вектора \vec{x} :

$$(1) \vec{x} = \alpha_1 \cdot \overrightarrow{e_1} + \alpha_2 \cdot \overrightarrow{e_2} + \dots + \alpha_n \cdot \overrightarrow{e_n},$$

(2) $\vec{x} = \beta_1 \cdot \overrightarrow{e_1} + \beta_2 \cdot \overrightarrow{e_2} + \ldots + \beta_n \cdot \overrightarrow{e_n}$. Вычитая из первого представления второе, получим равную нулю линейную комбинацию линейно независимых векторов:

$$(\alpha_1 - \beta_1) \cdot \overrightarrow{e_1} + (\alpha_2 - \beta_2) \cdot \overrightarrow{e_2} + \dots + (\alpha_n - \beta_n) \cdot \overrightarrow{e_n} = 0$$

из определения линейной независимости следует, что все коэффициенты этой линейной комбинации равны нулю, то есть $\alpha_1-\beta_1=\alpha_2-\beta_2=...=\alpha_n-\beta_n=0$,а это означает, что $\alpha_1=\beta_1$, $\alpha_2=\beta_2,...,\alpha_n=\beta_n$. Следственно, представление вектора \vec{x} в виде линейной комбинации векторов базиса $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$ единственно. Доказано.

Формула (1.4.) называется **разложением вектора** \vec{x} **по базису** $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$, а числа $\alpha_1, \alpha_2, ..., \alpha_n$ называются

координатами вектора в этом базисе. Говорят ,что вектор \vec{x} разложен по векторам $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$.

Замечание: фундаментальную систему решений (ФСР) однородной системы линейных алгебраических уравнений (СЛАУ) можно интерпретировать как координатные столбцы векторов линейного пространства. Более того, в силу линейной независимости ФСР она может выступать в роли базиса линейного пространства, которое образуют все решения системы уравнений

Теорема 1.3.(**критерий базиса** в \mathbb{R}^n): Для того, чтобы система векторов $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$ образовывала базис в \mathbb{R}^n , необходимо и достаточно чтобы определитель, составленный из координат этих векторов, был отличен от нуля(примем без доказательства).

Пример 1.6. Показать, что система векторов $\overrightarrow{e_1}=(1;1;1), \overrightarrow{e_2}=(1;2;3), \overrightarrow{e_3}=(1;4;5)$ образует базис в пространстве R^3 и найти координаты вектора $\vec{x}=(1;-1;2)$. в этом базисе.

Решение.

Согласно теореме 1.3., система векторов образует базис, тогда и только тогда, когда определитель составленный

из координат векторов, отличен от нуля, поэтому составим и вычислим этот определитель, раскладывая его по элементам первого столбца:

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 \\ 3 & 5 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 3 & 5 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} =$$

 $=-2-2+2=-2 \neq 0$,следовательно система векторов $\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}$ образует базис в данном пространстве. Найдём координаты вектора \overrightarrow{x} в базисе $\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}$,другими словами разложим вектор \overrightarrow{x} по базису $\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}$, то есть представить в виде $\overrightarrow{x}=\alpha_1\cdot\overrightarrow{e_1}+\alpha_2\cdot\overrightarrow{e_2}+\alpha_3\cdot\overrightarrow{e_3}$, подставляя значения $\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}$ в полученное равенство найдем коэффициенты $\alpha_1,\alpha_2,\alpha_3$:

$$\begin{array}{l} \alpha_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \ \alpha_2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \ \alpha_3 \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
 или (что тоже самое)
$$\begin{cases} \alpha_1 + \ \alpha_2 + \ \alpha_3 = 1 \\ \alpha_1 + 2\alpha_2 + 4 \ \alpha_3 = -1 \text{, находим её решение:} \\ \alpha_1 + 3\alpha_2 + 5\alpha_3 = 2 \end{cases}$$

$$\begin{pmatrix} (1) & 1 & 1 & 1 \\ 1 & 2 & 4 & -1 \\ 1 & 3 & 5 & 2 \end{pmatrix} c_2 - c_1 \sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & (1) & 3 & -2 \\ 0 & 2 & 4 & 1 \end{pmatrix} c_1 - c_2 \sim c_1 \sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & (1) & 3 & -2 \\ 0 & 2 & 4 & 1 \end{pmatrix} c_3 - 2c_2$$

$$\sim \begin{pmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 3 & -2 \\ 0 & 0 & -2 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 3 & -2 \\ 0 & 0 & (1) & -\frac{5}{2} \end{pmatrix} c_1 + 2c_3$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 5,5 \\ 0 & 0 & 1 & -2,5 \end{pmatrix}, r(A) = r(A|B) = n = 3\text{-решение един-}$$

$$\sim \begin{pmatrix} \alpha_1 & = -2 \\ \alpha_2 & = 5,5 \\ \alpha_3 & = -2,5 \end{pmatrix}$$
 СТВЕННО,
$$\begin{pmatrix} \alpha_1 & = -2 \\ \alpha_2 & = 5,5 \\ \alpha_3 & = -2,5 \end{pmatrix}$$

Таким образом, разложение вектора \vec{x} по базису $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ имеет вид:

$$\vec{x} = \alpha_1 \cdot \overrightarrow{e_1} + \alpha_2 \cdot \overrightarrow{e_2} + \alpha_3 \cdot \overrightarrow{e_3} = -2\overrightarrow{e_1} + 5.5\overrightarrow{e_2} - 2.5\overrightarrow{e_3}$$
.

В приложениях часто сталкиваются с понятием **ортонор-мированного базиса** — это базис, в котором базисными векторами являются орты (векторы единичной длины), перпендикулярные друг другу. Орты имеют специальные обозначения.

Обозначение: $\vec{\imath}, \vec{j}$, \vec{k} -ортонормированный базис в пространстве.

В пространстве ортонормированный базис имеет вид $\overrightarrow{e_1}=\overrightarrow{\iota}, \ \overrightarrow{e_2}=\overrightarrow{\jmath}, \ \overrightarrow{e_3}=\overrightarrow{k}$, причем $|\overrightarrow{\iota}|=|\overrightarrow{\jmath}|=|\overrightarrow{k}|=1, \overrightarrow{\iota}\bot\overrightarrow{\jmath}\bot\overrightarrow{k}$.

плоскости.

Элементы векторной алгебры

Примером ортонормированного базиса в пространстве R^3 является базис векторов $\vec{\imath}=(1;0;0), \vec{\jmath}=(0;1;0), \vec{k}=(0;0;1)$. Действительно, $|\vec{\imath}|=|\vec{\jmath}|=|\vec{k}|=1, \vec{\imath}\perp\vec{\jmath}, \vec{\jmath}\perp\vec{k}, \vec{\imath}\perp\vec{k}$. Аналогично определяется ортонормированный базис на

1.5. Разложение вектора по ортам координатных осей. Модуль вектора. Направляющие косинусы.

Декартовой (прямоугольной) системой координат в пространстве R^3 называется совокупность точки, называемой началом координат, обозначаемой обычно через O, и базиса \vec{i} , \vec{j} , \vec{k} .

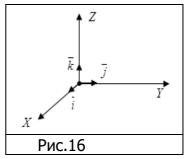
Декартова система координат называется **прямоуголь- ной**, если все ее базисные векторы попарно перпендикулярны и их модули равны единице, то есть образуют ортонормированный базис $\vec{i}=(1;0;0), \vec{j}=(0;1;0), \vec{k}=(0;0;1).$

Прямые, проходящие через начало координат в направлении базисных векторов, называются **осями координат**.

Плоскости, проходящие через оси координат, называются **координатными плоскостями**. Направление векторов $\vec{t}, \vec{j}, \vec{k}$ выбирают совпадающими с направлением осей Ox, Oy, Oz, так что эти базисные векторы являются ортами

осей декартовой (прямоугольной) системы координат (см.рис.16.).

Выберем произвольный вектор $\vec{a} = \overrightarrow{OM}$ пространства и совместим его начало с началом координат (см.рис.17.)

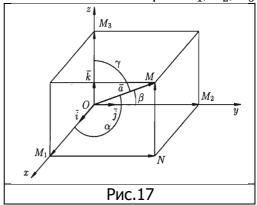


Найдем проекции вектора $\vec{a} = \overrightarrow{OM}$ на координатные оси. Для этого проведем через конец вектора \vec{a} плоскости параллельные координатным плоскостям. Через M_1, M_2, M_3

обозначим точки пересечения этих плоскостей с осями координат, тогда проекции вектора $\overrightarrow{OM} = \vec{a}$ на оси Ox, Oy, Oz соответственно равны

$$\pi p_{Ox} \vec{a} = |\overrightarrow{OM_1}|,$$

$$\operatorname{пp}_{Oy} \vec{a} = |\overrightarrow{OM_2}|,$$



Получим прямоугольный параллелепипед с диагональю \overrightarrow{OM} . По определению суммы нескольких векторов имеем:

$$\vec{a} = \overrightarrow{OM_1} + \overrightarrow{OM_2} + \overrightarrow{OM_3}$$

учитывая, что любой вектор может быть представлен в виде произведения его орта на длину, имеем:

$$\overrightarrow{OM_x} = |\overrightarrow{OM_x}| \cdot \vec{\imath}, \overrightarrow{OM_y} = |\overrightarrow{OM_y}| \cdot \vec{\jmath}, \ \overrightarrow{OM_z} = |\overrightarrow{OM_z}| \cdot \vec{k}$$
 ,тогда $\vec{a} = |\overrightarrow{OM_x}| \cdot \vec{\imath} + |\overrightarrow{OM_y}| \cdot \vec{\jmath} + |\overrightarrow{OM_z}| \cdot \vec{k}$.

Обозначим проекции вектора \vec{a} на оси Ox, Oy, Oz, соответственно через

$$a_x = \operatorname{\pip}_{Ox} \ \vec{a} = |\overrightarrow{OM_x}|, \ a_y = \operatorname{\pip}_{Oy} \ \vec{a} = |\overrightarrow{OM_y}|, \ a_z = \operatorname{\pip}_{Oz} \ \vec{a} = |\overrightarrow{OM_z}|.$$
 Итак, $\vec{a} = a_x \cdot \vec{\imath} + a_y \cdot \vec{\jmath} + a_z \cdot \vec{k}.$

Таким образом, формула **разложение вектора по ортам координатных осей** имеет вид

$$\vec{a} = a_x \cdot \vec{i} + a_y \cdot \vec{j} + a_z \cdot \vec{k}$$
 (1.5)

Таким образом, любой вектор \vec{a} пространства может быть разложен по базису $\vec{i}, \vec{j}, \vec{k}$ единственным образом по формуле (1.5), где числа a_x, a_y, a_z - проекции на соответствующие координатные оси называемые **координатами вектора** \vec{a} в этом базисе.

Векторное равенство (1.5) можно записать в символическом виде

$$\vec{a} = (a_x; a_y; a_z)$$
 (1.6)

Зная проекции вектора \vec{a} можно найти длину вектора $|\vec{a}|$, на основании теоремы о диагонали прямоугольного параллелепипеда (квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений) имеем:

$$\left|\overrightarrow{OM}
ight|^2 = \left|\overrightarrow{OM_x}
ight|^2 + \left|\overrightarrow{OM_y}
ight|^2 + \left|\overrightarrow{OM_z}
ight|^2$$
, то есть, $|\vec{a}|^2 = a_x^{\ 2} + a_y^{\ 2} + a_z^{\ 2} \ (1.7)$, отсюда $|\vec{a}| = \sqrt{a_x^{\ 2} + a_y^{\ 2} + a_z^{\ 2}}$.

Таким образом, формула нахождения модуля (длины) вектора имеет вид

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$
 (1.8)

Итак, модуль вектора равен квадратному корню из суммы квадратов его координат (проекций).

Ориентация вектора \vec{a} в пространстве определяется углами α , β , γ - углами наклона этого вектора к осям соответственно Ox, Oy, Oz. Косинусы этих углов $cos\alpha$, $cos\beta$, $cos\gamma$ принято называть **направляющими косинусами вектора**.

По свойству проекции вектора \vec{a} на ось имеем:

$$a_x = |\vec{a}| \cdot \cos\alpha$$
, $a_y = |\vec{a}| \cdot \cos\beta$, $a_z = |\vec{a}| \cdot \cos\gamma$ (1.9),

тогда формулы для нахождения направляющих косинусов имеют вид

$$cos\alpha = \frac{a_x}{|\vec{a}|}, \quad cos\beta = \frac{a_y}{|\vec{a}|}, cos\gamma = \frac{a_z}{|\vec{a}|}$$
 (1.10)

Подставляя выражения (1.9) в равенство (1.7), получим:

$$|\vec{a}|^2 = |\vec{a}|^2 \cdot \cos^2 \alpha + |\vec{a}|^2 \cdot \cos^2 \beta + |\vec{a}|^2 \cdot \cos^2 \gamma$$

Разделив обе части данного равенства на $|\vec{a}|^2 \neq 0$ имеем:

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$
 (1.11)

То есть, **сумма квадратов направляющих косину- сов любого ненулевого вектора равна единице**.

Последнее равенство позволяет определить один из углов α , β , γ , если известны два других.

Пример 1.7. Найти длину и направляющие косинусы вектора $\vec{a}=(1;2;2)$.

Решение.

Найдем длину вектора \vec{a} :

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2} = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{9} = 3;$$
 По формулам (1.10) имеем: $\cos \alpha = \frac{a_x}{|\vec{a}|} = \frac{1}{3}, \cos \beta = \frac{a_y}{|\vec{a}|} = \frac{2}{3}, \cos \gamma = \frac{a_z}{|\vec{a}|} = \frac{2}{3}.$

Пример 1.8. Может ли вектор составлять с координатными осями Ox, Oy, Oz соответственно следующие углы 120° , 45° , 60° .

Решение,

Как известно, направляющие косинусы связаны соотношением $cos^2\alpha + cos^2\beta + cos^2\gamma = 1$, подставляя значения для $cos120^0$, $cos45^0$, $cos60^0$ в данное равенство, получим: $cos^2120^0 + cos^245^0 + cos^260^0 = 1$,

$$\left(-\frac{1}{2}\right)^2+\left(\frac{\sqrt{2}}{2}\right)^2+\left(\frac{1}{2}\right)^2=1,\,1=1$$
, равенство выполняется, следовательно, может.

1.6. Действия над векторами ,заданными проекциями (координатами).

Ранее мы рассматривали действия над векторами (линейные операции над векторами) с геометрической точки зрения. Посмотрим, как данные определения работают аналитически, то есть, когда заданы координаты векторов $\vec{a}=(a_x;a_y;a_z), \vec{b}=(b_x;b_y;b_z).$

Линейные операции над векторами.

1) При сложении (разности) векторов их соответствующие компоненты складываются (вычитаются), то есть

$$\vec{a} \pm \vec{b} = (a_x \pm b_x; a_y \pm b_y; a_z \pm b_z);$$

2) При умножении вектора на число α все его компоненты умножаются на это число, то есть

$$\alpha \cdot \overrightarrow{a} = (\alpha \cdot a_x; \alpha \cdot a_y; \alpha \cdot a_z).$$

Пример 1.9. Даны векторы $\vec{a} = (2; -3; 6)$,

$$\vec{b} = (-1; 2; -2)$$
. Найти векторы: **a)** $3\vec{a}$;**6)** $-\frac{1}{2}\vec{b}$;**в)** $\vec{a} - 2\vec{b}$.

Решение.

a)
$$3\vec{a} = 3 \cdot (2; -3; 6) = (3 \cdot 2; 3 \cdot (-3); 3 \cdot 6) = (6; -9; 18);$$

6)
$$-\frac{1}{2}\vec{b} = \left(\left(-\frac{1}{2}\right)\cdot(-1);\left(-\frac{1}{2}\right)\cdot2;\left(-\frac{1}{2}\right)\cdot(-2)\right) = \left(\frac{1}{2};-1;1\right);$$

B)
$$\vec{a} - 2\vec{b} = (2; -3; 6) - 2 \cdot (-1; 2; -2) = (2; -3; 6) - (-2; 4; -4) = (2 - (-2); -3 - 4; 6 - (-4)) = (4; -7; 10).$$

Коллинеарность векторов.

Пусть два вектора заданы своими координатами $\vec{a}=(a_x;a_y;a_z)$ и $\vec{b}=(b_x;b_y;b_z)$.Векторы \vec{a} и \vec{b} коллинеарны, если один из них можно выразить через другой, то есть представить в виде $\vec{a}=\alpha\cdot\vec{b}$, то есть

$$a_x=lpha\cdot b_x$$
, $a_y=lpha\cdot b_y$; $a_z=lpha\cdot b_z$, отсюда $lpha=rac{a_x}{b_x}=rac{a_y}{b_y}=rac{a_z}{b_z}$.

Таким образом, **векторы коллинеарны, тогда и только тогда, когда соответствующие координаты векторов пропорциональны**, то есть выполняется равенство

$$\vec{a} \parallel \vec{b}' \Leftrightarrow \frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$$
 (1.12)

Пример 1.10. При каких α_1, α_2 элементы $\vec{a} = (6; \alpha_1; -4)$, $\vec{b} = (3; 5; \alpha_2)$ пространства R^3 являются коллинеарными? Решение.

Коллинеарность векторов означает пропорциональность соответствующих координат, то есть

$$\vec{a} \parallel \vec{b} \iff \frac{6}{3} = \frac{\alpha_1}{5} = \frac{-4}{\alpha_2}, \ 2 = \frac{\alpha_1}{5} = \frac{-4}{\alpha_2},$$

$$2 = \frac{\alpha_1}{5}, \alpha_1 = 10; \ 2 = \frac{-4}{\alpha_2}, \alpha_2 = -2.$$

Итак, при $\alpha_1=10$, $\alpha_2=-2$, векторы \vec{a},\vec{b} коллинеарны.

Равенство векторов.

Из определения вектора как направленного отрезка, который можно передвигать параллельно самому себе, следует, что равные векторы имеют:1) равное число координат;2) соответствующие координаты таких векторов равны, то есть

$$\vec{a} = \vec{b} \iff \left\{ \begin{array}{l} a_x = b_x \\ a_y = b_y \\ a_z = b_z \end{array} \right\} (1.13)$$

Пример 1.11. При каком значении параметра n векторы

$$\vec{a} = (6; -4; -4)$$
 и $\vec{b} = (6; -4; 2n)$ равны.

Решение.

Из определения равенства векторов имеем:

$$ec{a}=ec{b}\iff \left\{egin{array}{l} 6=6\\ -4=-4\\ -4=2n \end{array}
ight\}$$
, следовательно при $n=-rac{4}{2}=-2$ векторы равны.

Координаты точки.

Радиусом-вектором точки M в декартовой прямоугольной системе координат называется вектор, начало которого расположено в начале координат O, а конец в данной точке M, то есть вектор \overrightarrow{OM} (рис.18).

Обозначение: $\overrightarrow{OM} = \vec{r}$.

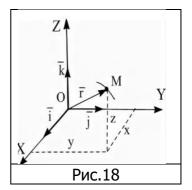
Координатами

точки

называются координаты её радиуса-вектора $\overrightarrow{OM} = \overrightarrow{r}$, то есть если

$$\overrightarrow{OM} = \vec{r} = a_x \cdot \vec{\imath} + a_y \cdot \vec{\jmath} + a_z \cdot \vec{k}$$
, то $\left(a_x; a_y; a_z\right)$ координаты точки M .

Обозначение: $M(a_x; a_y; a_z)$.



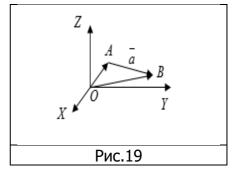
Координаты вектора.

Найдем координаты вектора \overrightarrow{AB} ,если известны координаты точек $A(a_x; a_y; a_z)$ и $B(b_x; b_y; b_z)$ (рис.19) Используя определение разности векторов имеем:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (b_x \cdot \vec{i} + b_y \cdot \vec{j} + b_z \cdot \vec{k}) - (a_x \cdot \vec{i} + a_y \cdot \vec{j} + a_z \cdot \vec{k}) = (b_x - a_x) \cdot \vec{i} + (b_y - a_y) \cdot \vec{j} + (b_z - a_z) \cdot \vec{k}.$$

Таким образом, для того, чтобы найти координаты

вектора \overrightarrow{AB} , зная координаты начала A и конца вектора B, необходимо от одноимённых координат начала отнять одноимённые координаты конца, то есть



$$\overrightarrow{AB} = (b_x - a_x; b_y - a_y; b_z - a_z)$$
 (1.13)

Замечание:

1)Обязательно нужно понимать различие между координатами точек и координатами векторов. Координаты точек — это обычные координаты в прямоугольной системе координат. Каждая точка обладает строгим местом на плоскости, и не перемещается; координаты вектора - это его разложение по базису. Любой вектор является свободным, поэтому при необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости

(пространства);

- **2)** Если одна из координат вектора равна нулю, то вектор перпендикулярен соответствующей оси;
- **3)** Если вектор имеет только одну отличную от нуля координату, то он параллелен соответствующей координатной оси.
- **Пример 1.12.** Даны точкиA(3;-1;1),B(-1;2;1) и вектор $\vec{a}=(1;-1;3)$. Найти: **a)**координаты вектора \overrightarrow{AB} и противоположного вектора \overrightarrow{BA} ; **6)** орт вектора \overrightarrow{AB} ; **в)** координаты точки C(x;y;z), с которой совпадает начало вектора \vec{a} , если его конец совпадает с точкой B.

Решение.

а) Начало вектора \overrightarrow{AB} совпадает с точкой A, конец — с точкой B, отнимая от координат конца координаты начала имеем:

$$\overrightarrow{AB} = (-1 - 3; 2 - (-1); 1 - 1) = (-4; 3; 0)$$
, тогда $\overrightarrow{BA} = -\overrightarrow{AB} = (4; -3; 0)$;

6) Для того, чтобы найти орт вектора \overrightarrow{AB} ,то есть $\overrightarrow{AB}^0 = \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$, необходимо найти длину вектора \overrightarrow{AB} ,вычисляем $|\overrightarrow{AB}|$ по формуле (1.8):

$$\left|\overrightarrow{AB}\right| = \sqrt{(-4)^2 + 3^2 + 0^2} = 5$$
, следовательно $\overrightarrow{AB}^0 = \frac{\overrightarrow{AB}}{\left|\overrightarrow{AB}\right|} = \left(-\frac{4}{5}; \frac{3}{5}; 0\right) = (-0.8; 0.6; 0).$

Проверим правильно ли найден орт, для этого найдем длину вектора \overrightarrow{AB}^0 :

$$|\overrightarrow{AB}^0| = \sqrt{(-0.8)^2 + 0.6^2 + 0^2} = \sqrt{0.64 + 0.36} = 1$$
, верно.

в) Найдем координаты вектора \overrightarrow{CB} , $\overrightarrow{CB} = (-1 - x; 2 - y; 1 - z)$, так как $\overrightarrow{a} = \overrightarrow{CB}$ (по условию), то по определению равенства векторов имеем:

$$(1;-1;3)=(-1-x;2-y;1-z)$$
,тогда $-1-x=1,\ 2-y=-1,\ 1-z=3$, отсюда $x=-2,y=3,z=-2$. Таким образом, точка C имеет следующие координаты $C(-2;3;-2)$.

Задания для самостоятельного решения.

- **1.**Векторы \vec{a} и \vec{b} взаимно перпендикулярны, причем $|\vec{a}| = 5$, $|\vec{b}| = 10$. Определить $|\vec{a} + \vec{b}|$, $|\vec{a} \vec{b}|$.
- **2.**Даны векторы \vec{a} и \vec{b} , причем $|\vec{a}|=13$, $|\vec{b}|=10$. Определить $|\vec{a}-\vec{b}|$.
- **3.** Какому условию должны удовлетворять ненулевые векторы \vec{a} и \vec{b} , чтобы имело место соотношение $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$.
- **4.** Векторы \overrightarrow{AM} , \overrightarrow{CP} , \overrightarrow{BN} совпадают с медианами треугольника ABC.Доказать, что \overrightarrow{AM} + \overrightarrow{CP} + \overrightarrow{BN} = 0.
- **5.** Параллелограмм ABCD построен на векторах $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AD} = \vec{b}$. M—точка пересечения диагоналей параллелограмма. Выразить через \vec{a} и \vec{b} векторы \overrightarrow{MB} , \overrightarrow{MA} , \overrightarrow{MC} , \overrightarrow{MD} . **6.**В параллелограмме ABCD, точки K, M -середины сто-
- **6.**В параллелограмме ABCD, точки K,M -середины сторон BC и CD, $\overrightarrow{AK} = \vec{a}$, $\overrightarrow{AM} = \vec{b}$. Выразить векторы \overrightarrow{BD} и \overrightarrow{AD} через \vec{a} и \vec{b} .
- **7.**По данным $\vec{a}, \vec{b}, \vec{c}$ построить векторы: **a)** $-2\vec{a};$ **6)** $\frac{3}{2}\vec{b};$

в)
$$\frac{3}{2}\vec{a} + \vec{b}$$
;г) $\frac{1}{2}\vec{b} - 2\vec{a}$;д) $-\frac{1}{2}\vec{a} - 2\vec{b}$.

- **8.** Найти модуль и направляющие косинусы вектора $\vec{a} = (12; -15; -16)$.
- **9.** Даны две точки A(1;-1;2), B(-1;-2;3). Найти координаты векторов \overrightarrow{AB} и \overrightarrow{BA} .
- **10.** Найти орт вектора $\vec{a} = (6; -2; -3)$.
- **11.** Определить координаты точки N(x; y; z), с которой совпадает конец вектора $\vec{a} = (3; -1; 4)$, если его начало совпадает с точкой M(1; 2; -3).
- **12.** Может ли вектор образовывать с осями координат следующие углы: **a)** 120° , 45° , 60° ; **6)** 120° , 30° , 45° .
- **13.** Какой угол образует с осью Oz вектор \vec{a} , если с осями Ox и Oy он образует углы $\alpha = 60^{\circ}$, $\beta = 150^{\circ}$ соответственно.
- **14.** Вектор \vec{a} составляет с координатными осями 0x и 0y соответствующие углы $\alpha=60^{\circ}$, $\beta=150^{\circ}$. Вычислить его координаты при условии, что $|\vec{a}|=2$.
- **15.** Радиус-вектор точки M составляет с осью Oy угол 60° , а с осью Oz угол 45° , длина его равна 8. Найти координаты точки M.
- **16.** Найти модули суммы и разности векторов $\vec{a} = (1; -1; -6)$ и $\vec{b} = (2; -5; -1)$.
- **17.** Проверить, что векторы \overrightarrow{AB} и \overrightarrow{CD} коллинеарны и установить, какой из них длиннее другого и во сколько раз, если A(-1;5;-10), B(5;-7;8), C(2;2;-7), D(5;-4;2).
- **18.** Даны векторы $\vec{a}=(0;4;-7)$ и $\vec{b}=(7;-9;1)$. Найти векторы $3\vec{a}-2\vec{b}$ и $-\vec{a}+4\vec{b}$.
- **19.**Коллинеарны ли векторы \vec{p} и \vec{q} :

- **a)** $\vec{p} = 3\vec{a} + 6\vec{b}$ и $\vec{q} = -\vec{a} + 2\vec{b}$, $\vec{a} = (1;2;-3)$ и $\vec{b} = (1;0;-1)$;**6)** $\vec{p} = \vec{a} \vec{b}$ и $\vec{q} = -6\vec{a} + 6\vec{b}$, $\vec{a} = (1;3;2)$ и $\vec{b} = (1;-2;6)$.
- **20.**Дано разложение вектора $\vec{c} = 16\vec{i} 15\vec{j} + 12\vec{k}$ по базис $\vec{i}, \vec{j}, \vec{k}$.Определить разложение поэтому же базису вектора \vec{d} параллельного \vec{c} и противоположного с ним направления, если $|\vec{d}| = 75$.
- **21.**Найти вектор \vec{x} , направленный по биссектрисе угла между векторами $\vec{a}=7\vec{\imath}-4\vec{j}-4\vec{k}$, $\vec{b}=-2\vec{\imath}-\vec{\jmath}+2\vec{k}$, если $|\vec{x}|=5\sqrt{6}$.
- **22.**Векторы $\overrightarrow{AB} = (2; 6; -4)$ и $\overrightarrow{AC} = (4; 2; -2)$, совпадают со сторонами треугольника ABC. Определить координаты векторов ,приложенных к вершинам треугольника и совпадающих с его медианами \overrightarrow{AM} , \overrightarrow{CP} , \overrightarrow{BN} .
- **23.**При каких значениях y и z векторы
- $\vec{a}=(6;y;-4;12)$ и $\vec{b}=(3;5;z;6)$ линейно зависимы?
- **24.** Является ли линейным пространством: **a)** пустое множество; **6)** множество, состоящее из одного нулевого элемента?
- **25.** Выяснить, является ли линейным пространством данное множество векторов из п-мерного пространства, и если является, найти его размерность: **a)** множество векторов, все координаты которых равны между собой; **6)** множество векторов, первая координата которых равна 0; **в)** множество

векторов, сумма координат которых равна 0; **г**) множество векторов, сумма координат которых равна 1.

- **26.** Являются ли линейно зависимыми элементы линейного пространства и найти эту линейную зависимость:
- **a)** $\overrightarrow{a_1} = (2; -1), \overrightarrow{a_2} = (1; 3); \textbf{6)} \overrightarrow{e_1} = (1; 1), \overrightarrow{e_2} = (-2; -2);$
- **B)** $\vec{a}_1 = (1; 2; 3), \overrightarrow{a_2} = (3; 5; 1), \overrightarrow{a_3} = (5; 9; 7); \textbf{r}) \overrightarrow{e_1} = (1; 1; 3),$

$$\overrightarrow{e_2} = (2; 1; -1), \overrightarrow{e_3} = (3; 2; 1); \mathbf{A}) \overrightarrow{a_1} = (1; -1; 3), \overrightarrow{a_2} = (2; -1; 4),$$

$$\overrightarrow{a_3} = (2; 0; 2); \mathbf{e}) \vec{a} = (3; -2; 1), \vec{b} = (4; 1; -3), \vec{c} = (2; -3; -1);$$

ë)
$$\vec{a} = (1; 1; 1), \vec{b} = (1; 2; 0), \vec{c} = (0; -1; 1);$$
ж) $\vec{p} = (2; 0; 1), \vec{q} = (2; 0; 1)$

$$(1;-1;1), \vec{r} = (1;-1;-2);$$
3) $\vec{u}_1 = (1;1;1;1), \vec{u}_2 = (1;0;1;1),$

$$\vec{u}_3 = (1; 1; 0; 1), \vec{u}_4 = (1; 1; 1; 0).$$

27. Даны векторы $\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}$ в некотором базисе. Показать, что векторы $\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}$ образуют базис и найти координаты вектора \overrightarrow{x} в этом базисе: **a)** $\overrightarrow{e_1} = (1;1;0), \overrightarrow{e_2} = (0;1;2), \overrightarrow{e_3} = (1;0;2), \overrightarrow{x} = (4;5;3); \textbf{6}) \overrightarrow{e_1} = (5;1;0), \overrightarrow{e_2} = (2;-1;3), \overrightarrow{e_3} = (1;0;-1), \overrightarrow{x} = (13;2;7); \textbf{B}) \overrightarrow{e_1} = (2;3;-1), \overrightarrow{e_2} = (4;1;5), \overrightarrow{e_3} = (0;2;-2), \overrightarrow{x} = (12;10;-2); \textbf{r}) \overrightarrow{e_1} = (2;-1;2), \overrightarrow{e_2} = (-3;1;-1), \overrightarrow{e_3} = (1;-2;-3), \overrightarrow{x} = (17;-15;-7); \textbf{A}) \overrightarrow{e_1} = (3;-2;1), \overrightarrow{e_2} = (-1;1;-2), \overrightarrow{e_3} = (2;1;-3), \overrightarrow{x} = (11;-6;-5); \textbf{e}) \overrightarrow{e_1} = (2;3;1),$

 $\overrightarrow{e_2} = (3; 7; 2), \overrightarrow{e_3} = (5; 4; 3), \vec{x} = (1; -1; 2); \mathbf{e}) \overrightarrow{e_1} = (0; -1; 2),$

$$\overrightarrow{e_2}=(1;0;-1),\overrightarrow{e_3}=(-1;2;4),\overrightarrow{x}=(-2;0;9);$$
 $\mathbf{ж})\overrightarrow{e_1}=(1;-3;0),\overrightarrow{e_2}=(1;-1;1),\overrightarrow{e_3}=(0;-1;2),\overrightarrow{x}=$
 $(5;-12;-1);\mathbf{a})\overrightarrow{e_1}=(2;1;1),\overrightarrow{e_2}=(-2;0;-3),\overrightarrow{e_3}=$
 $(-1;2;1),\overrightarrow{x}=(-1;5;5);\mathbf{n})\overrightarrow{e_1}=(-2;2;1),\overrightarrow{e_2}=(2;0;1),\overrightarrow{e_3}=$
 $(1;1;1),\overrightarrow{x}=(-3;7;4).$

Ответы: $\mathbf{1}. |\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a}-\overrightarrow{b}|=5\sqrt{5}.$ $\mathbf{2}. |\overrightarrow{a}-\overrightarrow{b}|=22.$
 $\mathbf{3}. \overrightarrow{a}\bot\overrightarrow{b}.\mathbf{5}. \overrightarrow{MB}=\frac{\overrightarrow{a}-\overrightarrow{b}}{2},\overrightarrow{MA}=-\frac{\overrightarrow{a}+\overrightarrow{b}}{2},\overrightarrow{MC}=\frac{\overrightarrow{a}+\overrightarrow{b}}{2},$
 $\overrightarrow{MD}=-\frac{\overrightarrow{a}-\overrightarrow{b}}{2}.\mathbf{6}.\overrightarrow{BD}=2(\overrightarrow{b}-\overrightarrow{a}),\overrightarrow{AD}=\frac{4}{3}\overrightarrow{b}-\frac{2}{3}\overrightarrow{a}.$
 $\mathbf{8}. |\overrightarrow{a}|=25,\cos\alpha=\frac{12}{25},\cos\beta=-\frac{3}{5},\cos\gamma=-\frac{16}{25}.$
 $\mathbf{9}. \overrightarrow{AB}=(-2;-1;1)$ и $\overrightarrow{BA}=(2;1;-1).\mathbf{10}.\overrightarrow{a}^0=\left(\frac{6}{7};-\frac{2}{7};-\frac{3}{7}\right).$
 $\mathbf{11}. N(4;1;1).\mathbf{12}.$ $\mathbf{a})$ может; $\mathbf{6}$) не может. $\mathbf{13}.$ $\mathbf{90}^0.$
 $\mathbf{14}. \overrightarrow{a}_1=(1;-1;\sqrt{2})(1;-1;-\sqrt{2}).\mathbf{15}. M_{1,2}(\pm 4;4;4\sqrt{2}).$
 $\mathbf{16}. |\overrightarrow{a}+\overrightarrow{b}|=\sqrt{94}, |\overrightarrow{a}-\overrightarrow{b}|=\sqrt{42}.\mathbf{17}. \overrightarrow{AB}=2\overrightarrow{CD}, \overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD}.$
 $\mathbf{18}. 3\overrightarrow{a}-2\overrightarrow{b}=(-14;30;-23), -\overrightarrow{a}+4\overrightarrow{b}=(28;-40;11).\mathbf{19}.$ \mathbf{a}) Het; $\mathbf{6}$) $\cancel{A}a.$ 20. $\overrightarrow{a}=(-48;45;-36).$
21. $\overrightarrow{x}=\left(\frac{5}{3};-\frac{35}{3};\frac{10}{3}\right).$ 22. $\overrightarrow{AM}=(3;4;-3), \overrightarrow{BN}=(0;-5;3), \overrightarrow{CP}=(-3;1;0).$ 23. $y=10,z=-2.$ 24. \mathbf{a}) Het; $\mathbf{6}$) $\cancel{A}a.$ 25. \mathbf{a}) $\cancel{A}a;$ $\mathbf{6}$) $\cancel{A}a;$ $\mathbf{7}$) нет. 26. \mathbf{a}) $\overrightarrow{a}_1,\overrightarrow{a}_2$ -линейно независимы; $\mathbf{6}$) $\overrightarrow{e}_1,\overrightarrow{e}_2$ - линейно зависимы; $\mathbf{7}$) $\overrightarrow{e}_1,\overrightarrow{e}_2$ - \overrightarrow{e}_3 - линейно независимы; $\mathbf{7}$) $\overrightarrow{e}_1,\overrightarrow{e}_2$ - \overrightarrow{e}_3 - линейно независимы; $\mathbf{7}$) $\overrightarrow{e}_1,\overrightarrow{e}_2$ - \overrightarrow{e}_3 - \overrightarrow{e}_3 - \overrightarrow{e}_3 - линейно независимы; $\mathbf{7}$) $\overrightarrow{e}_1,\overrightarrow{e}_2$ - \overrightarrow{e}_3 - \overrightarrow

27.a)
$$\vec{x} = \frac{15}{4} \overrightarrow{e_1} + \frac{5}{4} \overrightarrow{e_2} + \frac{1}{4} \overrightarrow{e_3}$$
; **6)** $\vec{x} = 3\overrightarrow{e_1} + \overrightarrow{e_2} - 4\overrightarrow{e_3}$;

B)
$$\vec{x} = 10\vec{e_1} - 2\vec{e_2} - 9\vec{e_3}$$
; **r)** $\vec{x} = 3\vec{e_1} - 2\vec{e_2} + 5\vec{e_3}$;

д)
$$\vec{x} = 2\vec{e_1} - 3\vec{e_2} + \vec{e_3}$$
;**е)** $\vec{x} = -\frac{17}{3}\vec{e_1} + \frac{4}{3}\vec{e_2} + \frac{5}{3}\vec{e_3}$;

ë)
$$\vec{x} = 2\vec{e_1} - \vec{e_2} + \vec{e_3}$$
;**ж)** $\vec{x} = 4\vec{e_1} + \vec{e_2} - \vec{e_3}$;

3)
$$\vec{x} = -\overrightarrow{e_1} - \overrightarrow{e_2} + 3\overrightarrow{e_3}$$
; N) $\vec{x} = 2\overrightarrow{e_1} - \overrightarrow{e_2} + 3\overrightarrow{e_3}$.

ГЛАВА 2. СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

2.1. Определение скалярного произведения.

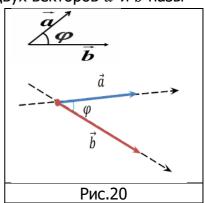
Скалярным произведением двух векторов \vec{a} и \vec{b} назы-

вается число, равное произведению длин этих векторов на косинус угла между ними:

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot cos(\widehat{\vec{a}, \vec{b}})$$
 (2.1)

Обозначение: $\vec{a} \cdot \vec{b}$, $\vec{a}\vec{b}$ или (\vec{a}, \vec{b}) .

Пример 2.1. Найти скалярное произведение векторов \vec{a} и \vec{b} , если $|\vec{a}| = 2$, $|\vec{b}| = 3$, $(\vec{a}, \vec{b}) = \frac{\pi}{2}$.



Решение.

Применяя формулу (2.1), получим:

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \frac{\pi}{3} = 2 \cdot 3 \cdot \frac{1}{2} = 3.$$

Свойства скалярного произведения.

Для произвольных векторов \vec{a} , \vec{b} , \vec{c} и любого числа α справедливы следующие свойства.

1) Скалярного произведение обладает переместительным свойством, то есть

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
.

Доказательство.

$$ec{a}\cdot ec{b} = |ec{a}|\cdot |ec{b}| \cdot cos\left(\widehat{ec{a},ec{b}}
ight)$$
, $ec{b}\cdot ec{a} = |ec{b}|\cdot |ec{a}| \cdot cos\left(\widehat{ec{b},ec{a}}
ight)$, так как $|ec{a}|\cdot |ec{b}| = |ec{b}|\cdot |ec{a}|$, $cos\left(\widehat{ec{a},ec{b}}
ight) = cos\left(\widehat{ec{b},ec{a}}
ight)$, то $ec{a}\cdot ec{b} = ec{b}\cdot ec{a}$.

2) Скалярное произведение обладает распределительным свойством, то есть

$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}.$$

Доказательство.

$$\begin{split} &(\vec{a} + \vec{b}) \cdot \vec{c} = |\vec{a} + \vec{b}| \cdot |\vec{c}| \cdot \cos\left(\widehat{\vec{a} + \vec{b}}, \vec{c}\right) = \\ &= |\vec{c}| \cdot |\vec{a} + \vec{b}| \cdot \cos\left(\widehat{\vec{a} + \vec{b}}, \vec{c}\right) = |\vec{c}| \cdot \operatorname{mp}_{\vec{c}} \ (\vec{a} + \vec{b}) = \\ &= |\vec{c}| \cdot \left(\operatorname{mp}_{\vec{c}} \vec{a} + \operatorname{mp}_{\vec{c}} \vec{b}\right) = |\vec{c}| \cdot \operatorname{mp}_{\vec{c}} \vec{a} + |\vec{c}| \cdot \operatorname{mp}_{\vec{c}} \vec{b} = \\ &= |\vec{c}| \cdot |\vec{a}| \cdot \cos\left(\widehat{\vec{a}}, \vec{c}\right) + |\vec{c}| \cdot |\vec{b}| \cdot \cos\left(\widehat{\vec{c}}, \vec{b}\right) = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} \ . \end{split}$$

3) Константу можно выносить за знак скалярного произведения (скалярное произведение обладает сочетательный свойством относительно скалярного множителя), то есть

$$(\alpha \vec{a}) \cdot \vec{b} = \alpha (\vec{a} \cdot \vec{b}).$$

Доказательство.

$$\begin{split} &(\alpha \vec{a}) \cdot \vec{b} = |\alpha \vec{a}| \cdot |\vec{b}| \cdot \cos\left(\alpha \vec{a}, \vec{b}\right) = |\vec{b}| \cdot \operatorname{np}_{\vec{b}} \alpha \vec{a} = \\ &= \alpha \cdot |\vec{b}| \cdot \operatorname{np}_{\vec{b}} \vec{a} = \alpha \cdot |\vec{b}| \cdot |\vec{a}| \cdot \cos\left(\widehat{\vec{a}, \vec{b}}\right) = \alpha(\vec{a} \cdot \vec{b}). \end{split}$$

4) Скалярный квадрат вектора \vec{a} равен квадрату длины данного вектора, то есть

$$\vec{a}^2 = |\vec{a}|^2$$
.

Доказательство.

$$\vec{a} \cdot \vec{a} = |\vec{a}| \cdot |\vec{a}| \cdot cos(\widehat{\vec{a}, \vec{a}}) = |\vec{a}|^2 \cdot cos0 = |\vec{a}|^2$$
.

В частности,

$$\vec{\iota}^2 = \vec{\iota} \cdot \vec{\iota} = |\vec{\iota}| \cdot |\vec{\iota}| \cdot \cos 0 = |\vec{\iota}|^2 \cdot \cos 0 = |\vec{\iota}|^2 = 1,$$

аналогично получим, что $\vec{\iota}^{\,2} = \vec{J}^{\,2} = \vec{k}^{\,2}$.

Замечание: из равенства $\vec{a}^2 = |\vec{a}|^2$ можно получить формулу для вычисления длины вектора $|\vec{a}| = \sqrt{\vec{a}^2}$.

Пример 2.2. Найти скалярное произведение векторов $\vec{c} \cdot \vec{d}$,если $\vec{c} = 3\vec{a} - 2\vec{b}$, $\vec{d} = \vec{b} + 3\vec{a}$, $|\vec{a}| = 1$,

$$|\vec{b}| = \sqrt{2}, (\widehat{\vec{a},\vec{b}}) = \frac{\pi}{4}.$$

Решение.

Используя свойства скалярного произведения, получим:

$$\vec{c} \cdot \vec{d} = (3\vec{a} - 2\vec{b}) \cdot (\vec{b} + 3\vec{a}) = 3\vec{a}\vec{b} - 6\vec{a}\vec{b} - 2\vec{b}\vec{b} + 9\vec{a}\vec{a} =$$

$$= -3\vec{a}\vec{b} - 2\vec{b}^2 + 9\vec{a}^2 = -3|\vec{a}||\vec{b}|\cos\frac{\pi}{4} - 2|\vec{b}|^2 + 9|\vec{a}|^2 =$$

$$= -3 \cdot 1 \cdot \sqrt{2} \cdot \frac{\sqrt{2}}{2} - 2 \cdot (\sqrt{2})^2 + 9 \cdot 1 = -3 - 4 + 9 = 2.$$

5) Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда данные векторы взаимно перпендикулярны (ортогональны), то есть

$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$
.

Доказательство.

Используя определение скалярного произведения, имеем:

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \frac{\pi}{2} = 0.$$

В частности, $\vec{\imath}\cdot\vec{\jmath}=|\vec{\imath}|\cdot|\vec{\jmath}|\cdot\cos\frac{\pi}{2}=0$, аналогично получим, что $\vec{\imath}\cdot\vec{\jmath}=\vec{\imath}\cdot\vec{k}=\vec{k}\cdot\vec{\jmath}=0$.

Пример 2.3. Найти скалярное произведение векторов $(\vec{a}+2\vec{\imath})\cdot(\vec{b}-2\vec{\jmath})$, если $\vec{a}=(-1;3)$ и $\vec{b}=(4;-2)$.

Решение.

Запишем векторы \vec{a} и \vec{b} через ортонормированные базисные вектора \vec{i} и \vec{j} : $\vec{a} = -\vec{i} + 3\vec{j}$, $\vec{b} = 4\vec{i} - 2\vec{j}$.

Тогда используя свойства скалярного произведения и учитывая, что $\vec{i}^2 = 1$, $\vec{i} \cdot \vec{j} = 0$ получим:

$$(\vec{a} + 2\vec{i}) \cdot (\vec{b} - 2\vec{j}) = (-\vec{i} + 3\vec{j} + 2\vec{i}) \cdot (4\vec{i} - 2\vec{j} - 2\vec{j}) =$$

$$= (\vec{i} + 3\vec{j}) \cdot (4\vec{i} - 4\vec{j}) = 4(\vec{i} + 3\vec{j}) \cdot (\vec{i} - \vec{j}) =$$

$$= 4(\vec{i}^2 - \vec{i} \cdot \vec{j} + 3\vec{j} \cdot \vec{i} - 3\vec{j}^2) = 4(1 - 3) = -6.$$

Пример 2.4. Какому условию должны удовлетворять векторы \vec{a} и \vec{b} ,чтобы вектор $\vec{a}+\vec{b}$ был перпендикулярен вектору $\vec{a}-\vec{b}$.

Решение.

Используя свойство 5 скалярного произведения, имеем:

$$(\vec{a} + \vec{b}) \perp (\vec{a} - \vec{b}) \Leftrightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0,$$

раскрывая скобки в последнем равенстве в соответствии со свойствами скалярного произведения, имеем:

$$\left(\vec{a}+\vec{b}
ight)\cdot\left(\vec{a}-\vec{b}
ight)=\vec{a}^2-\vec{b}^2=|\vec{a}|^2-\left|\vec{b}\right|^2=0, |\vec{a}|^2=\left|\vec{b}\right|^2$$
 ,то есть $|\vec{a}|=\left|\vec{b}\right|$.

Таким образом, для того чтобы вектор $\vec{a} + \vec{b}$ был перпендикулярен вектору $\vec{a} - \vec{b}$, необходимо и достаточно, чтобы векторы \vec{a} и \vec{b} имели одинаковые длины.

2.2. Выражение скалярного произведения через координаты.

Пусть заданы два вектора \vec{a} и \vec{b} разложенные по ортонормированному базису $\vec{\imath}, \vec{j}, \vec{k}$: $\vec{a} = a_x \cdot \vec{\imath}, + a_y \cdot \vec{j} + a_z \cdot \vec{k}$, $\vec{b} = b_x \cdot \vec{\imath} + b_y \cdot \vec{j} + b_z \cdot \vec{k}$.

Найдем скалярное произведение векторов \vec{a} и \vec{b} , перемножая их как многочлены и пользуясь таблицей скалярного произведения векторов $\vec{\iota}, \vec{j}, \vec{k}$:

	\vec{l}	\vec{J}	\vec{k}
\vec{l}	1	0	0
\vec{J}	0	1	0
$ec{k}$	0	0	1

$$\vec{a} \cdot \vec{b} = (a_x \cdot \vec{\imath} + a_y \cdot \vec{\jmath} + a_z \cdot \vec{k}) \cdot (b_x \cdot \vec{\imath} + b_y \cdot \vec{\jmath} + b_z \cdot \vec{k}) =$$

$$= a_x \cdot b_x \cdot (\vec{\imath} \cdot \vec{\imath}) + a_x \cdot b_y \cdot (\vec{\imath} \cdot \vec{\jmath}) + a_x \cdot b_z (\vec{\imath} \cdot \vec{k}) +$$

$$+ a_y \cdot b_x (\vec{\jmath} \cdot \vec{\imath}) + a_y \cdot b_y (\vec{\jmath} \cdot \vec{\jmath}) + a_y \cdot b_z (\vec{\jmath} \cdot \vec{k}) +$$

$$+ a_z \cdot b_x (\vec{k} \cdot \vec{\imath}) + a_z \cdot b_y (\vec{\jmath} \cdot \vec{k}) + a_z \cdot b_z \cdot (\vec{k} \cdot \vec{k}) =$$

$$= a_x \cdot b_x \cdot |\vec{\imath}|^2 + a_y \cdot b_y \cdot |\vec{\jmath}|^2 + a_z \cdot b_z \cdot |\vec{k}|^2 =$$

$$= a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z.$$

Таким образом, скалярное произведение (в координатной форме) равно сумме произведений соответствующих координат векторов:

$$\vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z$$
 (2.2)

Аналогично вычисляется скалярное произведение векторов на плоскости.

Пример 2.5. Найти скалярное произведение векторов:

а)
$$\vec{a}=3\ \vec{\imath}+\vec{k}, \vec{b}=\vec{\imath}-2\vec{\jmath}+3\vec{k}$$
;**6)** \overrightarrow{AB} и \overrightarrow{AC} , если даны точки $A(-1;-1), B(-5;-1), C(1;-3)$.

Решение.

а) Так как векторы заданы своими координатами

 $\vec{a}=(3;0;1), \vec{b}=(1;-2;3)$, то для вычисления скалярного произведения воспользуемся формулой (2.2),

$$\vec{a} \cdot \vec{b} = 3 \cdot 1 + 0 \cdot (-2) + 1 \cdot 3 = 6$$

Заметим, что угол между векторами \vec{a} и \vec{b} является острым, так как скалярное произведение положительно;

6) Речь идёт о точках и векторах плоскости. Для начала найдём координаты векторов:

$$\overrightarrow{AB} = (-5 - (-1); -1 - (-1)) = (-4; 0),$$

 $\overrightarrow{AC} = (1 - (-1); -3 - (-1)) = (2; -2);$

Суммируя произведение соответствующих координат векторов \overrightarrow{AB} и \overrightarrow{AC} , вычисляем скалярное произведение:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -4 \cdot 2 + 0 \cdot (-2) = -8$$
.

Заметим, что скалярное произведение отрицательно, значит, угол между векторами \overrightarrow{AB} и \overrightarrow{AC} является тупым.

Проверьте самостоятельно - отложите на плоскости данные векторы от одной точки, и убедитесь, что это действительно так.

Пример 2.6. Найти вектор \vec{a} , коллинеарный вектору $\vec{x}=(2;1;-2)$ и удовлетворяющий условию $\vec{x}\cdot\vec{a}=27$. Решение.

Запишем условие коллинеарности двух векторов \vec{a} и \vec{x} : $\vec{a} \parallel \vec{x} \iff \vec{a} = \alpha \cdot \vec{x}$, то есть, $\vec{a} = \alpha \cdot (2; 1; -2) = (2\alpha; \alpha; -2\alpha)$. Из условия $\vec{x} \cdot \vec{a} = 27$ найдём α : $(2; 1; -2) \cdot (2\alpha; \alpha; -2\alpha) = 27;$ $4\alpha + \alpha + 4\alpha = 27;$ $9\alpha = 27:$

Следовательно, $\vec{a} = 3 \cdot \vec{x} = 3 \cdot (2; 1; -2) = (6; 3; -6)$.

Пример 2.7. Найдите вектор \vec{x} , зная, что его длина равна $|\vec{x}| = 51$ и он перпендикулярен вектору $\vec{a} = (8; -15; 3)$ и оси Oz ,так же образует острый угол с осью Ox.

 $\alpha = 3$.

Решение.

Обозначим координаты искомого вектора через x, y, z, то есть $\vec{x} = (x; y; z)$. Так как $\vec{x} \perp Oz$ (по условию), то коорди-

наты вектора \vec{x} будем искать в виде $\vec{x} = (x; y; 0)$ (как известно, если одна из координат вектора равна нулю, то вектор перпендикулярен соответствующей оси).

Учитывая, что $\vec{x} \perp \vec{a} \Longleftrightarrow \vec{x} \cdot \vec{a} = 0$, отсюда

 $8 \cdot x + (-15) \cdot y + 0 \cdot z = 0$ (1) - получим первое уравнения для нахождения координат вектора $\vec{x} = (x; y; 0)$:

$$8x - 15y = 0$$
 (1);

Зная длину искомого вектора, получим второе уравне-

ние:
$$|\vec{x}| = 51$$
, $|\vec{x}| = \sqrt{x^2 + y^2 + 0^2}$, $\sqrt{x^2 + y^2} = 51$, $\frac{x^2 + y^2 = 51^2}{2}$ (2);

Таким образом, имеем систему из двух уравнений с двумя неизвестными $\begin{cases} 8x-15y=0 \\ x^2+y^2=51^2 \end{cases}$,решим ее методом подста-

новки:

$$\begin{cases} y = \frac{8}{15}x \\ x^2 + y^2 = 51^2 \end{cases} \begin{cases} y = \frac{8}{15}x \\ x^2 + \left(\frac{8}{15}x\right)^2 = 51^2 \text{ (2)} \end{cases}$$
$$x^2 + \frac{64}{225}x^2 = 51^2 \text{ (2)},$$
$$\frac{289}{225}x^2 = 51^2,$$
$$x^2 = \frac{225 \cdot 51^2}{289} = \left(\frac{15 \cdot 51}{17}\right)^2,$$
$$x^2 = 45^2, x_{12} = \pm 45.$$

Так как вектор \vec{x} образует острый угол с осью Ox ,то нам необходим x>0,следовательно x=45.

Из первого уравнения системы найдем соответствующую ординату: $y=\frac{8}{15}x=\frac{8}{15}\cdot 45=24$.

Таким образом, $\vec{x} = (45; 24; 0)$.

2.3. Приложение скалярного произведения.

Угол между векторами.

Из определения скалярного произведения

 $\overrightarrow{a}\cdot\overrightarrow{b}=|\overrightarrow{a}|\cdot|\overrightarrow{b}|\cdot cos\left(\widehat{\overrightarrow{a},\overrightarrow{b}}\right)$ можно легко найти косинус угла между векторами

$$cos\left(\widehat{\overrightarrow{a},\overrightarrow{b}}\right) = \frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}|\cdot|\overrightarrow{b}|}$$
 (2.3)

Зная разложение данных векторов по ортонормированному базису $\vec{a}=a_x\cdot\vec{\imath}+a_y\cdot\vec{\jmath}+a_z\cdot\vec{k}$, $\vec{b}=b_x\cdot\vec{\imath}+b_y\cdot\vec{\jmath}+b_z\cdot\vec{k}$, получим:

$$cos\left(\widehat{\vec{a}}, \overrightarrow{b}\right) = \frac{a_x b_x + a_y \cdot b_y + a_z \cdot b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}$$
(2.4)

Замечание: угол между векторами \vec{a} и \vec{b} может принимать значения от 0 до 180° градусов включительно:

1) Если угол между векторами острый, то есть

$$0 \le \left(\widehat{\vec{a}}, \overrightarrow{b}\right) < \frac{\pi}{2}$$
 (от 0° до 90° градусов), то $\cos\left(\widehat{\vec{a}}, \overrightarrow{b}\right) > 0$, и скалярное произведение будет положительным $\overrightarrow{a}\overrightarrow{b} > 0$;

2) Если угол между векторами тупой, то есть

 $\frac{\pi}{2} < \left(\overrightarrow{\hat{a}}, \overrightarrow{\hat{b}} \right) \le \pi$ (от 90° до 180°), то $\cos \left(\overrightarrow{\hat{a}}, \overrightarrow{\hat{b}} \right) < 0$ и соответственно, скалярное произведение отрицательно $\overrightarrow{a}\overrightarrow{b} < 0$.

3) Если угол между векторами прямой, то есть

 $(\widehat{\vec{a},\vec{b}})=\frac{\pi}{2}$, то $cos(\widehat{\vec{a},\vec{b}})=0$, векторы перпендикулярны (ортогональны).

Пример 2.8. Найти угол между векторами \vec{a} и \vec{b} : **a)** $\vec{a} = (4;0;1)$, $\vec{b} = (2;-2;3)$;**6)** $\vec{a} = (3;0;-1)$, $\vec{b} = (1;-2;3)$.

Решение.

а) Найдем угол по формуле $cos\left(\widehat{\vec{a}}, \widehat{\vec{b}}\right) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$, для этого вычислим скалярное произведение векторов:

$$\vec{a} \cdot \vec{b} = 4 \cdot 2 + 0 \cdot (-2) + 1 \cdot 3 = 11;$$

Найдем длины векторов \vec{a} и \vec{b} :

$$|\vec{a}| = \sqrt{4^2 + 0^2 + 1^2} = \sqrt{17}, |\vec{b}| = \sqrt{2^2 + (-2)^2 + 3^2} = \sqrt{17};$$

Подставим в формулу для вычисления угла полученные значения имеем:

$$cos\left(\widehat{\vec{a},\vec{b}}\right) = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|\cdot|\vec{b}|} = \frac{11}{\sqrt{17}\cdot\sqrt{17}} = \frac{11}{17}.$$
 Итак, $cos\left(\widehat{\vec{a},\vec{b}}\right) = \frac{11}{17}$, тогда $\varphi = \left(\widehat{\vec{a},\vec{b}}\right) = arccos\left(\frac{11}{17}\right).$

Значения обратных тригонометрических функций (если оно табличное) можно находить по тригонометрической таблице, но в данном случае значение угла не табличное. Найдите его приближенно, самостоятельно, используя калькулятор.

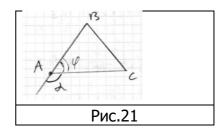
Заметим, что угол между данными векторами является острым, так как скалярное произведение положительно;

б)
$$\vec{a} \cdot \vec{b} = 3 \cdot 1 + 0 \cdot (-2) + (-1) \cdot 3 = 0$$
, следовательно, $\vec{a} \perp \vec{b}$,то есть $(\widehat{\vec{a}}, \widehat{\vec{b}}) = \frac{\pi}{2}$.

Пример 2.9. Найти внутренний угол при вершине B и внешний при вершине A в треугольнике ABC, если известны координаты его вершин A(0; -2; 4), B(-4; -2; 0), C(1; 0; 1).

Решение.

Внутренний угол при вершине B в треугольнике ABC — это угол между векторами \overrightarrow{BA} и \overrightarrow{BC} , то есть



 $\varphi=< A_{
m BHYTp.}=\left(\widehat{\overrightarrow{BA},\overrightarrow{BC}}\right)$, поэтому по формуле (2.3) имеем:

$$cos \varphi = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{|\overrightarrow{BA}| \cdot |\overrightarrow{BC}|}$$
, где $\overrightarrow{BA} = (4; 0; 4)$,

$$\overrightarrow{BC} = (5; 2; 1), \overrightarrow{BA} \cdot \overrightarrow{BC} = 4 \cdot 5 + 0 \cdot 2 + 4 \cdot 1 = 24,$$

$$|\overrightarrow{BA}| = \sqrt{4^2 + 0^2 + 4^2} = \sqrt{2 \cdot 4^2} = 4\sqrt{2},$$

$$|\overrightarrow{BC}| = \sqrt{5^2 + 2^2 + 1^2} = \sqrt{30}$$

$$\cos\varphi = \frac{24}{4\sqrt{2}\sqrt{30}} = \frac{6}{\sqrt{2}\sqrt{2}\sqrt{15}} = \frac{6}{2\sqrt{15}} = \frac{3}{\sqrt{15}} = \frac{3}{\sqrt{15}}$$

$$=\frac{3}{\sqrt{3}\sqrt{5}}=\frac{\sqrt{3}}{\sqrt{5}}=\frac{\sqrt{15}}{5}$$
, не является табличным значением,

, следовательно,
$$\varphi = \arccos\left(\frac{\sqrt{15}}{5}\right)$$
.

Внешний угол A в треугольнике ABC — это угол между векторами \overrightarrow{CA} и \overrightarrow{AB} , то есть $\alpha = < A_{\text{внеш.}} = \left(\overrightarrow{AC}, \overrightarrow{BA} \right)$,поэтому воспользуемся формулой:

$$cos\alpha = \frac{\overrightarrow{AC} \cdot \overrightarrow{BA}}{|\overrightarrow{AC}| \cdot |\overrightarrow{BA}|}$$
, где $\overrightarrow{BA} = (4; 0; 4)$, $\overrightarrow{AC} = (1; 2; -3)$,

$$\overrightarrow{AC} \cdot \overrightarrow{BA} = 4 \cdot 1 + 0 \cdot 2 + 4 \cdot (-3) = -8$$

$$|\overrightarrow{BA}| = 4\sqrt{2}$$
 (см. вычисления выше),

$$|\overrightarrow{AC}| = \sqrt{1^2 + 2^2 + (-3)^2} = \sqrt{14}$$

$$cos\alpha = \frac{-8}{4\sqrt{2}\sqrt{14}} = \frac{-2}{2\sqrt{7}} = -\frac{1}{\sqrt{7}} = -\frac{\sqrt{7}}{7}$$
, следовательно,

$$\alpha = \arccos\left(\frac{\sqrt{7}}{7}\right)$$
.

Пример 2.10. Найдите угол между векторами $\vec{a} = \vec{m} + 2\vec{n}$ и $\vec{b} = 2\vec{m} - \vec{n}$, где \vec{m} и \vec{n} - единичные векторы и угол между ними равен 180°.

Решение.

Угол между векторами найдём по формуле:

$$cos\left(\overrightarrow{a}, \overrightarrow{b} \right) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$
, где
$$\vec{a} \cdot \vec{b} = (\vec{m} + 2\vec{n}) \cdot (2\vec{m} - \vec{n}) = 2\vec{m}^2 - 2\vec{n}^2 + 4\vec{m} \cdot \vec{n} - \vec{m} \cdot \vec{n} = 2|\vec{m}|^2 - 2|\vec{n}|^2 + 3|\vec{m}| \cdot |\vec{n}| cos\pi = -3;$$

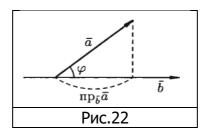
Для нахождения длин $|\vec{a}|, |\vec{b}|$, необходимо найти квадраты длин:

$$|\vec{a}|^2=\vec{a}^2=(\vec{m}+2\vec{n})^2=\vec{m}^2+4\,\vec{m}\cdot\vec{n}+4\vec{n}^2=$$
 $=|\vec{m}|^2+4|\vec{m}|\cdot|\vec{n}|cos\pi+4|\vec{n}|^2=1-4+4=1,$
Следовательно, $|\vec{a}|=1;$
 $|\vec{b}|^2=\vec{b}^2=(2\vec{m}-\vec{n})^2=4\vec{m}^2-4\,\vec{m}\cdot\vec{n}+\vec{n}^2=$
 $4|\vec{m}|^2-4|\vec{m}|\cdot|\vec{n}|cos\pi+|\vec{n}|^2=4+4+1=9,$
Тогда $|\vec{b}|=\sqrt{9}=3.$

Проекция вектора на заданное направление.

Проекцией вектора \vec{a} **на вектор** \vec{b} (см.рис.22) называется скалярная величина, вычисляемая по формуле:

$$\pi p_{\overrightarrow{b}} \ \overrightarrow{a} = |\overrightarrow{a}| \cdot cos(\widehat{\overrightarrow{a}, \overrightarrow{b}})$$
 (2.5)



Аналогично, определяется проекция вектора \vec{b} на ось вектора \vec{a} , то есть пр $_{\vec{a}}$ $\vec{b}=|\vec{b}|\cdot cos\left(\widehat{\vec{a},\vec{b}}\right)$.

Из формулы $\vec{a}\cdot\vec{b}=|\vec{a}|\cdot|\vec{b}|\cdot cos\left(\widehat{\vec{a},\vec{b}}\right)$ легко найти проекцию вектора \vec{a} на ось вектора \vec{b} , подставив (2.5) в равенство $\vec{a}\cdot\vec{b}=|\vec{a}|\cdot|\vec{b}|\cdot cos\left(\widehat{\vec{a},\vec{b}}\right)$ имеем:

$$\vec{a} \cdot \vec{b} = |\vec{b}| \cdot \pi p_{\vec{b}} \ \vec{a} = |\vec{a}| \cdot \pi p_{\vec{a}} \ \vec{b}$$

$$\pi p_{\overrightarrow{b}} \ \overrightarrow{a} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$$
 (2.6)

Аналогично определяется проекция вектора \vec{b} на ось вектора \vec{a} :

$$\pi p_{\vec{a}} \quad \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$$

Таким образом, для того чтобы найти проекцию некоторого вектора на направление кого-то другого вектора, необходимо найти отношение скалярного произведения этих векторов и длины вектора на направление которого делается проекция.

Замечание:

1) Если угол между векторами острый, то есть

$$0 \le (\widehat{\vec{a}}, \overrightarrow{\vec{b}}) < \frac{\pi}{2}$$
 , το πρ $_{\vec{b}}$ $\vec{a} > 0$;

2) Если угол между векторами тупой, то есть

$$\frac{\pi}{2} < (\widehat{\vec{a},\vec{b}}) \le \pi$$
 , TO $\pi p_{\vec{b}}$ $\vec{a} < 0$;

3) Если угол между векторами прямой, то есть

$$(\widehat{\vec{a}},\widehat{\vec{b}}) = \frac{\pi}{2}$$
 , TO $\pi p_{\vec{b}}$ $\vec{a} = 0$.

Пример 2.11. Даны векторы $\vec{a}=(3;-6;-1), \vec{b}=(1;4;-5), \vec{c}=(3;-4;12).$ Вычислитьпр \vec{c} $(\vec{a}+\vec{b}).$

Решение.

Воспользуемся формулой $\pi p_{\vec{b}}$ $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$, в нашем случае равенство принимает вид $\pi p_{\vec{c}}$ $(\vec{a} + \vec{b}) = \frac{(\vec{a} + \vec{b}) \cdot \vec{c}}{|\vec{c}|}$,

найдем координаты суммы векторов

$$\vec{a} + \vec{b} = (4; -2; -6)$$
, скалярное произведение

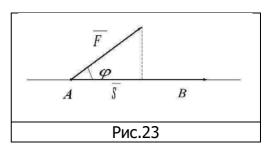
$$(\vec{a}+\vec{b})\cdot\vec{c}=4\cdot3+(-2)\cdot(-4)+(-6)\cdot12=-52$$
 и длину вектора $|\vec{c}|=\sqrt{3^2+(-4)^2+12^2}=\sqrt{169}=13$ и подставим в формулу:

Заметим, что $\frac{\pi}{2} < \left(\widehat{\vec{a} + \vec{b}}, \overrightarrow{c}\right) \leq \pi$, так как $\pi p_{\vec{c}} \ \left(\vec{a} + \vec{b}\right) < 0$.

Физический смысл скалярного произведения.

Для выяснения физического смысла скалярного произведения вычислим работу по перемещению материальной точки.

Пусть материальная точка перемещается прямолинейно из положения A в положе-



ниеB,под действием постоянной силы \vec{F} образующей угол φ с перемещением $\overrightarrow{AB} = \vec{S}$ (см.рис.23).

Из физики известно, что работа силы \vec{F} при перемещении \vec{S} равна $A = F \cdot S \cdot cos \varphi$, то есть

$$A = \overrightarrow{F} \cdot \overrightarrow{S} (2.7)$$

Таким образом, работа под действием постоянной силы по перемещению материальной точки вдоль прямолинейного отрезка равна скалярному произведению вектора силы на вектор перемещения, это и есть физический смысл скалярного произведения.

Пример 2.12. Какую работу производит сила $\vec{F}=(2;-1;-4)$, когда точка её приложения, двигаясь прямолинейно, перемещается из точки A(1;-2;3), в точку B(5;-6;1).Под каким углом к \vec{S} направленна сила \vec{F} .

Решение.

Находим вектор перемещения $\overrightarrow{AB} = \vec{S} = (4; -4; -2)$, в соответствии с формулой (2.7) находим работу A:

$$A = \vec{F} \cdot \vec{S} = 2 \cdot 4 + (-1) \cdot (-4) + (-4) \cdot (-2) = 20;$$

Угол между вектором силы \vec{F} и вектором перемещения \vec{S} находим по формуле $cos\left(\widehat{\vec{F}}, \vec{S}\right) = \frac{\vec{F} \cdot \vec{S}}{|\vec{F}| \cdot |\vec{S}|}$, где $\vec{F} \cdot \vec{S} = 20$,

$$\begin{split} \left| \vec{F} \right| &= \sqrt{2^2 + (-1)^2 + (-4)^2} = \sqrt{21}, \\ \left| \vec{S} \right| &= \sqrt{4^2 + (-4)^2 + (-2)^2} = \sqrt{36} = 6, \text{ то есть} \\ \cos \left(\widehat{\vec{F}}, \vec{S} \right) &= \frac{20}{\sqrt{21} \cdot 6} = \frac{10}{3\sqrt{21}}, \, \varphi = \left(\widehat{\vec{F}}, \vec{S} \right) = \arccos \frac{10}{3\sqrt{21}}. \end{split}$$

Задания для самостоятельного решения.

1. Векторы \vec{a} и \vec{b} образуют угол $\varphi=\frac{2\pi}{3}$.Зная, что, если $|\vec{a}|=$

$$|\vec{b}| = 4$$
 .Найти: **a)** $\vec{a} \cdot \vec{b}$; **6)** \vec{a}^2 ;**в)** \vec{b}^2 ;

г)
$$(3\vec{a}-2\vec{b})\cdot(\vec{a}+2\vec{b})$$
;д) $(3\vec{a}+2\vec{b})^2$.

2. Найти скалярное произведение векторов

$$\vec{a} = (-2; 1; 1) \text{ M } \vec{b} = (4; 0; -1) \text{ .}$$

- **3.** Даны точки A(2;-2;3), B(1;-1;2), C(4;-4;5). Найти косинус угла между векторами \overrightarrow{AB} и \overrightarrow{AC} .
- **4.**Даны векторы $\vec{a} = \vec{\iota} + 5\vec{\jmath} + 4\vec{k}, \vec{b} = -\vec{\iota} + 2\vec{\jmath} + 3\vec{k}$.Найти:

a)
$$\vec{a} \cdot \vec{b}$$
;6) $\sqrt{\vec{a}^2}$;B) $\sqrt{\vec{b}^2}$;r) $(2\vec{a} - 3\vec{b}) \cdot (2\vec{a} + 2\vec{b})$.

5. Найти длину вектора
$$\vec{p}+2\vec{q}$$
, если $\vec{p}=\vec{a}-\vec{b}$, $\vec{q}=\vec{a}+2\vec{b}$, $|\vec{a}|=1$, $|\vec{b}|=3$, $(\widehat{\vec{a},\vec{b}})=\frac{2\pi}{3}$.

6. Найти длину вектора
$$\vec{a}$$
, если $\vec{a} = -2\vec{b} + 5\vec{c}$, $|\vec{c}| = \sqrt{2}$, $|\vec{b}| = 1$, $(\widehat{\vec{c}}, \widehat{\vec{b}}) = \frac{\pi}{4}$.

7.Векторы \vec{a} , \vec{b} , \vec{c} попарно образуют друг с другом углы, каждый из которых равен 60°. Зная, что $|\vec{a}|=4$, $|\vec{b}|=2$, $|\vec{c}|=6$, определить модуль вектора $\vec{p}=\vec{a}+\vec{b}+\vec{c}$.

- **8.** Доказать, что диагонали четырехугольника с вершинами A(-4; -4; 4), B(-3; 2; 2), C(2; 5; 1), D(3; -2; 2) взаимно перпендикулярны.
- **9.** Дано $|\vec{a}| = 3$, $|\vec{b}| = 5$.Определить при каком значении α векторы $\vec{a} \alpha \vec{b}$ и $\vec{a} + \alpha \vec{b}$ взаимно перпендикулярны.
- **10.** Найти внутренний угол при вершине C в треугольнике ABC, если вершины A(2;3;-1), B(4;1;-2), C(1;0;2).
- **11.** Найти внешний угол при вершине A в треугольнике ABC, если вершины A(3;2;-3), B(5;1;-1), C(1;-2;1).
- **12.** Какой угол образуют единичные векторы $\vec{e_1}$ и $\vec{e_2}$, если известно, что векторы $\vec{a}=\vec{e_1}+2\vec{e_2}$ и $\vec{b}=5\vec{e_1}-4\vec{e_2}$ ортогональны?
- **13.** Найти угол между диагоналями параллелограмма, построенного на векторах $\vec{a}=2\ \vec{\imath}+\vec{\jmath}$ и $\vec{b}=-\vec{\jmath}+2\vec{k}$.
- **14.** Даны векторы $\vec{a} = (2; 2; 1)$ и $\vec{b} = (6; 3; -2)$.

Вычислить $\pi p_{\vec{a}}$ \vec{b} , $\pi p_{\vec{b}}$ \vec{a} .

- **15.** Даны векторы $\vec{a} = -2\vec{\imath} + \vec{j} + \vec{k}$, $\vec{b} = \vec{\imath} + 5\vec{j}$, $\vec{c} = 4\vec{\imath} + 4\vec{\jmath} 2\vec{k}$. Вычислить $\pi p_{\vec{c}} \ (3\vec{a} 2\vec{b})$.
- **16.** Даны векторы $\vec{a} = \vec{\imath} 3\vec{\jmath} + 4\vec{k}$, $\vec{b} = 3\vec{\imath} 4\vec{\jmath} + 2\vec{k}$, $\vec{c} = -\vec{\imath} + \vec{\jmath} + 4\vec{k}$. Вычислить $\pi p_{\vec{p} + \vec{c}}$ \vec{a} .
- **17.** Какую работу производит сила $\vec{F} = (3; -2; -5)$ когда точка её приложения, двигаясь прямолинейно, перемещается из точки A(2; -3; 5) в точку B(3; -2; -1).

- **18.** Найти работу равнодействующей сил $\vec{F}_1 = \vec{\imath} \vec{\jmath} + \vec{k}$ и $\vec{F}_2 = 2\vec{\imath} + \vec{\jmath} + 3\vec{k}$ при перемещении ее точки из начала координат в точку M(2;-1;-1).
- **19.**Даны единичные векторы $\vec{a}, \vec{b}, \vec{c}$,удовлетворяющие условию $\vec{a} + \vec{b} + \vec{c} = 0$. Вычислить $\vec{a}\vec{b} + \vec{b}\vec{c} + \vec{c}\vec{a}$.
- **20.**Найти косинус угла между векторами $\vec{a}=(2;-4;4)$ и $\vec{b}=(-3;2;6)$.
- **21.**Найти вектор \vec{x} ,коллинеарный вектору $\vec{a}=(4;2;4)$ и удовлетворяющий условию $\vec{x}\cdot\vec{a}=180$.
- **22.** Даны векторы $\vec{a}=2\vec{\imath}-\vec{\jmath}+3\vec{k}$, $\vec{b}=\vec{\imath}-3\vec{\jmath}+2\vec{k}$, $\vec{c}=3\vec{\imath}+2\vec{\jmath}-4\vec{k}$. Найти вектор \vec{x} , удовлетворяющий условиям $\vec{x}\cdot\vec{a}=-5$, $\vec{x}\cdot\vec{b}=-11$, $\vec{x}\cdot\vec{c}=20$.
- **23**. Даны векторы $\vec{a}=(3;-1;5)$ и $\vec{b}=(1;2;-3)$. Найти вектор \vec{x} , перпендикулярный к оси 0z и удовлетворяющий условиям $\vec{x}\cdot\vec{a}=9, \vec{x}\cdot\vec{b}=-4$.
- **24.** Вычислить скалярное произведение $(4\vec{a}-3\vec{b})\cdot (-\vec{a}+\vec{b})$, если известно, что векторы $\vec{a}=(1;-1;2)$ и $\vec{b}=(-1,5;2;1,3)$.
- **25.** Найти скалярное произведение векторов \vec{a} и \vec{b} , если: $|\vec{a}|=3, |\vec{b}|=1, (\widehat{\vec{a},\vec{b}})=\frac{\pi}{4}.$

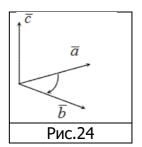
Ответы:

1.а)-6; **6**)9; **в**)16; **г**)-61; **д**)73.**2**.
$$\vec{a} \cdot \vec{b} = -9.$$
3. $cos \varphi = -1.$ **4.а**) $\vec{a} \cdot \vec{b} = 21$;**6**) $\sqrt{\vec{a}^2} = \sqrt{42}$;**в**) $\sqrt{\vec{b}^2} = \sqrt{14}$;**г**) $(2\vec{a} - 3\vec{b}) \cdot (2\vec{a} + 2\vec{b}) = 42.$ **5**. $|\vec{p} + 2\vec{q}| = 3\sqrt{7}.$ **6**. $|\vec{a}| = \sqrt{34}.$ **7**. $|\vec{p}| = 10.$ **9**. $\alpha = \pm \frac{3}{5}.$ **10**. $< C_{\text{внутр}} = arccos \frac{18}{\sqrt{494}}.$ **11**. $< A_{\text{внеш.}} = arccos \left(-\frac{4}{9}\right).$ **12**. $\frac{\pi}{3}.$ **13**. $\frac{\pi}{2}.$ **14**. $\pi p_{\vec{a}} \quad \vec{b} = \frac{16}{3}, \ \pi p_{\vec{b}} \quad \vec{a} = \frac{16}{7}.$ **15**. $\pi p_{\vec{c}} \quad (3\vec{a} - 2\vec{b}) = -11.$ **16**. $\pi p_{\vec{b} + \vec{c}} \quad \vec{a} = 5.$ **17**.31.**18**.2.**19**. $\vec{a}\vec{b} + \vec{b}\vec{c} + \vec{c}\vec{a} = -\frac{3}{2}.$ **20**. $cos \left(\vec{a}, \vec{b}\right) = \frac{5}{21}.$ **21**. $\vec{x} = (20; 10; 20).$ **22**. $\vec{x} = (2; 3; -2).$ **23**. $\vec{x} = (2; -3; 0).$ **24**.-54,12.**25**. $\sqrt{2}.$

ГЛАВА З.ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

3.1. Определение векторного произведения.

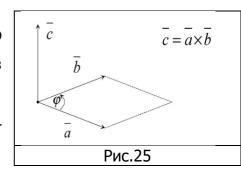
Пусть даны три некомпланарных вектора $\vec{a}, \vec{b}, \vec{c}$ Будем вращать вектор \vec{a} к вектору \vec{b} по кратчайшему пути. Если из конца вектора \vec{c} это вращение видно против часовой стрелки, то упорядоченная тройка векторов $\vec{a}, \vec{b}, \vec{c}$ правая (см.рис.25), если по часовой стрелке - тройка левая (см.рис.24).



Векторным произведением вектора \vec{a} на вектор \vec{b} называется вектор \vec{c} (рис.25), который определяется следующими тремя условиями:

1.
$$|\vec{c}| = |\vec{a}| |\vec{b}| sin(\hat{\vec{a}}, \hat{\vec{b}});$$

- **2.** $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$,то есть вектор \vec{c} перпендикулярен к каждому из векторов \vec{a} и \vec{b} .
- **3.** Векторы $\vec{a}, \vec{b}, \vec{c}$ образуют правую тройку.



Обозначение: $\vec{a} \times \vec{b}$ или $[\vec{a}, \vec{b}]$.

Свойства векторного произведения.

Для произвольных векторов $\vec{a}, \vec{b}, \vec{c}$ и любого числа $\lambda > 0$ справедливы следующие свойства:

1) Векторное произведение антиперестановочно, то есть

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$
.

Доказательство.

Векторы $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{a}$ коллинеарны, имеют одинаковые длины, но отличаются лишь направлением

(тройки $\vec{a}, \vec{b}, \vec{a} \times \vec{b}$ и $\vec{a}, \vec{b}, \vec{b} \times \vec{a}$ противоположно направленны). Следовательно, $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$.

2) Векторное произведение обладает распределительным свойством, то есть

$$(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$$
.

Примем без доказательства.

3) Векторное произведение обладает сочетательным свойством – константу можно вынести из скалярного произведения, то есть

$$(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b}) = \vec{a} \times (\lambda \vec{b}).$$

Доказательство.

Докажем равенство векторов $(\lambda \vec{a}) \times \vec{b}, \lambda (\vec{a} \times \vec{b})$,то есть их коллинеарность, сонаправленность, равенство длин.

Пусть $\lambda>0$,поскольку $\lambda\left(\vec{a}\times\vec{b}\right)\perp\vec{a},\vec{b}$, $(\lambda\vec{a})\times\vec{b}\perp\vec{a},\vec{b}$, следовательно векторы коллинеарны и их направления совпадают. Так как,

$$\left|(\lambda \vec{a}) \times \vec{b}\right| = |\lambda \vec{a}| |\vec{b}| sin\left(\widehat{\lambda \vec{a}, \vec{b}}\right) = \lambda |\vec{a}| |\vec{b}| sin\left(\widehat{\vec{a}, \vec{b}}\right);$$

 $|\lambda(\vec{a} \times \vec{b})| = \lambda |(\vec{a} \times \vec{b})| = \lambda |\vec{a}| |\vec{b}| sin(\widehat{\vec{a},\vec{b}})$, следовательно векторы $(\lambda \vec{a}) \times \vec{b}$ и $\lambda(\vec{a} \times \vec{b})$ имеют равные длины.

Таким, образом $(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b}).$

Аналогично доказывается при $\lambda < 0$.

4)Два ненулевых вектора \vec{a} и \vec{b} коллинеарны, тогда и только тогда, когда их векторное произведение равно нулевому вектору, то есть

$$\vec{a} \parallel \vec{b} <=> \vec{a} \times \vec{b} = \vec{0}.$$

Доказательство.

Если векторы $\vec{a} \parallel \vec{b}$, то угол между ними равен 0° или 180°, тогда $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| sin \left(\widehat{\vec{a}}, \widehat{\vec{b}}\right) = 0$,следовательно $\vec{a} \times \vec{b} = \vec{0}$; Если $\vec{a} \times \vec{b} = \vec{0}$, тогда $|\vec{a} \times \vec{b}| = 0$, то есть $|\vec{a}| |\vec{b}| sin \left(\widehat{\vec{a}}, \widehat{\vec{b}}\right) = 0$, тогда $\left(\widehat{\vec{a}}, \widehat{\vec{b}}\right) = 180$ °, следовательно $\vec{a} \parallel \vec{b}$.

В частности,
$$\vec{\imath} \times \vec{\imath} = \vec{\jmath} \times \vec{\jmath} = \vec{k} \times \vec{k} = \vec{0}$$
.

Пример 3.1. Дано:
$$|\vec{a}| = 4$$
, $|\vec{b}| = 6$, $(\widehat{\vec{a}}, \widehat{\vec{b}}) = \frac{\pi}{6}$.

Вычислить: **a)**
$$|\vec{a} \times \vec{b}|$$
;**6)** $|(2\vec{a} + 5\vec{b}) \times (\vec{a} - 4\vec{b})|$;

B)
$$\left| \left(\vec{a} + 2\vec{b} \right) \times \left(2\vec{a} - \vec{b} \right) \right|^2$$
.

Решение.

- **а)** Даны длины векторов \vec{a} и \vec{b} и угол между ними, поэтому: $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| sin \frac{\pi}{6} = 4 \cdot 6 \cdot \frac{1}{2} = 12;$
- 6) Применяя свойства векторного произведения, имеем:

$$|(2\vec{a} + 5\vec{b}) \times (\vec{a} - 4\vec{b})| = |2(\vec{a} \times \vec{a}) - 8(\vec{a} \times \vec{b}) + 5(\vec{b} \times \vec{a}) - 20(\vec{b} \times \vec{b})| = |-8(\vec{a} \times \vec{b}) - 5(\vec{a} \times \vec{b})| = |-13(\vec{a} \times \vec{b})| = 13|\vec{a} \times \vec{b}| = 13 \cdot 12 = 156;$$

$$\mathbf{B}) |(\vec{a} + 2\vec{b}) \times (2\vec{a} - \vec{b})|^2 = |2(\vec{a} \times \vec{a}) - (\vec{a} \times \vec{b}) + 4(\vec{b} \times \vec{a}) - 2(\vec{b} \times \vec{b})|^2 = |-(\vec{a} \times \vec{b}) - 4(\vec{a} \times \vec{b})|^2 = |-5(\vec{a} \times \vec{b})|^2 = 25|\vec{a} \times \vec{b}|^2 = 25 \cdot 12^2 = 3600.$$

Пример 3.2. Доказать тождество $(2\vec{a} + \vec{b}) \times (\vec{c} - \vec{a}) + (\vec{b} + \vec{c}) \times (\vec{a} + \vec{b}) = \vec{a} \times \vec{c}$.

Решение.

Используя свойства векторного произведения, имеем:

$$(2\vec{a} + \vec{b}) \times (\vec{c} - \vec{a}) + (\vec{b} + \vec{c}) \times (\vec{a} + \vec{b}) =$$

$$= 2(\vec{a} \times \vec{c}) - 2(\vec{a} \times \vec{a}) + (\vec{b} \times \vec{c}) - (\vec{b} \times \vec{a}) +$$

$$+ (\vec{b} \times \vec{a}) + (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{b}) + (\vec{b} \times \vec{b}) =$$

$$= 2(\vec{a} \times \vec{c}) - (\vec{a} \times \vec{c}) + (\vec{b} \times \vec{c}) - (\vec{b} \times \vec{c}) = \vec{a} \times \vec{c}.$$

3.2. Выражение векторного произведения через координаты.

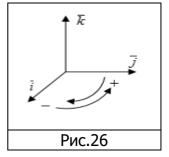
Пусть заданы два вектора \vec{a} и \vec{b} разложенные по ортонормированному базису $\vec{\imath}, \vec{j}$, \vec{k} : $\vec{a} = a_x \cdot \vec{\imath} + a_y \cdot \vec{j} + a_z \cdot \vec{k}$,

 $\vec{b} = b_x \cdot \vec{\imath} + b_y \cdot \vec{\jmath} + b_z \cdot \vec{k}$. При нахождении векторного произведения векторов \vec{a} и \vec{b} , будем использовать таблицу векторного произведения для ортонормированного базиса $\vec{i}, \vec{j}, \vec{k}$, которая вытекает непосредственно из определения векторного произведения:

	\vec{l}	\vec{J}	$ec{k}$
\vec{l}	$\vec{0}$	$ec{k}$	$-\vec{J}$
\vec{J}	$-\vec{k}$	$\vec{0}$	\vec{l}
$ec{k}$	\vec{J}	$-\vec{\iota}$	$\vec{0}$

То есть, $\vec{\iota} \times \vec{\iota} = \vec{0}$, $\vec{\iota} \times \vec{j} = \vec{k}$, $\vec{\iota} \times \vec{k} = -\vec{j}$ и так далее. Докажем, например, что $\vec{\iota} \times \vec{j} = \vec{k}$

(см.рис.26):



1)
$$\vec{k} \perp \vec{\iota}, \vec{j};$$

2)
$$|\vec{k}| = 1$$
, HO $|\vec{i} \times \vec{j}| = |\vec{i}||\vec{j}|sin\frac{\pi}{2} = 1$, TO есть $|\vec{k}| = |\vec{i} \times \vec{j}|$;

3) векторы $\vec{\imath}, \vec{j}, \vec{k}$ взятые в указанном порядке, образуют правую тройку.

Найдем $\vec{a} \times \vec{b}$:

$$\vec{a} \times \vec{b} = (a_x \cdot \vec{i} + a_y \cdot \vec{j} + a_z \cdot \vec{k}) \times (b_x \cdot \vec{i} + b_y \cdot \vec{j} + b_z \cdot \vec{k}) =$$

$$= a_x \cdot b_x \cdot (\vec{i} \times \vec{i}) + a_x \cdot b_y \cdot (\vec{i} \times \vec{j}) + a_x \cdot b_z \cdot (\vec{i} \times \vec{k}) +$$

$$+ a_y \cdot b_x \cdot (\vec{j} \times \vec{i}) + a_y \cdot b_y (\vec{j} \times \vec{j}) + a_y \cdot b_z \cdot (\vec{j} \times \vec{k}) +$$

$$\begin{aligned} &+a_z\cdot b_x(\vec{k}\times\vec{\imath})+\ a_z\cdot b_y(\vec{k}\times\vec{\jmath})+\ a_z\cdot b_z\cdot (\vec{k}\times\vec{k})=\\ &=\ a_x\cdot b_y\cdot \vec{k}+\ a_x\cdot b_z\cdot (-\vec{\jmath})+\ a_y\cdot b_x\cdot (-\vec{k})+\ a_y\cdot b_z\cdot \vec{\imath}+\\ &+a_z\cdot b_x\cdot \vec{\jmath}+\ a_z\cdot b_y\cdot (-\vec{\imath})=\vec{\imath}\left(\ a_y\cdot b_z-\ a_z\cdot b_y\right)-\\ &-\vec{\jmath}(\ a_x\cdot b_z-a_z\cdot b_x)+\vec{k}\left(\ a_x\cdot b_y-\ a_y\cdot b_x\right)=\\ &=\vec{\imath}\left|\begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix}-\vec{\jmath}\left|\begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix}+\vec{k}\left|\begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}=\begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}. \end{aligned} \right. \end{aligned}$$

Таким образом, векторное произведение равно определителю:

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{\iota} & \vec{J} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
 (3.1)

Пример 3.3. Найти векторное произведение векторов $\vec{a}=(2;0;-1)$ и $\vec{b}=(1;-2;3)$.

Решение.

Векторы заданы своими координатами, поэтому по формуле (3.1) имеем:

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{\iota} & \vec{\jmath} & \vec{k} \\ 2 & 0 & -1 \\ 1 & -2 & 3 \end{vmatrix} = \vec{\iota} \begin{vmatrix} 0 & -1 \\ -2 & 3 \end{vmatrix} - \vec{\jmath} \begin{vmatrix} 2 & -1 \\ 1 & 3 \end{vmatrix} + + \vec{k} \begin{vmatrix} 2 & 0 \\ 1 & -2 \end{vmatrix} = -2\vec{\iota} - 7\vec{\jmath} + 4\vec{k}.$$

Таким образом, $\vec{a} \times \vec{b} = (-2, -7, 4)$.

Пример 3.4. Раскрыть скобки и упростить выражение

$$\vec{\iota} \times (\vec{\jmath} + \vec{k}) - \vec{\jmath} \times (\vec{\iota} + \vec{k}) + \vec{k} \times (\vec{\iota} + \vec{\jmath} - \vec{k}).$$

Решение.

$$\vec{\iota} \times (\vec{\jmath} + \vec{k}) - \vec{\jmath} \times (\vec{\iota} + \vec{k}) + \vec{k} \times (\vec{\iota} + \vec{\jmath} - \vec{k}) =$$

$$= \vec{\iota} \times \vec{\jmath} + \vec{\iota} \times \vec{k} - \vec{\jmath} \times \vec{\iota} - \vec{\jmath} \times \vec{k} + \vec{k} \times \vec{\iota} + \vec{k} \times \vec{\jmath} - \vec{k} \times \vec{k} =$$

$$= \vec{\iota} \times \vec{\jmath} - \vec{k} \times \vec{\iota} + \vec{\iota} \times \vec{\jmath} + \vec{k} \times \vec{\jmath} + \vec{k} \times \vec{\iota} + \vec{k} \times \vec{\jmath} - \vec{0} =$$

$$= 2(\vec{\iota} \times \vec{\jmath}) + 2(\vec{k} \times \vec{\jmath}) = 2\vec{k} - 2\vec{\iota} = 2(\vec{k} - \vec{\iota}).$$

Пример 3.5. Найти вектор \vec{x} , перпендикулярный векторам $\vec{a}=(1;1;1)$ и $\vec{b}=(2;0;1)$ и образующий с осью Ox тупой угол, если $|\vec{x}|=\sqrt{6}$.

Решение.

Найдем координаты вектора $\vec{c} = \vec{a} \times \vec{b}$ перпендикулярного векторам \vec{a} и \vec{b} (по определению векторного произведения), который будет коллинеарнен искомому вектору \vec{x} , а затем учитывая, что $\vec{x} \parallel \vec{c} \Longleftrightarrow \vec{x} = \lambda \cdot \vec{c}$, найдем вектор \vec{x} :

$$\vec{c} = \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{vmatrix} = \vec{i} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} - \vec{j} \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} + + \vec{k} \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = \vec{i} + \vec{j} - 2\vec{k} = (1; 1; -2);$$

Запишем условие коллинеарности векторов \vec{c} и \vec{x} :

$$\vec{x} \parallel \vec{c} \iff \vec{x} = \lambda \cdot \vec{c} = \lambda \cdot (1; 1; -2) = (\lambda; \lambda; -2\lambda).$$

По условию
$$|\vec{x}| = \sqrt{6}$$
,с другой стороны $|\vec{x}| = \sqrt{\lambda^2 + \lambda^2 + (-2\lambda)^2}$, следовательно $\sqrt{\lambda^2 + \lambda^2 + 4\lambda^2} = \sqrt{6}$, $\sqrt{6\lambda^2} = \sqrt{6}$, $\lambda_{1,2} = \pm 1$.

Так как вектор \vec{x} образует с осью Ox тупой угол, то его проекция на ось Ox должна быть отрицательной, следовательно $\lambda = -1$, а $\vec{x} = (-1; -1; 2)$.

3.3. Приложение векторного произведения.

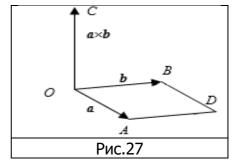
Геометрический смысл векторного произведения.

Из курса геометрии средней школы нам известно, что площадь треугольника равна половине произведения длин его сторон на синус угла между ними, то есть

$$S_{\Delta}=rac{1}{2}|\vec{a}||\vec{b}|sin(\widehat{\vec{a},\vec{b}})$$
, следовательно $S_{\Delta}=rac{1}{2}|\vec{a} imes\vec{b}|$,

 $S_{\text{пар.}} = 2S_{\Delta} = |\vec{a} \times \vec{b}|$. Таким образом, модуль векторного произведения векторов численно равен площади паралле-

лограмма, построенного на этих векторах (см.рис.27), как на сторонах — это и есть геометрический смысл векторного произведения, то есть



$$S_{\text{nap.}} = \left| \overrightarrow{a} \times \overrightarrow{b} \right|$$
 (3.2)

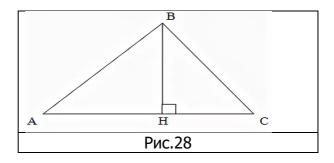
Пример 3.6. Вычислить площадь параллелограмма, построенного на векторах $\vec{a}=3\vec{p}+2\vec{q}$ и $\vec{b}=2\vec{p}-\vec{q}$,если известно, что $|\vec{p}|=4$, $|\vec{q}|=2$ и угол между векторами $\varphi=(\widehat{\vec{p}},\overrightarrow{q})=\frac{3\pi}{4}$.

Решение.

Поскольку параллелограмм построен на векторах \vec{a} и \vec{b} , то его площадь равна:

$$S_{\text{пар.}} = |\vec{a} \times \vec{b}| = |(3\vec{p} + 2\vec{q}) \times (2\vec{p} - \vec{q})| =$$
 $= |6(\vec{p} \times \vec{p}) - 3(\vec{p} \times \vec{q}) + 4(\vec{q} \times \vec{p}) - 2(\vec{q} \times \vec{q})| =$
 $= |-3(\vec{p} \times \vec{q}) - 4(\vec{p} \times \vec{q})| = |-7(\vec{p} \times \vec{q})| = 7|\vec{p} \times \vec{q}| =$
 $= 7|\vec{p}||\vec{q}|\sin\frac{3\pi}{4} = 7 \cdot 4 \cdot 2 \cdot \frac{\sqrt{2}}{2} = 28\sqrt{2} \text{ (ед.}^2 \text{)}.$

Пример 3.7. Зная вершины треугольника A(1;2;0), B(3;0;-3), C(5;2;6) вычислите: **а)** площадь треугольника ABC;**6)** длину высоты BH треугольника ABC. Решение.



а) Вспоминая геометрический смысл векторного произведения -площадь треугольника равна половине площади параллелограмма, построенного на векторах $\overrightarrow{AB}, \overrightarrow{AC}: S_{\Delta ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$;

Найдем координаты векторов \overrightarrow{AB} , \overrightarrow{AC} и вычислим векторное произведение данных векторов по формуле (3.1): $\overrightarrow{AB} = (2; -2; -3)$, $\overrightarrow{AC} = (4; 0; 6)$,

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{\iota} & \vec{J} & \vec{k} \\ 2 & -2 & -3 \\ 4 & 0 & 6 \end{vmatrix} = \vec{\iota} \begin{vmatrix} -2 & -3 \\ 0 & 6 \end{vmatrix} - \vec{J} \begin{vmatrix} 2 & -3 \\ 4 & 6 \end{vmatrix} +$$

$$|+\vec{k}|_{4}^{2} = |-12\vec{i} - 24\vec{j} + 8\vec{k}| = (-12; -24; 8) = (-4) \cdot (3; 6; -2);$$

Тогда,
$$|\overrightarrow{AB} \times \overrightarrow{AC}| = |(-4) \cdot (3; 6; -2)| = |(-4)| \cdot |(3; 6; -2)| = 4 \cdot \sqrt{3^2 + 6^2 + (-2)^2} = 4 \cdot \sqrt{49} = 28$$
, следовательно,

$$S_{\Delta ABC} = \frac{1}{2} \cdot 28 = 14 (eд.^2)$$
;

6) Из школьной программы известна формула

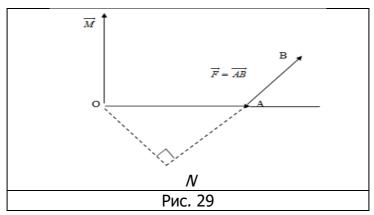
$$S_{\Delta ABC}=rac{1}{2}\cdot a\cdot h=rac{1}{2}\cdot \left|\overrightarrow{AC}
ight|\cdot \left|\overrightarrow{BH}
ight|$$
, из которой находим

$$\left|\overrightarrow{BH}\right| = \frac{2S_{\Delta ABC}}{\left|\overrightarrow{AC}\right|}, \left|\overrightarrow{AC}\right| = \sqrt{4^2 + 0^2 + 6^2} = \sqrt{40} = 2 \cdot \sqrt{10},$$

следовательно,
$$|\overrightarrow{BH}| = \frac{2\cdot 14}{2\cdot \sqrt{10}} = \frac{14}{\sqrt{10}} = \frac{14\sqrt{10}}{10} = \frac{7\sqrt{10}}{5}$$
.

Приложение векторного произведения в механике.

В механике с помощью векторного произведения вычисляется момент силы относительно точки пространства. Пусть в точке приложена сила $\vec{F} = \overrightarrow{AB}$ и пусть \emph{O} - некоторая точка пространства.



Из физики известно, что моментом силы относительно точки O называется вектор \overrightarrow{M} , который проходит через точку O и удовлетворяет условиям:

- 1) перпендикулярен плоскости, проходящей через точки O,A,B;
- 2) численно равен произведению силы на плечо $|\vec{M}| = |\vec{F}| \cdot 0$ N $= |\vec{F}| \cdot |\vec{r}| \cdot sin\varphi = |\vec{F}| \cdot |\overrightarrow{OA}| \cdot sin(\overrightarrow{F}, \overrightarrow{OA})$, где $|\vec{r}|$ расстояние от центра вращения (точки O) до места приложения силы (точки A);

3) образует правую тройку с векторами \overrightarrow{OA} и \overrightarrow{AB} .

Таким образом, момент силы относительно некоторой точки — это векторное произведение силы \vec{F} на кратчайшее расстояние от этой точки O до линии действия силы \overrightarrow{OA} , то есть

$$\overrightarrow{M} = \overrightarrow{OA} \times \overrightarrow{F}$$
 (3.3)

Пример 3.8. Даны точки A(4;-2;3), O(3;2;-1) .К точке O(3;2;-1) .К точке O(3;2;-1) .Найти O(3;2;-1) .Найти O(3;2;-1) .Найти O(3;2;-1) .

Решение.

Находим момент силы \vec{F} , то есть вектор

$$\vec{M} = \overrightarrow{OA} \times \vec{F}$$
, где координаты вектора $\overrightarrow{OA} = (1; -4; 4)$:

$$\vec{M} = \vec{OA} \times \vec{F} = \begin{vmatrix} \vec{\iota} & \vec{J} & \vec{k} \\ 1 & -4 & 4 \\ 2 & -1 & -4 \end{vmatrix} = \vec{\iota} \cdot \begin{vmatrix} -4 & 4 \\ -1 & -4 \end{vmatrix} - \vec{J} \cdot \begin{vmatrix} 1 & 4 \\ 2 & -4 \end{vmatrix} + + \vec{k} \cdot \begin{vmatrix} 1 & -4 \\ 2 & -1 \end{vmatrix} = 20\vec{\iota} + 12\vec{J} + 7\vec{k} = (20; 12; 7).$$

Задания для самостоятельного решения.

1. Векторы \vec{a} и \vec{b} образуют угол $\varphi=\frac{\pi}{6}$. Зная, что

$$|\vec{a}| = 6, |\vec{b}| = 5.$$
Найти: **a)** $|\vec{a} \times \vec{b}|$;**6)** $(\vec{a} + 2\vec{b}) \times (3\vec{a} - 2\vec{b})$;

B)
$$\left| \left(\vec{a} + \vec{b} \right) \times \left(\vec{a} - \vec{b} \right) \right|^2$$
.

2. Найти векторное произведение векторов

$$\vec{a} = (-2; 1; 1) \text{ u } \vec{b} = (4; 0; 3).$$

- **3.**Вычислить модуль векторного произведения векторов $\vec{a}=(1;-2;1)$ и $\vec{b}=(2;0;-1)$.
- **4.**Вычислить длину вектора $2\vec{a} \times 3\vec{b}$, если $|\vec{a}| = 1$, $|\vec{b}| = 2$, угол между векторами $\varphi = \left(\widehat{\vec{a}}, \widehat{\vec{b}}\right) = \frac{\pi}{2}$.
- **5.** Даны точки A(2; -1; 2), B(1; 2; -1), C(3; 2; 1). Вычислите координаты векторных произведений: **a)** $\overrightarrow{AB} \times \overrightarrow{BC}$;
- **6)** $(\overrightarrow{BC} 2\overrightarrow{CA}) \times \overrightarrow{CB}$.
- **6.** Даны векторы $\vec{a}=\vec{\imath}+5\vec{\jmath}+4\vec{k},\,\vec{b}=-\vec{\imath}+2\vec{\jmath}+3\vec{k}.$ Найти:

a)
$$\vec{a} \times \vec{b}$$
;**6)** $(2\vec{a} - 3\vec{b}) \times (2\vec{a} + \vec{b})$;**B)** $\sqrt{(\vec{a} \times \vec{b})^2}$.

- **7.** Даны длины векторов \vec{a} и \vec{b} , $|\vec{a}|=3$, $|\vec{b}|=26$, $|\vec{a}\times\vec{b}|=72$. Найти $\vec{a}\cdot\vec{b}$.
- **8.** Найти $|\vec{c}|$, если $\vec{c} = \left(2\vec{a} + \vec{b}\right) \times \left(\vec{a} 4\vec{b}\right)$, $|\vec{a}| = 1$, $|\vec{b}| = 3$, $\left(\widehat{\vec{a}}, \widehat{\vec{b}}\right) = \frac{\pi}{6}$.
- **9.** Даны длины векторов \vec{a} и \vec{b} , $|\vec{a}|=8$, $|\vec{b}|=15$ и их скалярное произведение $\vec{a}\cdot\vec{b}=96$.Вычислить $|\vec{a}\times\vec{b}|$.
- 10. Раскрыть скобки и упростить выражение:

a)
$$(\vec{a} - 2\vec{b}) \times (3\vec{a} - \vec{b})$$
;**6)** $(\vec{i} + 2\vec{j} - 3\vec{k}) \times \vec{i} + (2\vec{i} + \vec{j} + 3\vec{k}) \times \vec{i}$.

- **11.** Вычислить площадь треугольника ABC, если A(1;2;0), B(3;2;1), C(-2;1;2).
- **12.** Вычислить длину отрезка BH высоты треугольника с вершинами A(1;-1;2), B(5;-6;2), C(1;3;-1), опущенной из вершины B на сторону AC.
- **13.**Вычислить площадь параллелограмма, диагоналями которого служат векторы $2\vec{m}-\vec{n}$ и $4\vec{m}-5\vec{n}$, $|\vec{m}|=|\vec{n}|=1$, $(\widehat{\vec{m}},\widehat{\vec{n}})=\frac{\pi}{4}$.
- **14.** Вычислить площадь параллелограмма, построенного на векторах $\vec{a}=\vec{p}-2\vec{q}$ и $\vec{b}=\vec{p}+3\vec{q}$, если известно, что $|\vec{p}|=1, |\vec{q}|=2$ и угол между векторами $\varphi=(\widehat{\vec{p},\vec{q}})=\frac{\pi}{2}$.
- **15.** Найти площадь и длины диагоналей параллелограмма, построенного на векторах $\vec{a} = -\vec{j} + \vec{k}$ и $\vec{b} = \vec{\iota} + \vec{j} + \vec{k}$.
- **16.**Какому условию должны удовлетворять векторы \vec{a} и \vec{b} , чтобы векторы $3\vec{a} + \vec{b}$ и $\vec{a} 3\vec{b}$ были коллинеарны?
- **17.** К точке O(0;2;1)приложена сила $\vec{F}=(2;-4;5)$.Найти \overline{M} момент силы \vec{F} относительно точки A(-1;2;3).
- **18.** Найти направляющие косинусы вектора силы $\vec{F} = (1; -1; 1)$, приложенной к точке B(5; 1; 0) и момент этой силы относительно точки A(3; 2; -1).
- **19.** Найти $|\vec{c}|$, если $\vec{c} = (2\vec{a} + \vec{b}) \times (\vec{a} 4\vec{b})$, $|\vec{a}| = 1$,

$$|\vec{b}| = 3$$
, $(\widehat{\vec{a}}, \widehat{\vec{b}}) = \frac{\pi}{6}$.

- **20.**Параллелограмм построен на векторах $\vec{a}+3\vec{b}$ и $3\vec{a}+\vec{b}$. Найдите площадь, если $|\vec{a}|=|\vec{b}|=1$, а угол между ними 30°.
- **21.** Дано: $|\vec{a}| = 3, |\vec{b}| = 4, (\widehat{\vec{a}, \vec{b}}) = \frac{\pi}{2}$.

Вычислить: a)
$$|(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})|$$
;6) $|(3\vec{a} - \vec{b}) \times (\vec{a} + 2\vec{b})|$;

22.Вычислить длины диагоналей параллелограмма *ABCD*,

если
$$\overrightarrow{AB} = 2\overrightarrow{a} - \overrightarrow{b}, \overrightarrow{AD} = \overrightarrow{a} + 3\overrightarrow{b}, |\overrightarrow{a}| = 3, |\overrightarrow{b}| = 2, (\overrightarrow{a}, \overrightarrow{b}) = \frac{\pi}{3}.$$

- **23.** Даны точки A(5;1;-2), B(4;-2;3), C(0;3;2).Найти единичный вектор, ортогональный векторам \overrightarrow{AB} и \overrightarrow{AC} .
- **24.**Упростить выражение $(3\vec{\imath} 4\vec{\jmath} \times \vec{k} + 2\vec{\imath} \times \vec{\jmath}) \times (2\vec{\imath} 3\vec{\jmath})$.
- **25.** Доказать, что если коллинеарны векторы \vec{a} и \vec{b} , то коллинеарны и векторы $\vec{a} + \vec{b}$ и $\vec{a} \vec{b}$.

Ответы:

1.a)15;**6**)120;**B**)900.**2.**
$$\vec{a} \times \vec{b} = (3; 10; -4).$$
3. $|\vec{a} \times \vec{b}| = \sqrt{29}.$ **4.** $|2\vec{a} \times 3\vec{b}| = 12.$ **5.a**) $\overrightarrow{AB} \times \overrightarrow{BC} = (6; -4; -6);$
6) $(\overrightarrow{BC} - 2\overrightarrow{CA}) \times \overrightarrow{CB} = (-12; 8; 12).$ **6.a**) $\vec{a} \times \vec{b} = (7; -7; 7);$ **6**)

$$(2\vec{a} - 3\vec{b}) \times (2\vec{a} + \vec{b}) = (56; -56; 56); \mathbf{B}) \sqrt{(\vec{a} \times \vec{b})^2} = 7\sqrt{3}.$$

7.
$$\vec{a} \cdot \vec{b} = 30.8$$
. $|\vec{c}| = 13,5.9$. $|\vec{a} \times \vec{b}| = 72.10$.a) $5(\vec{a} \times \vec{b})$;

6)
$$-3\vec{k}$$
.**11.** $S_{\Delta ABC} = \frac{3\sqrt{6}}{2} (\text{ед.}^2)$.**12.** $|\vec{BH}| = 5$, $S_{\Delta ABC} = 12,5 (\text{ед.}^2)$.**13.** $S_{\text{пар.}} = \frac{3\sqrt{2}}{2} (\text{ед.}^2)$.**14.** $S_{\text{пар.}} = 10 (\text{ед.}^2)$.
15. $|\vec{a} - \vec{b}| = |\vec{a} + \vec{b}| = \sqrt{5}$, $S_{\text{пар.}} = \sqrt{6} (\text{ед.}^2)$.**16.** $\vec{a} \parallel \vec{b}$.
17. $\vec{M} = (20; 12; 7)$.**18**. $\cos \alpha = \frac{1}{\sqrt{3}}$, $\cos \beta = -\frac{1}{\sqrt{3}}$, $\cos \gamma = \frac{1}{\sqrt{3}}$, $\vec{AB} \times \vec{F} = (0; -1; -1)$.**19.** $|\vec{c}| = 2$.**20.**4.**21.** a)24; 6)84.
22. $7, \sqrt{133}$.**23.** $(\frac{-22}{\sqrt{1214}}; \frac{-21}{\sqrt{1214}}; \frac{-17}{\sqrt{1214}})$.**24.** $6\vec{i} + 4\vec{j} + 3\vec{k}$.

ГЛАВА 4. СМЕШАННОЕ ПРОИЗВЕДЕНИЕ

4.1. Определение смешанного произведения и его свойства.

Смешанным произведением упорядоченной

тройки векторов \vec{a} , \vec{b} , \vec{c} называется число, равное скалярному произведению векторного произведения первых двух векторов на третий, то есть

$$\vec{a} \cdot \vec{b} \cdot \vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c}$$
.

Обозначение:
$$\vec{a}\cdot\vec{b}\cdot\vec{c}$$
, $\vec{a}\vec{b}\vec{c}$ или $(\vec{a},\vec{b},\vec{c})$

Смешанное произведение иногда называют векторноскалярным, так как оно равно скалярному произведению вектора $\vec{a} \times \vec{b}$ (вектора векторного произведения \vec{a} на \vec{b}) на вектор \vec{c} .

Свойства смешанного произведения.

1)Смешанного произведение не меняется при перестановке знаков векторного и скалярного умножения,

то есть

$$ec{a}\ ec{b}ec{c}=\left(ec{a} imesec{b}
ight)\cdotec{c}=ec{a}(ec{b} imesec{c})$$
.
Доказательство.

Тройки $\vec{a}, \vec{b}, \vec{c}$ и $\vec{b}, \vec{c}, \vec{a}$, ориентированы одинаково, значит знак смешанного произведения одинаковый.

2)Смешанное произведение не меняется при циклической (круговой) перестановке векторов, то есть $\vec{a} \ \vec{b} \vec{c} = \vec{c} \vec{a} \ \vec{b} = \vec{b} \vec{c} \vec{a}$.

Доказательство.

$$\vec{a} \ \vec{b} \vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{c} (\vec{a} \times \vec{b}) = \vec{c} \vec{a} \ \vec{b},$$
$$\vec{c} \vec{a} \ \vec{b} = (\vec{c} \times \vec{a}) \cdot \vec{b} = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{b} \vec{c} \vec{a}.$$

3)Смешанное произведение меняет знак на противоположный при перемене мест любых двух сомножителей (векторов), то есть

$$ec{a}\,ec{b}ec{c}=-ec{a}\,ec{c}ec{b}=-ec{b}ec{a}ec{c}.$$

Доказательство.

Докажем, что $\vec{a}\ \vec{b}\vec{c}=-\vec{b}\vec{a}\vec{c}$, такая перестановка равносильна перестановке сомножителей в векторном произведении, меняющем у произведения знак:

$$\vec{a} \ \vec{b} \vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c} = -(\vec{b} \times \vec{a}) \cdot \vec{c} = -\vec{b} \vec{a} \vec{c};$$

Аналогично доказывается, что $\vec{a}\ \vec{b}\vec{c}=-\vec{a}\ \vec{c}\vec{b}$.

Следующие два свойства, взятые вместе выражают линейность смешанного произведения по первому аргументу.

Для любых векторов \vec{a} , \vec{b} , \vec{c} , \vec{a}_1 , \vec{a}_2 и числа λ справедливы равенства:

4)
$$(\vec{a}_1 + \vec{a}_2)\vec{b}\vec{c} = \vec{a}_1\vec{b}\vec{c} + \vec{a}_2\vec{b}\vec{c};$$

5)
$$(\lambda \vec{a})\vec{b}\vec{c} = \lambda(\vec{a}\vec{b}\vec{c});$$

Доказательства, свойств 4),5) следует из свойств скалярного и векторного произведения.

Пример 4.1. Доказать тождество

$$\vec{a}\vec{b}(\vec{c} + \alpha\vec{a} + \beta\vec{b}) = \vec{a}\vec{b}\vec{c}, \alpha, \beta \in R.$$

Решение.

Используя свойства смешанного произведения, имеем:

$$\vec{a}\vec{b}(\vec{c} + \alpha\vec{a} + \beta\vec{b}) = (\vec{a} \times \vec{b}) \cdot (\vec{c} + \alpha\vec{a} + \beta\vec{b}) =$$

$$= (\vec{a} \times \vec{b}) \cdot \vec{c} + \alpha(\vec{a} \times \vec{b}) \cdot \vec{a} + \beta(\vec{a} \times \vec{b}) \cdot \vec{b} =$$

$$= \vec{a}\vec{b}\vec{c} + \alpha(\vec{a} \times \vec{a}) \cdot \vec{b} + \beta\vec{a} \cdot (\vec{b} \times \vec{b}) = \vec{a}\vec{b}\vec{c}.$$

Пример 4.2. В прямоугольной декартовой системе координат заданы три взаимно перпендикулярных вектора $\vec{a}_1, \vec{a}_2, \vec{a}_3$, образующих правую тройку, их длины равны соответственно 3, 2 и 4. Найдите их смешанное произведение $\vec{a}_1 \vec{a}_2 \vec{a}_3$.

Решение.

Перед началом решения введем некоторые обозначения $\vec{a}_1 \times \vec{a}_2 = \vec{c}$.Опираясь на определения смешанного, а затем скалярного произведения имеем:

$$\vec{a}_{1}\vec{a}_{2}\vec{a}_{3} = (\vec{a}_{1} \times \vec{a}_{2}) \cdot \vec{a}_{3} = \vec{c} \cdot \vec{a}_{3} = |\vec{c}| |\vec{a}_{3}| cos(\hat{\vec{c}}, \hat{\vec{a}_{3}}) =$$

$$= 4|\vec{c}| cos(\hat{\vec{c}}, \hat{\vec{a}_{3}});$$

Для того, чтобы вычислить смешанное произведение найдем $|\vec{c}|$, $(\widehat{\vec{c}},\widehat{\vec{a}_3})$. По определению длины векторного произведения имеем:

$$|\vec{c}| = |\vec{a}_1 \times \vec{a}_2| = |\vec{a}_1||\vec{a}_2|sin(\widehat{\vec{a}_1}, \widehat{\vec{a}_2}) = 3 \cdot 2 \cdot sin\frac{\pi}{2} = 6;$$

Из определения векторного произведения мы можем заключить, что вектор \vec{c} перпендикулярен вектору \vec{a}_1 и вектору \vec{a}_2 , вектор \vec{a}_3 тоже перпендикулярен вектору \vec{a}_1 и вектору \vec{a}_2 (по условию), причем тройка векторов \vec{a}_1 , \vec{a}_2 , \vec{a}_3 — правая .Следовательно, векторы \vec{c} и \vec{a}_3 будут сонаправлены, то есть, $(\widehat{\vec{c}}, \widehat{\vec{a}}_3) = 0$;

Итак, $|\vec{c}| = 6$, $(\hat{\vec{c}}, \hat{\vec{a}}_3) = 0$,следовательно искомое смешанное произведение равно:

$$\vec{a}_1 \vec{a}_2 \vec{a}_3 = 4|\vec{c}|cos(\widehat{\vec{c}, \vec{a}_3}) = 4 \cdot 6 \cdot cos0 = 24.$$

4.2. Выражение смешанного произведения через координаты.

Пусть разложения векторов \vec{a} \vec{b} \vec{c} по ортонормированному базису $\vec{\imath}$, \vec{j} , \vec{k} : $\vec{a}=a_x\cdot\vec{\imath}$, $+a_y\cdot\vec{j}+a_z\cdot\vec{k}$, $\vec{b}=b_x\cdot\vec{\imath}+b_y\cdot\vec{\jmath}+b_z\cdot\vec{k}$, $\vec{c}=c_x\cdot\vec{\imath}+c_y\cdot\vec{\jmath}+c_z\cdot\vec{k}$.

Из определения смешанного произведения векторов, выражения для векторного произведения векторов в координатной форме и соотношений между базисными ортами для ортонормированного базиса находим $\vec{a}\vec{b}\vec{c}$:

$$\vec{a} \, \vec{b} \, \vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} \cdot (c_x \vec{i} + c_y \vec{j} + c_z \vec{k}) =$$

$$= (\vec{i} (a_y \cdot b_z - a_z \cdot b_y) - \vec{j} (a_x \cdot b_z - a_z \cdot b_x) +$$

$$+ \vec{k} (a_x \cdot b_y - a_y \cdot b_x)) \cdot (c_x \cdot \vec{i} + c_y \cdot \vec{j} + c_z \cdot \vec{k}) =$$

$$= (a_y b_z - a_z b_y; a_z b_x - a_x b_z; a_x b_y - a_y b_x) \cdot (c_x; c_y; c_z) =$$

$$= \begin{pmatrix} a_y & a_z \\ b_y & b_z \\ b_y & b_z \\ \end{pmatrix}; - \begin{vmatrix} a_x & a_z \\ b_x & b_z \\ \end{pmatrix}; \begin{vmatrix} a_x & a_y \\ b_x & b_y \\ \end{pmatrix} \cdot (c_x; c_y; c_z) =$$

$$= \begin{vmatrix} a_y & a_z \\ b_y & b_z \\ b_y & b_z \\ \end{pmatrix} \cdot c_x - \begin{vmatrix} a_x & a_z \\ b_x & b_z \\ \end{pmatrix} \cdot c_y + \begin{vmatrix} a_x & a_y \\ b_x & b_y \\ \end{pmatrix} \cdot c_z =$$

$$= \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}.$$

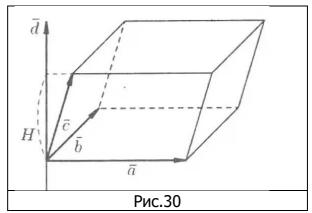
Таким образом, если векторы заданы своими координатами, то их смешанное произведение вычисляется по формуле

$$\vec{a} \, \vec{b} \vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$
(4.2)

, то есть смешанного произведения векторов равно определителю третьего порядка, составленному из координат перемножаемых векторов.

4.3. Приложение смешанного произведения.

Геометрический смысл смешанного произведения.



Следующее теорема раскрывает геометрический смысл смешанного произведения.

Теорема 4.1. Абсолютная величина смешанного произведения трех векторов равна объёму параллелепипеда, построенного на этих векторах, то есть

$$V = \left| \overrightarrow{a} \ \overrightarrow{b} \overrightarrow{c} \right|$$
 (4.3)

Доказательство.

Даны некомпланарные векторы $\vec{a}, \vec{b}, \vec{c}$.Отложим данные векторы от общего начала и построим на этих векторах как на ребрах параллелепипед. Построим вектор

 $\vec{d}=\vec{a} imes \vec{b}$, длина которого равна площади параллелограмма, построенного на векторах \vec{a} и \vec{b} ,

то есть $|\vec{d}| = S_{\text{пар.}} = |\vec{a} \times \vec{b}|$. На основании определения смешанного произведения имеем:

$$\vec{a}\ \vec{b}\vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c} = |\vec{a} \times \vec{b}| |\vec{c}| cos(\vec{a} \times \vec{b}, \vec{c}) = |\vec{d}| |\vec{c}| cos(\vec{d}, \vec{c}) = |\vec{d}| |\vec{c}| cos\varphi$$
, где $\varphi = (\vec{d}, \vec{c})$;

Учитывая, что $\pi p_{\vec{d}}\vec{c}=|\vec{c}|cos\varphi$ — проекция вектора \vec{c} на направление вектора $\vec{d}=\vec{a}\times\vec{b}$ получим:

 $\vec{a}\; \vec{b} \, \vec{c} = \left|\; \vec{d} \; \right| \, \mathrm{пр}_{\vec{d}} \, \vec{c} = S_{\mathrm{пар.}} \cdot H = V$, где H —высота параллепипеда, V —его объём.

Таким образом, смешанное произведение векторов равно объёму параллелепипеда, построенного на этих векторах.

Так будет всегда, если векторы $\vec{a}, \vec{b}, \vec{c}$. образуют правую тройку. Действительно, в этом случае $0 \le \varphi < \frac{\pi}{2}$, тогда $H = \pi p_{\vec{d}} \vec{c} = |\vec{c}| cos \varphi$;

Если же тройка, на которой построен параллепипед левая, то смешанное произведение отрицательно, действительно, если $\frac{\pi}{2} < \varphi \leq \pi$, то $-H = \pi \mathrm{p}_{\vec{d}} \vec{c}$.

Таким образом, если тройка векторов правая, то $\vec{a}\ \vec{b}\vec{c}>0$; левая $\vec{a}\ \vec{b}\vec{c}<0$.

Объединяя оба случая, имеем $V=\pm \vec{a}\; \vec{b}\vec{c}$ или $V=|\vec{a}\; \vec{b}\vec{c}|$.

Следствие (теоремы 4.1.). Ненулевые векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны тогда и только тогда, когда их смешанное произведение равно нулю, то есть

 $\vec{a}\,\vec{b}\,\vec{c}=0$ \Leftrightarrow векторы \vec{a},\vec{b},\vec{c} -компланарны.

Действительно, если $\varphi=rac{\pi}{2}$, то h= $\pi \mathrm{p}_{ec{d}} \vec{c}=|\vec{c}| cos \varphi=0.$

Замечание:

Из элементарной геометрии известно, что объём пирамиды, построенной на тех же векторах, равен $\frac{1}{6}$ части объёма параллелепипеда, то есть $V_{\text{пир.}} = \frac{1}{6} |\vec{a} \ \vec{b} \vec{c}|$.

Условие компланарности.

Условие компланарности трех векторов $\vec{a}, \vec{b}, \vec{c}$ в координатной форме выражается равенством

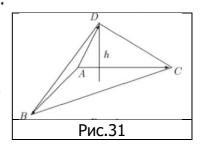
$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = 0.$$

Пример 4.3. В пространстве даны четыре точки A(2;3;1), B(4;1;-2), C(6;3;7), D(-5;-4;8). Вычислить:

а) объем пирамиды ABCD; **6)** длину высоты, опущенной из вершины D.

Решение.

а) Известно, что $V_{\text{пир.}} = \frac{1}{6} |\vec{a}| \vec{b} \vec{c}|$.В нашем случае пирамида построена на векторах \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} (рис.31), поэтому формула принимает вид



$$V_{ABCD} = \frac{1}{6} |\overrightarrow{AB} \cdot \overrightarrow{AC} \cdot \overrightarrow{AD}|.$$

Найдем координаты этих векторов по заданным точкам:

$$\overrightarrow{AB} = (4-2; 1-3; -2-1) = (2; -2; -3),$$
 $\overrightarrow{AC} = (6-2; 3-3; 7-1) = (4; 0; 6),$
 $\overrightarrow{AD} = (-5-2; -4-3; 8-1) = (-7; -7; 7).$

Вычислим смешанное произведение:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} \cdot \overrightarrow{AD} = \begin{vmatrix} 2 & -2 & -3 \\ 4 & 0 & 6 \\ -7 & -7 & 7 \end{vmatrix} = (-4) \cdot \begin{vmatrix} -2 & -3 \\ -7 & 7 \end{vmatrix} - (-6) \cdot \begin{vmatrix} 2 & -2 \\ -7 & -7 \end{vmatrix} = (-4) \cdot (-14 - 21) - (-14 - 14) = (-4) \cdot ($$

Таким образом, $V_{ABCD} = \frac{1}{6} \cdot 308 = \frac{154}{3} (ед.^3)$.

6) Из элементарной геометрии известна формула

$$V_{ ext{пир.}}=rac{1}{3}S_{ ext{осн.}}\cdot h$$
, отсюда $h=rac{3V_{ ext{пир.}}}{S_{ ext{och.}}}$,в нашем случае $h=rac{3V_{ABCD}}{S_{ ext{AABC}}}.$

Найдем $S_{\Delta ABC}$,исходя из геометрического смысла векторного произведения $S_{\Delta ABC}=\frac{1}{2}\left|\overrightarrow{AB}\times\overrightarrow{AC}\right|$:

$$\overrightarrow{AB} imes \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{\imath} & \overrightarrow{\jmath} & \overrightarrow{k} \\ 2 & -2 & -3 \\ 4 & 0 & 6 \end{vmatrix} = \overrightarrow{\imath} \begin{vmatrix} -2 & -3 \\ 0 & 6 \end{vmatrix} - \overrightarrow{\jmath} \begin{vmatrix} 2 & -3 \\ 4 & 6 \end{vmatrix} +$$

$$+ \overrightarrow{k} \begin{vmatrix} 2 & -2 \\ 4 & 0 \end{vmatrix} = -12\overrightarrow{\imath} - 24\overrightarrow{\jmath} + 8\overrightarrow{k} = (-12; -24; 8) =$$

$$= (-4) \cdot (3; 6; -2),$$

$$|\overrightarrow{AB} imes \overrightarrow{AC}| = |(-4) \cdot (3; 6; -2)| = |(-4)| \cdot |(3; 6; -2)| =$$

$$4 \cdot \sqrt{3^2 + 6^2 + (-2)^2} = 4 \cdot \sqrt{49} = 28, \text{ тогда}$$

$$S_{\Delta ABC} = \frac{1}{2} |\overrightarrow{AB} imes \overrightarrow{AC}| = 14.$$

Таким образом,
$$h = \frac{3V_{ABCD}}{S_{ABC}} = \frac{3}{14} \cdot \frac{154}{3} = 11.$$

Пример 4.4. Выяснить, является правой или левой тройка векторов: Определить, являются ли векторы $\vec{a}, \vec{b}, \vec{c}$ компланарными:**a)** $\vec{a} = (4; 2; 3)$, $\vec{b} = (2; 1; 1)$, $\vec{c} = (3; 1; 1)$;

6)
$$\vec{a} = (1; 2; 3)$$
, $\vec{b} = (1; 1; 1)$, $\vec{c} = (1; 2; 1)$; **B)** $\vec{a} = (7; 4; 6)$, $\vec{b} = (2; 1; 1)$, $\vec{c} = (19; 11; 17)$.

Решение.

а) Известно, что если \vec{a} \vec{b} \vec{c} > 0,то тройка правая, если \vec{a} \vec{b} \vec{c} < 0,то левая. Так как векторы заданы своими координатами, то для вычисления смешанного произведения воспользуемся формулой (4.2):

$$ec{a}ec{b}ec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = \begin{vmatrix} 4 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix} c_3 - c_2 \begin{vmatrix} 4 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{vmatrix} =$$

$$= \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = 2 - 3 = -1 < 0,$$
 следовательно, данные векторы образуют левую тройку векторов;

б) Вычисляем смешанное произведение:

$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix} c_3 - c_2 \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{vmatrix} = -\begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} =$$

$$= -(1-3) = 2 > 0$$
, тройка \vec{a} , \vec{b} , \vec{c} –правая;

в)
$$\vec{a}\vec{b}\vec{c}=\begin{vmatrix}7&4&6\\2&1&1\\19&11&17\end{vmatrix}=19\cdot\begin{vmatrix}4&6\\1&1\end{vmatrix}-11\cdot\begin{vmatrix}7&6\\2&1\end{vmatrix}+\\+17\cdot\begin{vmatrix}7&4\\2&1\end{vmatrix}=19(4-6)-11(7-12)+17(7-8)=\\=-38+55-17=0$$
,следовательно векторы \vec{a},\vec{b},\vec{c} - компланарны.

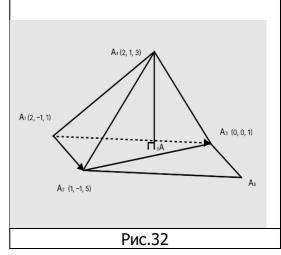
Пример 4.5. Даны координаты вершин треугольной пирамиды: $A_1(2;-1;1), A_2(1;-1;5), A_3(0;0;1), A_4(2;1;3).$ Требуется найти: **a)** длины ребер A_1A_2 и A_1A_3 ; **6)** угол между ребрами A_1A_2 и A_1A_3 ; **в)** площадь грани $A_1A_2A_3$;

г) объём пирамиды.

Решение.

а) Определим координаты векторов:

$$\overrightarrow{A_1A_2} = (1-2; -1-(-1); 5$$
 $-1)$
 $= (-1; 0; 4);$
 $\overrightarrow{A_1A_3} = (0-2; 0-(-1); 1$
 $-1)$
 $= (-2; 1; 0);$
 $Pe6po A_1A_2 = |\overrightarrow{A_1A_2}| = \sqrt{(-1)^2 + 0^2 + 4^2} = \sqrt{17} \text{ ед.,}$
 $pe6po A_1A_3 = |\overrightarrow{A_1A_3}| = \sqrt{(-2)^2 + 1^2 + 0^2} = \sqrt{5} \text{ ед.}$



6) Угол между ребрами A_1A_2 и A_1A_3 можно рассматривать как φ -угол между векторами $\overline{A_1A_2}$ и $\overline{A_1A_3}$, то есть $\varphi = \left(\overrightarrow{A_1A_2}; \overrightarrow{A_1A_3} \right)$.

По формуле для косинуса угла между двумя векторами получим:

$$\cos \varphi = rac{\overline{A_1 A_2} \cdot \overline{A_1 A_3}}{|\overline{A_1 A_2}| \; |\overline{A_1 A_3}|} \; = rac{-1 \cdot (-2) + 0 \cdot 1 + 4 \cdot 0}{\sqrt{17} \cdot \sqrt{5}} = rac{2}{\sqrt{85}} = rac{2\sqrt{85}}{85}$$
, сле-

довательно, $\varphi = arccos\left(\frac{2\sqrt{85}}{85}\right)$.

в) Грань $A_1A_2A_3$ - треугольник, площадь которого равна половине площади параллелограмма $A_1A_2A_6A_3$, построенного на векторах $\overrightarrow{A_1A_2}$ и $\overrightarrow{A_1A_3}$, учитывая геометрический смысл векторного произведения имеем:

 $S_{\Delta A_1A_2A_3}=rac{1}{2}$ $|\overrightarrow{A_1A_2} imes \overrightarrow{A_1A_3}|$, вычислим векторное произведение векторов $\overrightarrow{A_1A_2}$ и $\overrightarrow{A_1A_3}$:

$$\overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 0 & 4 \\ -2 & 1 & 0 \end{vmatrix} = \vec{i} \begin{vmatrix} 0 & 4 \\ 1 & 0 \end{vmatrix} - \vec{j} \begin{vmatrix} -1 & 4 \\ -2 & 0 \end{vmatrix} + \vec{k} \begin{vmatrix} -1 & 0 \\ -2 & 1 \end{vmatrix} = = -4\vec{i} - 8\vec{j} - \vec{k} = (-4; -8; -1);$$

Найдем длину вектора векторного произведения:

$$\left|\overrightarrow{A_1A_2} \times \overrightarrow{A_1A_3}\right| = \sqrt{(-4)^2 + (-8)^2 + (-1)^2} = \sqrt{81} = 9;$$
 Таким образом, $S_{\Delta A_1A_2A_3} = \frac{1}{2} \cdot 9 = 4,5$ (ед. 2).

г) Объём треугольной пирамиды $V_{пир.}$ равен 1/6 объёма параллелепипеда $V_{пар.}$, построенного на векторах $\overline{A_1}\overline{A_2}$, $\overline{A_1}\overline{A_3}$, $\overline{A_1}\overline{A_4}$ как на трёх его измерениях:

$$V_{
m пир.}=rac{1}{6}V_{
m пар.}$$
, где $V_{
m пар.}=\left|\overrightarrow{A_1A_2}\overrightarrow{A_1A_3}\overrightarrow{A_1A_4}\right|$,то есть

$$V_{\text{пир.}} = \frac{1}{6} \left| \overrightarrow{A_1 A_2} \overrightarrow{A_1 A_3} \overrightarrow{A_1 A_4} \right|.$$

Найдём смешанное произведение векторов $\overrightarrow{A_1A_2}$, $\overrightarrow{A_1A_3}$, $\overrightarrow{A_1A_4}$:

$$\overrightarrow{A_1 A_4} = (2-2; 1-(-1); 3-1) = (0; 2; 2),$$

$$\overrightarrow{A_1 A_2} \overrightarrow{A_1 A_3} \overrightarrow{A_1 A_4} = \begin{vmatrix} -1 & 0 & 4 \\ -2 & 1 & 0 \\ 0 & 2 & 2 \end{vmatrix} = -\begin{vmatrix} 1 & 0 \\ 2 & 2 \end{vmatrix} + 4\begin{vmatrix} -2 & 1 \\ 0 & 2 \end{vmatrix} =$$

$$= -2 - 16 = -18.$$

Таким образом,
$$V_{\text{пир}} = \frac{1}{6}|-18| = \frac{18}{6} = 3(\text{ед.}^3).$$

Задания для самостоятельного решения.

- 1.Компланарны ли векторы:
- **a)** $\vec{a} = 2\vec{i} + 7\vec{j} + 4\vec{k}, \vec{b} = 3\vec{i} 2\vec{j} + \vec{k}, \vec{c} = 2\vec{j} + 5\vec{k};$

6)
$$\vec{a} = -\vec{i} + 3\vec{j} + 2\vec{k}, \vec{b} = 2\vec{i} - 3\vec{j} - 4\vec{k}, \vec{c} = -3\vec{i} + 12\vec{j} + 6\vec{k}.$$

- **2.**Заданы векторы $\vec{a}_1 = (1; -1; 3)$, $\vec{a}_2 = (-2; 2; 1)$, $\vec{a}_3 = (3; -2; 5)$. Вычислить смешанные произведения и уста
- (3; -2; 5). Вычислить смешанные произведения и установить какова ориентация троек: **а)** $\vec{a}_1 \vec{a}_2 \vec{a}_3$; **6)** $\vec{a}_2 \vec{a}_1 \vec{a}_3$;
- **B)** $\vec{a}_1 \vec{a}_3 \vec{a}_2$.
- **3.** Не вычисляя определитель установить какой, является тройка $\vec{a}, \vec{b}, \vec{c}$: **a)** $\vec{a} = \vec{k}, \vec{b} = \vec{\iota}, \vec{c} = \vec{j}$;**6)** $\vec{a} = \vec{\jmath}, \vec{b} = \vec{\iota}, \vec{c} = \vec{k}$;
- **B)** $\vec{a} = \vec{i} + \vec{j}, \vec{b} = \vec{i} \vec{j}, \vec{c} = \vec{k}.$
- **4.**Вектор \vec{c} перпендикулярен к векторам \vec{a} и \vec{b} , угол между ними равен 30° .Зная, что $|\vec{a}| = 6$, $|\vec{b}| = 3$, $|\vec{c}| = 2$, вычислить $\vec{a}\vec{b}\vec{c}$.

- **5.**Векторы \vec{a} , \vec{b} , \vec{c} образующие правую тройку взаимноперпендикулярны. Зная, что $|\vec{a}|=4$, $|\vec{b}|=2$, $|\vec{c}|=3$. Вычислить $\vec{a}\vec{b}\vec{c}$.
- **6.**Вычислить смешанное произведение $(\vec{i} + \vec{j})(\vec{i} + \vec{j} \vec{k})(\vec{i} + \vec{j} + 2\vec{k})$.
- **7.**Доказать тождество $(\vec{a} + \vec{b})(\vec{b} + \vec{c})(\vec{c} + \vec{a}) = 2\vec{a}\vec{b}\vec{c}$
- **8**.Доказать, что векторы \vec{a} , \vec{b} , \vec{c} , удовлетворяющие условию $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$, компланарны.
- **9.** Вычислить объем параллелепипеда, построенного на векторах $\overrightarrow{AB} = (3; 6; 3), \overrightarrow{AC} = (1; 3; -2), \overrightarrow{AD} = (2; 2; 2).$
- **10.**Доказать, что четыре точкиA(3;5;1), B(2;4;7), C(1;5;3), D(4;4;5) лежат в одной плоскости.
- **11.**Упростить выражение $(\vec{a} + \vec{b} + \vec{c})(\vec{a} \vec{b} \vec{c})(\vec{a} \vec{b} + \vec{c})$.
- **12.**Вычислить объем параллелепипеда, построенного на векторах $\vec{a}=\vec{\imath}+\vec{k}$, $\vec{b}=3\vec{\imath}+2\vec{\jmath}+\vec{k}$, $\vec{c}=2\vec{\imath}-3\vec{\jmath}+2\vec{k}$.
- **13.**Вычислить объем треугольной пирамиды с вершинами A(1; -3; -5), B(-1; 2; -4), C(0; 0; -2), D(-6; -1; -2).
- **14.**Вычислить объем треугольной пирамиды построенного на векторах $\vec{a}=(1;2;3), \vec{b}=(1;-1;1), \vec{c}=(2;0;-1).$
- **15.**Даны вершины треугольной пирамиды A(0;2;-1), B(0;2;2), C(0;-3;-2), D(7;1;3). Найти длину высоты пирамиды, опущенной из вершины D.

16.Даны вершины пирамиды A(-4;-1;2), B(-1;0;3), C(2;2;5), D(3;-2;-1).Найти площади всех граней.

17. Даны вершины

 $A_1(2;3;1), A_2(4;1;-2), A_3(6;3;7), A_4(-5;-4;8).$ Найти: а) длину рёбер тетраэдра $A_1A_2A_3A_4;$

- **6)** Угол между ребрами A_1A_2 и A_1A_3 ;**в)** Площадь грани $A_1A_2A_3$;**г)** Объем тетраэдра $A_1A_2A_3A_4$;**д)** Высоту тетраэдра, опущенную из вершины A_4 на грань $A_1A_2A_3$.
- **18.** Определить при каком значении α векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны $\vec{a} = (1; 1; \alpha)$, $\vec{b} = \vec{j}, \vec{c} = (3; 0; 1)$.
- **19.** Найти высоту параллелепипеда, построенного на векторах $\vec{a} = 2\vec{i} + \vec{j} 3\vec{k}$, $\vec{b} = \vec{i} + 2\vec{j} + \vec{k}$, $\vec{c} = \vec{i} 3\vec{j} + \vec{k}$,опущенную грань, построенную на векторах \vec{b} , \vec{c} .
- **20.** Вычислить смешанное произведение $(\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} \vec{b} \vec{c})(\vec{a} \vec{b} + \vec{c})$.
- **21.** Вычислить произведение $\vec{b}(\vec{a} + \vec{c})(\vec{b} + 2\vec{c}), \vec{a}\vec{b}\vec{c} = 5.$
- **22.** Вычислить произведение $(\vec{a} \vec{b})(\vec{b} \vec{c})(\vec{c} \vec{a})$.
- **23.** Вычислить произведение $\vec{a}(\vec{b} \vec{c})(\vec{a} + \vec{b} + 2\vec{c})$.
- **24.**Докать тождество $(\vec{a} + \vec{b} + \vec{c})(\vec{a} 2\vec{b} + 2\vec{c}) \cdot (4\vec{a} + \vec{b} + 5\vec{c}) = 0.$
- **25**. Установить, образуют ли векторы $\vec{a}, \vec{b}, \vec{c}$ базис в множестве всех векторов, если $\vec{a} = (2; 3; -1), \vec{b} = (1; -1; 3), \vec{c} = (1; 9; -11).$

Ответы:

- **1.a)** $\vec{a}\vec{b}\vec{c} = -105 \neq 0$, векторы $\vec{a}, \vec{b}, \vec{c}$ некомпланарны;
- **6)** $\vec{a}\vec{b}\vec{c}=0$, векторы \vec{a} , \vec{b} , \vec{c} компланарны; **2.a)** $\vec{a}_1\vec{a}_2\vec{a}_3=-7<0$, тройка \vec{a}_1 , \vec{a}_2 , \vec{a}_3 —левая; **6)** $\vec{a}_2\vec{a}_1\vec{a}_3=7>0$, тройка \vec{a}_2 , \vec{a}_1 , \vec{a}_3 —правая; **в)** $\vec{a}_1\vec{a}_3\vec{a}_2=7>0$ тройка \vec{a}_1 , \vec{a}_3 , \vec{a}_2 —правая. **3. а)** правая; **6)** левая; **в)**векторы компланарны. **4.** $\vec{a}\vec{b}\vec{c}=18.$ **5.** $\vec{a}\vec{b}\vec{c}=24.$ **6.0.9.** $V_{\text{пар.}}=18(e_{\text{д.}}^3)$.

10. $\overrightarrow{AB} \cdot \overrightarrow{AC} \cdot \overrightarrow{AD} = 0$, следовательно точки A, B, C, D -лежат в одной плоскости. **11.** -4 \overrightarrow{abc} . **12.** $V_{\text{пар.}} = 6(\text{ед.}^3)$. **13.** $V_{\text{пир.}} = \frac{77}{6}(\text{ед.}^3)$. **14.** $V_{\text{пир.}} = \frac{13}{6}(\text{ед.}^3)$. **15.** h = 7. **16.** $S_{\Delta ABC} = \frac{3\sqrt{2}}{2}$; $S_{\Delta ACD} = \frac{3\sqrt{254}}{2}$; $S_{\Delta ABD} = 3\sqrt{10}$; $S_{\Delta BCD} = \sqrt{153}$.

- **17. а)** длину рёбер тетраэдра $A_1A_2=\sqrt{17},A_1A_3=2\sqrt{13},A_2A_4=\sqrt{206},A_1A_4=7\sqrt{3},A_2A_4=\sqrt{206};$
- **6)** $< A_2A_1A_3 = arccos\left(\frac{-2}{\sqrt{221}}\right)$;в) Площадь грани $S_{A_1A_2A_3}$;г) $V_{A_1A_2A_3A_4}$;д) Высоту тетраэдра, опущенную из вершины A_4 на грань $A_1A_2A_3$.18. $\alpha=\frac{1}{2}$.19. $\frac{5\sqrt{2}}{2}$.20.— $4\vec{a}\vec{b}\vec{c}$.21.-10.22.0.
- **23.** $3\vec{a}\vec{b}\vec{c}$.**25.**Вектора являются компланарными, то есть они не образуют базис

Задания для типового расчета «Векторная алгебра».

Задача № 1.

Написать разложение вектора \overline{x} по векторам $\overline{p}, \overline{q}, \overline{r}$.

Nº	\overline{x}	\overline{p}	\overline{q}	\overline{r}
Π/Π	(- (-)		_	
1.1	(-2, 4, 7)	(0, 1, 2)	(1, 0, 1)	(-1, 2, 4)
1.2	(6, 12, -1)	(1, 3, 0)	(2, -1, 1)	(0, -1, 2)
1.3	(1, -4, 4)	(2, 1, -1)	(0, 3, 2)	(1, -1, 1)
1.4	(-9, 5, 5)	(4, 1, 1)	(2, 0, -3)	(-1, 2, 1)
1.5	(-5, -5, 5)	(-2, 0, 1)	(1, 3, -1)	(0, 4, 1)
1.6	(13, 2, 7)	(5, 1, 0)	(2, -1, 3)	(1, 0, -1)
1.7	(-19,1,7)	(0, 1, 1)	(-2, 0, 1)	(3, 1, 0)
1.8	(3, -3, 4)	(1, 0, 2)	(0, 1, 1)	(2, -1, 4)
1.9 1.10	(2, 2, -1)	(3, 11, 0)	(-1, 2, 1)	(-1, 0, 2)
1.10	(-1; 7, -4) (6,5, -14)	(-1, 2, 1) (1, 1, 4)	(2, 0, 3)	(1, 1, -1) (2, 1, -1)
1.12	(6, -1, 7)	(1, 1, 4) (1, -2, 0)	(0, -3, 2) (-1, 1, 3)	(2, 1, -1)
1.13	(5, -15,0)	(1, -2, 0) $(1, 0, 5)$	(-1, 1, 3)	(0, -1, 1)
1.14	(2,-1, 11)	(1, 0, 0)	(0, 1, -2)	(1, 0, 8)
1.15	(11,5, -3)	(1, 0, 2)	(-1, 0, 1)	(2, 5, -3)
1.16	(8, 0, 5)	(2, 0, 1)	(1, 1, 0)	(4, 1, 2)
1.17	(3, 1, 8)	(0, 1, 3)	(1, 2, -1)	(2, 0, -1)
1.18	(8, 1, 12)	(1, 2, -1)	(3, 0, 2)	(-1, 1, 1)
1.19	(-9,-8, -3)	(1, 4, 1)	(-3, 2, 1)	(1, -1, 2)
1.20	(-5,9,-13)	(0, 1, -2)	(3, -1, 1)	(4, 1, 0)
1.21	(-15,5, 6)	(0, 5, 1)	(3, 2, -1)	(-1, 1, 0)
1.22	(8,9,4)	(1, 0, 1)	(0, -2, 1)	(1, 3, 0)
1.23	(23,-14,30)	(2, 1, 0)	(1, -1, 0)	(-3, 2, 5)
1.24	(3, 1, 3)	(2, 1, 0)	(1, 0, 1)	(4, 2, 1)
1.25	(-1, 7, 0)	(0, 3, 1)	(1, -1, 2)	(2, -1, 0)
1.26	(11, -1, 4)	(1, -1, 2)	(3, 2, 0)	(-1, 1, 0)
1.27	(-13,2, 18)	(1, 1, 4)	(-3, 0, 2)	(1, 2, -1)
1.28	(0, -8, 9)	(0, -2, 1)	(3, 1, -1)	(4, 0, 1)

1.29	(8,-7,-13)	(0, 1, 5)	(3, -1, 2)	(-1, 0, 1)
		(1, 0, 1)		

Задача № 2.

Определить коллинеарны ли векторы $\ \overline{c}_1$ и \overline{c}_2 , построенные на векторах $\ \overline{a}$ и $\ \overline{b}$.

на векторах	u n v.			
<i>№</i> <i>п/п</i>	\overline{a}	\overline{b}	\overline{c}_{1}	\overline{c}_2
2.1	(1, -2, 3)	(3, 0, -1)	$2\overline{a}$ + $4\overline{b}$	$3\overline{b} - \overline{a}$
2.2	(1, 0, -1)	(-2, 3, 5)	\bar{a} +2 \bar{b}	$3\overline{a}-\overline{b}$
2.3	(-2, 4, 1)	(1, -2, 7)	$5\overline{a}+3\overline{b}$	$2\overline{a}-\overline{b}$
2.4	(1, 2, -3)	(2, -1, -1)	$4\overline{a}+3\overline{b}$	$8\overline{a} - \overline{b}$
2.5	(3, 5, 4)	(5, 9, 7)	$2\overline{a}+\overline{b}$	$3\overline{a} - 2\overline{b}$
2.6	(1, 4, -2)	(1, 1, -1)	\bar{a} + \bar{b}	$4\overline{a} + 2\overline{b}$
2.7	(1, -2, 5)	(3, -1, 0)	$4\overline{a}-2\overline{b}$	$\overline{b} - 2\overline{a}$
2.8	(3, 4, -1)	(2, -1, 1)	$6\overline{a} - 3\overline{b}$	$\overline{b} - 2\overline{a}$
2.9	(2, -3, -2)	(1, 0, 5)	$3\overline{a}+9\overline{b}$	$\overline{a} - 3\overline{b}$
2.10	(-1, 4, 2)	(3, -2, 6)	$2\overline{a}-\overline{b}$	$3\overline{b} - 6\overline{a}$
2.11	(5, 0, -1)	(7, 2, 3)	$2\overline{a}-\overline{b}$	$3\overline{b} - 6\overline{a}$
2.12	(0, 3, -2)	(1, -2, 1)	$5\overline{a} - 2\overline{b}$	$3\overline{a}+5\overline{b}$
2.13	(-2, 7, -1)	(-3, 5, 2)	$2\overline{a} + 3\overline{b}$	$3\overline{a}+2\overline{b}$
2.14	(3, 7, 0)	(1, -3, 4)	$4\overline{a}-2\overline{b}$	$\overline{b} - 2\overline{a}$

2.15	(-1, 2, -1)	(2, -7, 1)	$6\overline{a} - 2\overline{b}$	\overline{b} – $3\overline{a}$
2.16	(7, 9, -2)	(5, 4, 3)	$4\overline{a}-\overline{b}$	$4\overline{b} - \overline{a}$
2.17	(5, 0, -2)	(6, 4, 3)	$5\overline{a} - 3\overline{b}$	$6\overline{b} - 10\overline{a}$
2.18	(8, 3, -1)	(4, 1, 3)	$2\overline{a}-\overline{b}$	$2\overline{b}-4\overline{a}$
2.19	(3, -1, 6)	(5, 7, 10)	$4\overline{a}-2\overline{b}$	$\overline{a}-2\overline{b}$
2.20	(1, -2, 4)	(7, 3, 5)	$6\overline{a} - 3\overline{b}$	$\overline{b}-2\overline{a}$
2.21	(3, 7, 0)	(4, 6, -1)	$3\overline{a}+2\overline{b}$	$5\overline{a}-7\overline{b}$
2.22	(2, -1, 4)	(3, -7, -6)	$2\overline{a}-3\overline{b}$	$3\overline{a}-2\overline{b}$
2.23	(5, -1, -2)	(6, 0, 7)	$3\overline{a}-2\overline{b}$	$4\overline{b}-6\overline{a}$
2.24	(-9, 5, 3)	(7, 1, -2)	$2\overline{a}-\overline{b}$	$3\overline{a}+5\overline{b}$
2.25	(4, 2, 9)	(0, -1, 3)	$4\overline{b} - 3\overline{a}$	$4\overline{a}-3\overline{b}$
2.26	(2, -1, 6)	(-1, 3, 8)	$5\overline{a} - 2\overline{b}$	$2\overline{a}-5\overline{b}$
2.27	(5, 0, 8)	(-3, 1, 7)	$3\overline{a} - 4\overline{b}$	$12\overline{b} - 9\overline{a}$
2.28	(-1, 3, 4)	(2, -1, 0)	$6\overline{a} - 2\overline{b}$	\overline{b} – $3\overline{a}$
2.29	(4, 2, -7)	(5, 0, -3)	$\bar{a} - 3\bar{b}$	$\overline{a} - 3\overline{b}$
2.30	(2, 0, -5)	(1, -3, 4)	$2\overline{a}-5\overline{b}$	$2\overline{a}-5\overline{b}$

Задача № 3.

Найти косинус угла между векторами \overline{AB} и \overline{AC}

	TIGNITY ROCK	onlyc yrold rico	Kdy bekropani	1112 11 110 .
	Nō	A	В	С
L	11/11			

2.4	(C = 1)	(0 1 2)	(2 4 0)
3.1	(6, 5, 1)	(0, 1, 2)	(2, 1, 0)
3.2	(5, 4, 2)	(1, 2, 3)	(3, 2, 1)
3.3	(2, 0, 4)	(1, 1, 1)	(3, 2, 1)
3.4	(1, 2, 3)	(2, -1, 0)	(3, 2, 1)
3.5	(1, -1, 2)	(5, -6, 2)	(2, 3, -1)
3.6	(3, -3, 1)	(-3, -2, 0)	(5, 0, 2)
3.7	(4, 2, 1)	(0, 4, 5)	(1, 2, 7)
3.8	(1, 0, 2)	(2, 4, 3)	(1, 7, 1)
3.9	(5, -1, 3)	(2, 0, 1)	(3, 1, -1)
3.10	(0, 8, 1)	(2, 1, 1)	(-1, 4, 5)
3.11	(1, 0, 4)	(0, 2, 3)	(-1, 1, 0)
3.12	(2, 3, 4)	(3, 4, 5)	(-4, 5, 6)
3.13		(0, -1, 2)	(3, -4, 5)
3.14	(0, -3, 6)	(-12, -3, -3)	(-9, -3, -6)
3.15	(3, 3, -1)	(5, 5, -2)	(4, 1, 1)
3.16	(-1, 2, -3)	(3, 4, -6)	(1, 1, -1)
3.17		(-1, -2, 4)	(3, -2, 1)
3.18	` ' ' '	(5, 2, 0)	(6, 4, -1)
3.19		(0, -1, -2)	(2, 3, 0)
3.20	(2, -4, 6)	(0, -2, 4)	(6, -8, 10)
3.21	(0, 1, -2)	(3, 1, 2)	(4, 1, 1)
3.22		(1, 5, -2)	(4, 1, 1)
3.23	· , , ,	(6, -1, -4)	(4, 2, 1)
3.24	(-1, -2, 1)	(-4, -2, 5)	(-8, -2, 2)
3.25	(6, 2, -3)	(6, 3, -2)	(7, 3, -3)
3.26	(0, 0, 4)	(-3, -6, 1)	(-5, -10, -1)
3.27		(4, -6, 0)	(-2, -5, -1)
3.28	(3, -6, 9)	(0, 3, 6)	(9, -12, 15)
3.29	(0, 2, -4)	(8, 2, 2)	(6, 2, 4)
3.30	(3, 2, -1)	(5, 1, -2)	(4, 1, 1)
3.30	(0,0, 1)	(-/ -/ -/	\ '/ -/ -/

Задача № 4.

Определить направляющие косинусы вектора силы \overline{F} . Найти момент силы \overline{F} , приложенной в точке B , относительно точки A .

и А.			
<i>№</i> <i>п/п</i>	\overline{F}	В	A
4.1	(3, 3, 3)	(3, -1, 5)	(4, -2, 3)
4.2	(4, 4, 4)	(4, -2, 5)	(5, -3, 3)
4.3	(8, -8, 8)	(10, -8, 1)	(9, -7, 3)
4.4	(-2, 2, -2)	(11, -9, 1)	(10, -8, 3)
4.5	(5, 5, 5)	(5, -3, 5)	(6, -4, 3)
4.6	(-3, 3, -3)	(12,-10,1)	(11, -9, 3)
4.7	(6, 6, 6)	(6, -4, 5)	(7, -5, 3)
4.8	(-4, 4, -4)	(13,-11, 1)	(12, -10, 3)
4.9	(7, 7, 7)	(7, -5, 5)	(8, -6, 3)
4.10	(-5, 5, -5)	(14, -12, 1)	(13, -11, 3)
4.11	(-1, -1, 1)	(8, -6, -5)	(9, -7, 3)
4.12	(3, 3, -3)	(0, 1, 2)	(2, -1, -2)
4.13	(-2, -2, -2)	(9, -7, 5)	(10, -8, 3)
4.14	(4, 4, -4)	(1, 0, 2)	(3, 2, -2)
4.15	(-3, -3, -3)	(10, -8, 5)	(11, -9, 3)
4.16	(5, 5, -5)	(2, -1, 2)	(4, -3, 2)
4.17	(-4, -4, -4)	(11, -9, 5)	(12, -10, 3)
4.18 4.19	(6, 6, -6)	(3, -2, 2)	(5, -4, -2)
4.19	(-5, -5, -5)	(12, -10, 5)	(13, -11, 3) (6, -5, -2)
4.20	(7, 7, -7)	(4, -3, 2)	(6, -5, -2)

4.21	(3, -3, 3)	(5, -3, 1)	(4, -2, 3)
4.22	(8, 8, -8)	(5, -4, 2)	(7, -6, -2)
4.23	(4, -4, 4)	(6, -4, 1)	(5, -4, 3)
4.24	(-2, -2, 2)	(6, -5, 2)	(8, -7, -2)
4.25	(5, -5, 5)	(7, -5, 1)	(6, -4, 3)
4.26	(-3, -3, 3)	(7, -6, 2)	(9, -8, 2)
4.27	(6, -6, 6)	(8, -6, 1)	(7, -5, 3)
4.28	(-4, -4, 4)	(8, -7, 2)	(10, -9, -2)
4.29	(7, -7, 7)	(9, -7, 1)	(8, -6, 3)
4.30	(-5, -5, 5)	(9, -8, 2)	(11, -10, 2)

Задача № 5.

Вычислить площадь параллелограмма, построенного на векторах \overline{a} и \overline{b} .

<i>Ν</i> <u>º</u> π/π	$-\frac{1}{a}$	\bar{b}	$ \overline{p} $	$ \overline{q} $	$\left \overline{p}^{\wedge}\overline{q} ight $
5.1	$\overline{p} + 2\overline{q}$	$3\overline{p} - \overline{q}$	1	2	$\frac{\pi}{6}$
5.2	$3\overline{p} + \overline{q}$	\overline{p} – $2\overline{q}$	4	1	$\frac{\pi}{4}$
5.3	$\overline{p}-3\overline{q}$	$\overline{p} + 2\overline{q}$	1/5	1	$\frac{\pi}{2}$
5.4	$3\overline{p}-2\overline{q}$	$\overline{p} + 5\overline{q}$	4	1/2	$\frac{5\pi}{6}$

5.5	$ \overline{p} - 2\overline{q} $	$2\overline{p} + \overline{q}$	2	3	$\frac{3\pi}{4}$
5.6	$\overline{p} + 3\overline{q}$	$\overline{p}-2\overline{q}$	2	3	$\frac{\pi}{3}$
5.7	$2\overline{p}-\overline{q}$	$\overline{p} + 3\overline{q}$	3		$2\left \frac{\pi}{2}\right $
5.8	$4\overline{p} + \overline{q}$	$\overline{p} - \overline{q}$	7		$2 \frac{\pi}{4}$
5.9	$\overline{p}-4\overline{q}$	$3\overline{p} + \overline{q}$	1		$2 \frac{\pi}{6}$
5.10	$\overline{p} + 4\overline{q}$	$2\overline{p} - \overline{q}$	7		$2 \frac{\pi}{3}$
5.11	$3\overline{p} + 2\overline{q}$	$\overline{p} - \overline{q}$	10		$1 \left \frac{\pi}{2} \right $
5.12	$4\overline{p}-\overline{q}$	$\overline{p} + 2\overline{q}$	5		$4 \frac{\pi}{4}$
5.13	$2\overline{p} + 3\overline{q}$	$\overline{p}-2\overline{q}$	6		$7 \frac{\pi}{3}$
5.14	$3\overline{p} - \overline{q}$	$\overline{p} + 2\overline{q}$	3		$4 \frac{\pi}{4}$
5.15	$2\overline{p} + 3\overline{q}$	$\overline{p}-2\overline{q}$	2		$3 \frac{\pi}{6}$
5.16	$2\overline{p}-3\overline{q}$	$3\overline{p} + \overline{q}$	4		$1 \left \frac{\pi}{6} \right $

5.17	$3\overline{p}-2\overline{q}$	$2\overline{p} + 3\overline{q}$	2	5	$\frac{\pi}{6}$
5.18	$4\overline{p}-3\overline{q}$	$\overline{p} + 2\overline{q}$	1	2	$\frac{\pi}{6}$
5.19	$\overline{p} - \overline{q}$	$\overline{p} + \overline{q}$	2	5	$\frac{\pi}{6}$
5.20	$5\overline{p} - \overline{q}$	$\overline{p} + 5\overline{q}$	5	3	$\frac{\pi}{6}$
5.21	$3\overline{p} - \overline{q}$	$\overline{p} + 3\overline{q}$	2	$\sqrt{2}$	$\frac{\pi}{4}$
5.22	$\overline{p}-4\overline{q}$	$\overline{p} + 5\overline{q}$	$\sqrt{3}$	2	$\frac{\pi}{6}$
5.23	$5\overline{p} + \overline{q}$	$\overline{p}-3\overline{q}$	1	2	$\frac{\pi}{3}$
5.24	$7\overline{p}-2\overline{q}$	$\overline{p} + 3\overline{q}$	1/2	2	$\frac{\pi}{2}$
5.25	$6\overline{p} - \overline{q}$	$\overline{p} + \overline{q}$	3	4	$\frac{\pi}{4}$
5.26	$10\overline{p} + \overline{q}$	$3\overline{p}-2\overline{q}$	4	1	$\frac{\pi}{6}$
5.27	$6\overline{p} - \overline{q}$	$2\overline{p} + 3\overline{q}$	8	1/2	$\frac{\pi}{3}$
5.28	$3\overline{p} + 4\overline{q}$	$\overline{q} - \overline{p}$	2,5	2	$\frac{\pi}{2}$

5	.29	$7\overline{p} + \overline{q}$	$\overline{p} - 3\overline{q}$	3	1	$\frac{3\pi}{4}$
5	.30	$\overline{p} + 3\overline{q}$	$3\overline{p} - \overline{q}$	3	5	$\frac{2\pi}{3}$

Задача № 6.

Определить компланарны ли вектора \overline{a} , \overline{b} и \overline{c} .

Nº	$-\frac{a}{a}$	\overline{h}	\overline{c}
п/п	а	υ	•
6.1	(2, 3,1)	(-1, 0, -1)	(2, 2, 2)
6.2	(3, 2, 1)	(2, 3, 4)	(3, 1, -1)
6.3	(1, 5, 2)	(-1, 1, -1)	(1, 1, 1)
6.4	(1, -1, -3)	(3, 2, 1)	(2, 3, 4)
6.5	(3, 3, 1)	(1, -2, 1)	(1, 1, 1)
6.6	(3, 1, -1)	(-2, -1, 0)	(5, 2, -1)
6.7	(4, 3, 1)	(1, -2, 1)	(2, 2, 2)
6.8	(4, 3, 1)	(6, 7, 4)	(2, 0, -1)
6.9	(3, 2, 1)	(1, -3, -7)	(1, 2, 3)
6.10	(3, 7, 2)	(-2, 0, -1)	(2, 2, 1)
6.11	(1, -2, 6)	(1, 0, 1)	(2, -6, 17)
6.12	(6, 3, 4)	(-1, -2, -1)	(2, 1, 2)
6.13	(7, 3, 4)	(-1, -2, -1)	(4, 2, 4)
6.14	(2, 3, 2)	(4, 7, 5)	(2, 0, -1)
6.15	(5, 3, 4)	(-1, 0, -1)	(4, 2, 4)
6.16	(3, 10, 5)	(-3, -2, -3)	(2, 4, 3)

6.17	(-2, -4, -3)	(4, 3, 1)	(6, 7, 4)
6.18	(3, 1, -1)	(1, 0, -1)	(8, 3, -2)
6.19	(4, 2, 2)	(-3, -3, -3)	(2, 1, 2)
6.20	(4, 1, 2)	(9, 2, 5)	(1, 1, -1)
6.21	(5, 3, 4)	(4, 3, 3)	(9, 5, 8)
6.22	(3, 4, 2)	(1, 1, 0)	(8, 11, 6)
6.23	(4, -1, -6)	(1, -3, -7)	(2, -1, -4)
6.24	(3, 1, 0)	(-5, -4, -5)	(4, 2, 4)
6.25	(3, 0, 3)	(8, 1, 6)	(1, 1, -1)
6.26	(1, -1, 4)	(1, 0, 3)	(1, -3, 8)
6.27	(6, 3, 4)	(-1, -2, -1)	(2, 1, 2)
6.28	(4, 1, 1)	(-9, -4, -9)	(6, 2, 6)
6.29	(-3, 3, 3)	(-4, 7, 6)	(3, 0, -1)
6.30	(-7, 10, -5)	(0, -2, -1)	(-2, 4, -1)

Задача № 7.

Вычислить объем пирамиды с вершинами в точках A , B , C и D и ее высоту, опущенную из вершины D на грань ABC

Nº \boldsymbol{A} \boldsymbol{C} BDΠ/Π (0, 1, 2)(2, 1, 7)(2, 7, 4)(0, 0, 4)7.1 (1, 2, 3) (2, 8, -4)(0, 5, 4)(2, 9, 4)7.2 (1, 1, 1) (2, 4, -2) (1, -1, 1) (0, 2, 3) (2, 0, 2)7.3 (0, 1, -1)(1, -1, 0)7.4 (0, 2, 2)7.5 (2, 1, 3)(4, -2, 0) (1, 3, -1) (1, 3, -3) (4, -1, 3) (7, 5, 2)7.6 (-2, 0, 4)(2, 7, 3)7.7 (1, 2, 3)(0, 0, 0)(1, 8, -1)

.

7.8	(-1, 2, 0)	(1, 0, 3)	(0, 2, 2)	(1, 8, 3)
7.9	(2, -1, 1)	(3, 3, 2)	(2, 1, 0)	(4, 1, -3)
7.10	(2, 1, -1)	(-3, 1, 2)	(0, 1, 2)	(-1, 8, 3)
7.11	(-2, 1, 1)	(5, 5, 4)	(3, 2, -1)	(4, 1, 3)
7.12	(0, 1, -1)	(3, -1, 5)	(1, 0, 4)	(3, 5, 7)
7.12	(1, 1, 2)	(-1, 1, 3)	(2, -2, 4)	(-1, 0, -2)
	• • •		•	• • •
7.14	(2, 3, 1)	(4, 1, -2)	(6, 3, 7)	(7, 5, -3)
7.15	(1, 1, -1)	(2, 3, 1)	(3, 2, 1)	(5, 9, -8)
7.16	(1, 5, -7)	(-3, 5, 3)	(-2, 7, 3)	(-4, 8, -12)
7.17	(-3, 4, -7)	(1, 5, -4)	(-6, -2, 0)	(2, 5, 4)
7.18	(-1, 2, -3)	(4, -1, 0)	(2, 1, -2)	(3, 4, 5)
7.19	(4, -1, 3)	(-2, 1, 0)	(0, -5, 1)	(3, 2, -6)
7.20	(1, -1, 1)	(-2, 0, 3)	(2, 1, -1)	(2, -2, -4)
7.21	(1, 2, 0)	(1, -1, 2)	(0, 1, -1)	(-3, 0, 1)
7.22	(1, 0, 2)	(1, 2, -1)	(2, -2, 1)	(2, 1, 0)
7.23	(1, 2, -3)	(1, 0, 1)	(-2, -1, 6)	(0, -5, -4)
7.24	(3, 10, -1)	(-2, 3, -5)	(-6, 0, -3)	(1, -1, 2)
7.25	(-1, 2, 4)		•	•
		(-1, -2, -4)	(3, 0, -1)	(7, -3, 1)
7.26	(0, -3, 1)	(-4, 1, 2)	(2, -1, 5)	(3, 1, -4)
7.27	(1, 3, 0)	(4, -1, 2)	(3, 0, 1)	(-4, 3, 5)
7.28	(-2, -1, -1)	(0, 3, 2)	(3, 1 , -4)	(-4, 7, 3)
7.29	(-3, -5, 6)	(2, 1, -4)	(0, -3, -1)	(-5, 2, -8)
7.30	(2, -4, -3)	(5, 6, 0)	(-1, 3, -3)	(-10, -8, 7)

СПИСОК ЛИТЕРАТУРЫ

- **1.** Б. В. Соболь, Н. Т. Мишняков, В. М. Поркшеян. Практикум по высшей математике. 3-е изд. Ростов н \ Д :Феникс, 2010.
- **2.** Д. Т. Письменный. Конспект лекций по высшей математике (полный курс). 2-е изд. Москва: «Айрис-пресс», 2014.
- **3.** Данко П. Е., Попов, А. Г., Кожевникова Т. Я. Высшая математика в упражнениях и задачах (1 том). М. : Высш. шк., 2002.
- **4.** Зимина О.В., Кириллов А.И., Сальников Т.А. Высшая математика. 3-е изд., испр. Москва: ФИЗМАТЛИТ, 2005.
- **5.** Клетеник Д.В.Сборник задач по аналитической геометрии. Издательство «Профессия»,2009.