

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Кафедра «Математика»

Учебно-методическое пособие

по дисциплине «Математика»

«Ряды. Часть II»

Авторы

Ворович Е.И., Золотых С.А., Коровина К.С., Тукодова О.М.

Управление дистанционного обучения и повышения квалификации

Математика

Аннотация

Пособие предназначено для всех студентов направления бакалавриата.

Авторы

к.ф.-м.н., доцент Ворович Е.И., ст. преп. Золотых С.А., ст. преп. Коровина К.С., к.ф.-м.н., доцент Тукодова О.М.

Ряды Тейлора и Маклорена. Приближенные вычисления.

<u>Определение.</u> Рядом Тейлора функции y = f(x) по степеням $(x-x_0)$ называют бесконечный степенной ряд

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n =$$

$$= f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \dots$$
(1)

Итак, ряд Тейлора функции y=f(x) – это степенной ряд вида $\sum\limits_{n=0}^{\infty}a_{_{n}}(x-x_{_{0}})^{^{n}}$, коэффициенты которого определяются по формулам $a_{_{n}}=\frac{f^{^{(n)}}(x_{_{0}})}{n!}$ n=0,1,...

При $x_0 = 0$ получаем ряд, называемый рядом Маклорена:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots$$
 (2)

Разложить функцию y = f(x) по степеням (x-x₀) — значит составить ряд вида $\sum_{n=0}^{\infty} a_n (x-x_0)^n$, у которого радиус сходимости не равен нулю, а сумма тождественно равна данной функции внутри промежутка сходимости.

<u>Теорема</u>. Если функцию y=f(x) можно разложить в степенной ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$, то это разложение единственно и ряд совпадает с рядом Тейлора функции y=f(x) по степеням (x-x₀).

Для вычисления приближенного значения функции f(x) ее представляют в виде $f(x) = S_n(x) + R_n(x)$, где $S_n(x)$ – сумма первых n членов ряда, а $R_n(x)$ – остаточный член ряда Тейлора. Затем суммируют первые n слагаемых и отбрасывают $R_n(x)$. Для оценки погрешности этого вычисления нужно оценить сумму отброшенных членов.

Если ряд знакопеременный и члены его удовлетворяют признаку Лейбница, то используется оценка:

 $|R_n| < u_{n+1}$, где u_{n+1} - первый из отброшенных членов.

Если ряд знакопостоянный, то ряд, составленный из отброшенных членов, сравнивают с бесконечно убывающей геометрической прогрессией.

При приближенных вычислениях используются формулы разложения функций в ряды Маклорена, приведенные в таблице.

Таблица 1

Функция	Ряд Маклорена функции	Область сходимости
1) <i>e</i> ^x	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$	$-\infty < x < \infty$
2) sin <i>x</i>	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$	$-\infty < x < \infty$
3) $\cos x$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + \ldots$	$-\infty < x < \infty$
$4) (1+x)^{\mu}$	$1 + \mu x + \frac{\mu(\mu - 1)}{2!} x^{2} + \frac{\mu(\mu - 1)(\mu - 2)}{3!} x^{3} + \dots + \frac{\mu(\mu - 1) \cdot \dots \cdot (\mu - n + 1)}{n!} x^{n} + \dots$	-1 < x < 1
$5) \ln(1+x)$	$x - \frac{1}{2} + \frac{1}{3} - \dots + (-1) + \frac{1}{n} + \dots$	$-1 < x \le 1$
6) arctgx	$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$	$-1 \le x \le 1$
7) arcsin x	1 x^3 1.3 x^5 1.3(2 $n-1$) x^{2n+1}	$-1 \le x \le 1$

Примеры.

1. Найти первые пять членов разложения в ряд Тейлора функции f(x)в окрестности точки $x_{_{\scriptscriptstyle 0}}$.

a)
$$f(x) = \cos x$$
, $x_0 = \frac{\pi}{4}$.

Используем формулу (1):

$$f(x_0) = f\left(\frac{\pi}{4}\right) = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

$$f'(x) = -\sin x \qquad \qquad f'\left(\frac{\pi}{4}\right) = -\sin\frac{\pi}{4} = -\frac{\sqrt{2}}{2}$$

$$f''(x) = -\cos x$$

$$f''\left(\frac{\pi}{4}\right) = -\cos\frac{\pi}{4} = -\frac{\sqrt{2}}{2}$$

$$f'''(x) = \sin x \qquad f'''\left(\frac{\pi}{4}\right) = \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

$$f^{(4)}(x) = \cos x$$

$$f^{(4)}\left(\frac{\pi}{4}\right) = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

$$\cos x \approx \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) - \frac{\sqrt{2}}{2 \cdot 2!} \left(x - \frac{\pi}{4} \right)^2 + \frac{\sqrt{2}}{2 \cdot 3!} \left(x - \frac{\pi}{4} \right)^3 + \frac{\sqrt{2}}{2 \cdot 4!} \left(x - \frac{\pi}{4} \right)^4 + \dots$$

6)
$$f(x) = e^{2x}, x_0 = 1.$$

Используем формулу (1):

$$f(x_0) = f(1) = e^2$$

$$f'(x) = 2e^{2x}$$

$$f'(1) = 2e^2$$

$$f''(x) = 4e^{2x}$$

$$f''(1) = 4e^2$$

$$f'''(x) = 8e^{2x}$$

$$f'''(1) = 8e^2$$

$$f^{(4)}(x) = 16e^{2x}$$

$$f^{(4)}(1)=16e^2$$

$$e^{2x} \approx e^2 + 2e^2(x-1) + \frac{4e^2(x-1)^2}{2!} + \frac{8e^2(x-1)^3}{3!} + \frac{16e^2(x-1)^4}{4!} + \dots$$

2. Пользуясь разложением в ряд Маклорена, разложить функции в ряд.

a) e^{2x} .

Используем формулу 1 из таблицы 1:

$$e^{2x} = 1 + 2x + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + \dots + \frac{(2x)^n}{n!} + \dots = 1 + 2x + \frac{2^2 x^2}{2!} + \dots + \frac{2^n x^n}{n!} + \dots$$

Разложение справедливо при $x \in (-\infty, \infty)$.

6) $\ln(3+x)$.

$$\ln(3+x) = \ln 3\left(1+\frac{x}{3}\right) = \ln 3 + \ln\left(1+\frac{x}{3}\right) = \ln 3 + \frac{x}{3} - \frac{x^2}{2\cdot 3^2} + \frac{x^3}{3\cdot 3^3} - \dots + \frac{\left(-1\right)^{n+1}x^n}{n\cdot 3^n} + \dots$$

Использована формула 5 из таблицы 1

Разложение справедливо при $-1 < \frac{x}{3} \le 1$, то есть при $x \in (-3,3]$.

- 3. Пользуясь разложением в ряд Маклорена функции f(x)вычислить с точностью до $\varepsilon = 0{,}0001$.
 - a) cos18°

Используем формулу для разложения функции $y = \cos x$ в ряд Маклорена (таблица 1, формула 3):

$$18^{\circ} = \frac{\pi}{10} = 0.31416$$

$$\cos 18^{\circ} = \cos \frac{\pi}{10} = 1 - \frac{1}{2!} \left(\frac{\pi}{10}\right)^{2} + \frac{1}{4!} \left(\frac{\pi}{10}\right)^{4} - \dots$$

Ряд знакопеременный, достаточно просуммировать первые три слагаемых, т.к.

$$u_3 = \frac{1}{6!} \left(\frac{\pi}{10}\right)^6 < 0.0001.$$

$$\cos 18^{\circ} \approx 1 - \frac{0,09870}{2} + \frac{0,00974}{24} \approx 0,9511$$

6) $\ln(1,04)$

Используем формулу для разложения функции $y = \ln(1+x)$ в ряд Маклорена (таблица 1, формула 5):

$$\ln(1,04) = \ln(1+0,04) = 0,04 - \frac{(0,04)^2}{2} + \frac{(0,04)^3}{3} - \frac{(0,04)^4}{4} + \dots$$

Третий член разложения $\frac{(0.04)^3}{3} = 0.000021 < \varepsilon$, поэтому в разложении можно оставить первые два слагаемых.

$$\ln(1,04) = \ln(1+0,04) = 0.04 - \frac{(0.04)^2}{2} \approx 0.0392.$$

4. Вычислить приближенно значение интеграла с точностью до $\, arepsilon = 0{,}001 \, .$

$$\int_{0}^{0.1} \frac{\ln(1+x)}{x} dx = \int_{0}^{0.1} \left(x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots\right) \frac{1}{x} dx = \int_{0}^{0.1} \left(1 - \frac{x}{2} + \frac{x^{2}}{3} - \frac{x^{3}}{4} + \dots\right) dx = \left(x - \frac{x^{2}}{4} + \frac{x^{3}}{9} - \frac{x^{4}}{16} + \dots\right) \Big|_{0}^{0.1} = 0, 1 - \frac{0,01}{4} + \frac{0,001}{9} - \dots$$

Использована формула 5 из таблицы 1. Третий член разложения $\frac{0,001}{9} \approx 0,0001 < \varepsilon$, поэтому в разложении можно оставить первые два слагаемых.

$$\int_{0}^{0.1} \frac{\ln(1+x)}{x} dx \approx 0.1 - \frac{0.01}{4} \approx 0.098$$

Ряды Фурье.

При изучении темы «Ряды Фурье» полезно вспомнить некоторые определения, формулы и факты, ранее уже изученные.

1. <u>Определение</u>. Если для любого x выполняется равенство f(-x)=f(x), то функция y=f(x) называется четной; f(-x)=-f(x) — нечетной.

Большинство функций не обладают свойствами четности или нечетности, они называются функциями общего вида.

Очевидно, что графиком четной функции является кривая, симметричная относительно оси ординат; графиком нечетной — кривая, симметричная относительно начала координат. Отсюда следует, что если f(x) — четная, то $\int_{-l}^{l} f(x) dx = 2 \int_{0}^{l} f(x) dx$; если f(x) — нечетная, то $\int_{-l}^{l} f(x) dx = 0$. Последние две формулы описывают особенности интегрирования четных и нечетных функций по симметричному промежутку.

Легко проверить, что произведение двух четных функций есть функция четная; произведение двух нечетных функций есть функция четная; произведение четной и нечетной функции есть функция нечетная.

2. Из курса тригонометрии известно:

а)
$$\sin k\pi = 0$$
; $\cos k\pi = (-1)^k$ при $k = 0,1...$; $\cos \frac{k\pi}{2} = 0$ при k – нечетном;

б) функция y = sin x является нечетной, а функция y = cos x – четной,

- 3. При вычислении коэффициентов ряда Фурье будет использоваться формула интегрирования «по частям» $\int\limits_a^b u dv = uv \,|_a^b \int\limits_a^b v du$ и нижеперечисленные интегралы:
- $1)\int_{-\pi}^{\pi}\sin kxdx = 0$ для всех k (как интеграл от нечетной функций по симметричному промежутку).
 - 2) $\int_{-\pi}^{\pi} \cos kx dx = \frac{1}{k} \sin kx \Big|_{-\pi}^{\pi} = 0$ для всех $k \neq 0$
- 3) $\int_{-\pi}^{\pi} \cos kx \sin mx dx = 0$ для всех k и m (произведение четной и нечетной функции функция нечетная, а интеграл от нечетной функций по симметричному промежутку равен нулю).
 - 4) $\int_{-\pi}^{\pi} \cos kx \cos mx dx = 0 \text{ при } k \neq m$
 - $4') \int_{-\pi}^{\pi} \cos^2 kx dx = \pi$
 - 5) $\int_{-\pi}^{\pi} \sin kx \sin mx dx = 0 \text{ при } k \neq m$
 - $5') \int_{-\pi}^{\pi} \sin^2 kx dx = \pi$

При выводе формул (4) и (4') используются тригонометрические формулы

$$\cos kx \cos mx = \frac{1}{2} [\cos(k+m)x + \cos(k-m)x]$$

 $\sin kx \sin mx = \frac{1}{2} [\cos(k-m)x - \cos(k+m)x]$

При
$$k = m$$
: $\cos^2 kx = \frac{1}{2}[1 + \cos 2kx]$; $\sin^2 kx = \frac{1}{2}[1 - \cos 2kx]$

Следовательно,

$$\int_{-\pi}^{\pi} \cos kx \cos mx dx = \frac{1}{2} \left(\int_{-\pi}^{\pi} \cos(k+m)x dx + \int_{-\pi}^{\pi} \cos(k-m)x dx \right) =$$

$$= \frac{1}{2} \left(\frac{1}{k+m} \sin(k+m)x \Big|_{-\pi}^{\pi} + \frac{1}{k-m} \sin(k-m)x \Big|_{-\pi}^{\pi} \right) = 0$$

$$\int_{-\pi}^{\pi} \cos^{2} kx dx = \frac{1}{2} \int_{-\pi}^{\pi} (1 + \cos 2kx) dx = \frac{1}{2} \left(x \Big|_{-\pi}^{\pi} + \frac{1}{2k} \sin 2kx \Big|_{-\pi}^{\pi} \right) = \frac{1}{2} (2\pi) = \pi$$

Формулы (5) и (5') выводятся аналогично.

Определение. Рядом Фурье функции y=f(x) в интервале (-l;l) называется тригонометрический ряд $f(x)=\frac{a_0}{2}+\sum_{k=1}^{\infty}a_k\cos\frac{k\pi x}{l}+b_k\sin\frac{k\pi x}{l}$, коэффициенты которого $a_k\,u\,b_k$ определяются по формулам группы 1 из таблицы 2, которые называются формулами Фурье.

Если f(x) — четная функция, то $b_k = 0$ (т.к. интеграл от нечетной функций по симметричному промежутку равен нулю), следовательно, ряд Фурье не содержит синусов, получаем формулы группы 2.

Если f(x) — нечетная функция, то $a_0 = a_k = 0$ (т.к. интеграл от нечетной функций по симметричному промежутку равен нулю), следовательно, ряд Фурье не содержит косинусов, получаем формулы группы 3.

Пусть f(x) раскладывается в ряд Фурье на интервале $(-\pi;\pi)$. Тогда

$$l = \pi$$
, $\frac{k\pi x}{l} = \frac{k\pi x}{\pi} = kx$.

А соответствующие формулы разложения функции в ряд Фурье являются частными случаями формул из таблицы 2 и приведены в таблице 3.

При разложении функции y=f(x) в ряд Фурье на несимметричном интервале (0; l) используются формулы:

- а) при разложении по косинусам формулы группы 2;
- б) при разложении по синусам формулы группы 3.

Таблица 2 (функция f(x) раскладывается в ряд Фурье на интервале (-l;l))

f(x) — функция	$a_0 \stackrel{\circ}{\sim} k\pi x k\pi x$	Формулы
общего вида	$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos \frac{k\pi x}{l} + b_k \sin \frac{k\pi x}{l}$	группы 1
	$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx;$	
	$a_k = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{k\pi x}{l} dx;$	
	$b_k = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{k\pi x}{l} dx$	
f(x) — четная	$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos \frac{k\pi x}{l}$	Формулы
$b_k = 0$	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	группы 2
	$a_0 = \frac{2}{l} \int_0^l f(x) dx;$	
	$a_k = \frac{2}{l} \int_0^l f(x) \cos \frac{k\pi x}{l} dx$	
f(x) — нечетная	$f(x) = \sum_{k=1}^{\infty} b_k \sin \frac{k\pi x}{l}$	Формулы
$a_0 = a_k = 0$	$\int_{k=1}^{\infty} \int_{k=1}^{\infty} \int_{k$	группы 3
	$b_k = \frac{2}{l} \int_0^l f(x) \sin \frac{k\pi x}{l} dx$	

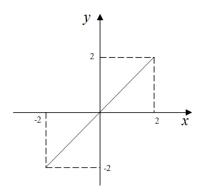
Таблица 3 (функция f(x) раскладывается в ряд Фурье на интервале $(-\pi;\pi)$)

f(x) — функция общего	$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$	Формулы
вида	$2 \sum_{k=1}^{\infty} a_k \cos(kx) \cos_k \sin(kx)$	группы 1'
	$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx;$	
	$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx;$	
	$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$	
f(x) — четная	$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx$	Формулы
$b_k = 0$	$\int_{0}^{\infty} (x)^{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} dx \cos kx$	группы 2'
	$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx;$	

	$a_k = \frac{2}{\pi} \int_0^{\pi} f(x) \cos kx dx$	
f(x) — нечетная	$f(x) = \sum_{k=1}^{\infty} b_k \sin kx$	Формулы
$a_0 = a_k = 0$	k=1	группы 3'
	$b_k = \frac{2}{\pi} \int_0^{\pi} f(x) \sin kx dx$	

Примеры.

<u>Пример 1</u>. Разложить данную функцию f(x) = x в ряд Фурье в интервале $x \in (-2,2)$



Данная функция нечетна в интервале [-2,2], поэтому ее разложение в ряд Фурье содержит только синусы. Используем формулы группы 3 из таблицы 2, положив l=2:

$$f(x) = \sum_{k=1}^{\infty} b_k \sin \frac{k\pi x}{l}$$
, где

$$b_{k} = \int_{0}^{2} x \sin \frac{k\pi x}{2} dx = \begin{vmatrix} u = x & dv = \sin \frac{k\pi x}{2} dx \\ du = dx & v = -\frac{2}{k\pi} \cos \frac{k\pi x}{2} \end{vmatrix} = -\frac{2}{k\pi} \cos \frac{k\pi x}{2} \Big|_{0}^{2} + \frac{2}{k\pi} \int_{0}^{2} \cos \frac{k\pi x}{2} dx =$$

$$= -\frac{2}{k\pi} (2\cos k\pi - 0) + \frac{2^{2}}{k^{2}\pi^{2}} \sin \frac{k\pi x}{2} \Big|_{0}^{2} = -\frac{4}{k\pi} (-1)^{k} + \frac{4}{k^{2}\pi^{2}} (\sin k\pi - \sin 0) = \frac{4}{k\pi} (-1)^{k+1}$$

$$\Rightarrow b_k = \frac{4}{k\pi} (-1)^{k+1}.$$

$$f(x) = \sum_{k=1}^{\infty} \frac{4}{k\pi} (-1)^{k+1} \cdot \sin \frac{k\pi x}{2} = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \cdot \sin \frac{k\pi x}{2}.$$

$$f(x) = \begin{cases} 0, & npu - \pi < x < 0 \\ 2, & npu \ 0 \le x < \pi \end{cases}$$
 Пример 2. Разложить в ряд Фурье функцию

Функция задана на интервале $(-\pi, \pi)$ двумя формулами. f(x) является функцией общего вида. Используем формулы 1 из таблицы 3.

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cdot \cos kx + b_k \cdot \sin kx),$$
 где

$$a_{\scriptscriptstyle 0} = \frac{1}{\pi} \int\limits_{-\pi}^{\pi} f(x) dx$$
разбиваем интеграл на сумму двух, так как функция задана двумя

формулами
$$= \frac{1}{\pi} \left(\int_{-\pi}^{0} 0 \cdot dx + \int_{0}^{\pi} 2 \cdot dx \right) = \frac{1}{\pi} 2x \Big|_{0}^{\pi} = 2$$

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \cos kx dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} 0 \cdot \cos kx dx + \int_{0}^{\pi} 2 \cdot \cos kx dx \right) = \frac{2}{\pi} \cdot \frac{1}{k} \cdot \sin kx \Big|_{0}^{\pi} = \frac{2}{k\pi} \sin \pi x = 0$$

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \sin kx dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} 0 \cdot \sin kx dx + \int_{0}^{\pi} 2 \cdot \sin kx dx \right) = -\frac{2}{k\pi} \cdot \cos kx \Big|_{0}^{\pi} = -\frac{2}{k\pi} \left(\cos k\pi - \cos 0 \right)$$
$$= -\frac{2}{k\pi} \left((-1)^{k} - 1 \right) = \frac{2}{k\pi} \left(1 - (-1)^{k} \right).$$

$$f(x) = 1 + \sum_{k=1}^{\infty} \frac{2}{k\pi} \left(1 - (-1)^k \right) \sin kx = 1 + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\left(1 - (-1)^k \right)}{k} \sin kx$$

<u>Пример 3</u>. Разложить в ряд Фурье функцию $y = x^2$ в интервале $(-\pi; \pi)$.

y=f(x) — четная функция, значит используем формулы группы (2') из таблицы 3.

$$a_0 = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2}{\pi} \cdot \frac{x^3}{3} \Big|_0^{\pi} = \frac{2}{\pi} \cdot \frac{\pi^3}{3} = \frac{2\pi^2}{3};$$

$$a_k = \frac{2}{\pi} \int_0^{\pi} x^2 \cos kx dx$$
. Применим дважды интегрирование по частям.

$$a_{k} = \frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos kx dx = \begin{bmatrix} u = x^{2} \\ dv = \cos kx dx \\ du = 2x dx \\ v = \int \cos kx dx = \frac{\sin kx}{k} \end{bmatrix} = \frac{2}{\pi} \left[\left(\frac{x^{2} \sin kx}{k} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} 2x \frac{\sin kx}{k} dx \right] = \frac{2}{\pi} \left[\left(\frac{x^{2} \sin kx}{k} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} 2x \frac{\sin kx}{k} dx \right] = \frac{2}{\pi} \left[\left(\frac{x^{2} \sin kx}{k} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} 2x \frac{\sin kx}{k} dx \right] = \frac{2}{\pi} \left[\left(\frac{x^{2} \sin kx}{k} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} 2x \frac{\sin kx}{k} dx \right] = \frac{2}{\pi} \left[\left(\frac{x^{2} \sin kx}{k} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} 2x \frac{\sin kx}{k} dx \right] = \frac{2}{\pi} \left[\left(\frac{x^{2} \sin kx}{k} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} 2x \frac{\sin kx}{k} dx \right] = \frac{2}{\pi} \left[\left(\frac{x^{2} \sin kx}{k} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} 2x \frac{\sin kx}{k} dx \right] = \frac{2}{\pi} \left[\left(\frac{x^{2} \sin kx}{k} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} 2x \frac{\sin kx}{k} dx \right] = \frac{2}{\pi} \left[\left(\frac{x^{2} \sin kx}{k} \right) \Big|_{0}^{\pi} - \left(\frac{x^{2} \sin kx}{k} \right) \Big|_$$

$$=\frac{2}{\pi k}\left[\pi^2\sin k\pi - 2\int_0^\pi x\sin kx dx\right] =$$

$$= -\frac{4}{\pi k} \int_{0}^{\pi} x \sin kx dx = \begin{bmatrix} u = x \\ dv = \sin kx dx \\ du = dx \\ v = \int \sin kx dx = -\frac{\cos kx}{k} \end{bmatrix} =$$

$$= -\frac{4}{\pi k} \left[\left(-\frac{x \cos kx}{k} \right) \Big|_0^{\pi} + \int_0^{\pi} \left(\frac{\cos kx}{k} \right) dx \right] = \frac{4}{\pi k^2} \left[\pi \cos k\pi - \int_0^{\pi} \cos kx dx \right] =$$

$$= \frac{4}{\pi k^2} \left[\pi \cos k\pi - \left(\frac{\sin kx}{k} \right) \right]_0^{\pi} = \frac{4}{\pi k^2} \left[\pi \cos k\pi - \frac{\sin k\pi}{k} \right].$$

Поскольку $\sin k\pi = 0$ и $\cos k\pi = (-1)^k$ для натуральных k, то получаем

$$a_k = \frac{4}{\pi k^2} \cdot \pi (-1)^k = \frac{4}{k^2} (-1)^k.$$

Тогда разложение параболической функции в ряд Фурье имеет вид

$$x^{2} = \frac{\pi^{2}}{3} + \sum_{k=1}^{\infty} \frac{4}{k^{2}} (-1)^{k} \cos kx.$$

<u>Пример 4</u>. Разложить функцию y = x на интервале (0;1) в ряд Фурье а) по косинусам, б) по синусам.

а) Используем формулы группы 2 из таблицы 2 (l=1)

$$a_0 = 2 \int_0^1 x dx = 1;$$

$$a_k = 2\int_0^1 x \cos \pi kx dx = \begin{bmatrix} u = x \\ dv = \cos \pi kx dx \\ du = dx \\ v = \frac{1}{\pi k} \sin \pi kx \end{bmatrix} = \frac{2}{\pi k} x \sin \pi kx \Big|_0^1 - \frac{2}{\pi k} \int_0^1 \sin \pi kx dx = 0$$

$$= \frac{2}{\pi^2 k^2} \cos \pi k x \Big|_0^1 = \frac{2}{\pi^2 k^2} (\cos \pi k - \cos 0) = \frac{2}{\pi^2 k^2} [(-1)^k - 1].$$

$$f(x) = \frac{1}{2} + \frac{2}{\pi^2} \sum_{k=1}^{\infty} \frac{\left[(-1)^k - 1 \right]}{k^2} \cos k\pi x.$$

Учитывая, что
$$a_{k} = \begin{cases} -\frac{4}{\pi^{2}k^{2}}, & \textit{если } k-\textit{нечётное}, \\ 0, & \textit{если } k-\textit{чётное} \end{cases}$$

$$f(x) \approx \frac{1}{2} - \frac{4}{\pi^2} \left(\cos \pi x + \frac{1}{9} \cos 3\pi x + \frac{1}{25} \cos 5\pi x + \dots \right).$$

б) Используем формулы группы 3 из таблицы 2 (l = 1).

$$b_k = 2\int_0^1 x \sin \pi kx dx = \begin{bmatrix} u = x \\ dv = \sin \pi kx dx \\ du = dx \\ v = -\frac{1}{\pi k} \cos \pi kx \end{bmatrix} = -\frac{2}{\pi k} x \cos \pi kx \Big|_0^1 + \frac{2}{\pi k} \int_0^1 \cos \pi kx dx = 0$$

$$= -\frac{2\cos\pi k}{\pi k} + \frac{2}{\pi^2 k^2}\sin\pi kx\Big|_0^1 = 2\left[-\frac{(-1)^k}{\pi k}\right] = 2\frac{(-1)^{k+1}}{\pi k}.$$

$$f(x) \approx \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin k\pi x = \frac{2}{\pi} \left(\sin \pi x - \frac{1}{2} \sin 2\pi x + \frac{1}{3} \sin 3\pi x + \dots \right).$$

Задания для самостоятельного решения

<u>ТИП 1</u>. Пользуясь разложением в ряд Маклорена функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^m$ и *arctgx*, разложить данные функции в ряд.

1. a)
$$f(x) = \sqrt{1+x^2}$$
 6) $f(x) = x \cdot \cos \sqrt{x}$ B) $f(x) = arctg \frac{x}{3}$

$$f(x) = x \cdot \cos \sqrt{x}$$

$$\mathbf{B}) f(x) = \operatorname{arctg} \frac{x}{3}$$

2. a)
$$f(x) = e^{\sqrt{x}}$$
 6) $f(x) = \ln(1-x)$ B) $f(x) = \sin(x^2)$

$$f(x) = \ln(1-x)$$

$$\mathbf{B}) f(x) = \sin(x^2)$$

3. a)
$$f(x) = \cos 3x$$

6)
$$f(x) = \frac{1}{\sqrt{1-x}}$$
 B) $f(x) = x \cdot e^{-2x}$

$$\mathbf{B})\,f(x) = x \cdot e^{-2x}$$

4. a)
$$f(x) = \ln(3+x)$$

$$f(x) = \sin\frac{x}{2}$$

$$\mathbf{B}) f(\mathbf{x}) = \operatorname{arctgx}^2$$

5. a)
$$f(x) = arctg2x$$

$$f(x) = \frac{x}{(1+3x)^2}$$

$$B) f(x) = e^{3x}$$

6. a)
$$f(x) = \cos \sqrt[3]{x}$$

6)
$$f(x) = \ln\left(1 + \frac{x}{2}\right)$$
 B) $f(x) = e^{x^2}$

$$f(x) = e^{x^2}$$

7. a)
$$f(x) = x \cdot \sin 2x$$

6)
$$f(x) = \sqrt[3]{2+x}$$

6)
$$f(x) = \sqrt[3]{2+x}$$
 B) $f(x) = \ln\left(1-\frac{x}{3}\right)$

8. a)
$$f(x) = x^2 \cdot e^{-x}$$

$$f(x) = \cos\frac{x}{3}$$

B)
$$f(x) = \sqrt[3]{5+x}$$

9. a)
$$f(x) = \ln(1 + \sqrt{x})$$

6)
$$f(x) = \frac{arctgx}{x}$$
 B) $f(x) = \sqrt{x} \sin x$

$$\mathbf{B}) f(x) = \sqrt{x} \sin x$$

10. a)
$$f(x) = \sqrt[5]{3-x}$$

$$f(x) = x \cdot e^{-x}$$

6)
$$f(x) = x \cdot e^{-x}$$
 B) $f(x) = \frac{\cos x - 1}{x}$

11. a)
$$f(x) = \sin \frac{x}{3}$$
 6) $f(x) = \ln(5+x)$

$$6) f(x) = \ln(5+x)$$

$$\mathbf{B})\,f(x)=e^{-2x}$$

12. a)
$$f(x) = arctg3x$$

6)
$$f(x) = x^{-1} \cdot (e^{-x} - 1)$$
 B) $f(x) = \cos \frac{x}{2}$

$$\mathbf{B}) f(x) = \cos \frac{x}{2}$$

13. a)
$$f(x) = \sqrt{1 - x^3}$$

б)
$$f(x) = \sin \sqrt{x}$$

B)
$$f(x) = e^{\frac{x}{5}}$$

14. a)
$$f(x) = \ln(1 + \sqrt[3]{x})$$

6)
$$f(x) = \frac{1}{\sqrt[3]{5-x}}$$

$$\mathbf{B})\,f(x) = \frac{\sin x}{x}$$

15. a)
$$f(x) = \sin 3x$$

6)
$$f(x) = arctg \frac{x}{2}$$
 B) $f(x) = \sqrt[5]{1+x}$

B)
$$f(x) = \sqrt[5]{1+x}$$

16. a)
$$f(x) = x \cdot e^{-x}$$

$$6) \ f(x) = \cos\sqrt{x}$$

6)
$$f(x) = \cos \sqrt{x}$$
 B) $f(x) = x^{-2} \cdot arctgx^3$

17. a)
$$f(x) = \ln(3+9x)$$

$$f(x) = \sin\frac{x}{2}$$

$$B) f(x) = e^{-3x}$$

18. a)
$$f(x) = arctg\sqrt{x}$$

6)
$$f(x) = \sqrt[3]{1 + \frac{x}{5}}$$

$$\mathbf{B}) f(x) = \ln(1+x^2)$$

19. a)
$$f(x) = \ln \sqrt[3]{1 + \frac{x}{2}}$$

6)
$$f(x) = x^{-1} \cdot (e^{2x} - 1)$$
 B) $f(x) = \frac{x}{\sqrt[5]{2 + x}}$

$$f(x) = \frac{x}{\sqrt[5]{2+x}}$$

20. a)
$$f(x) = x^2 \cdot \sin x$$

б)
$$f(x) = arctgx^3$$
 в) $f(x) = \sqrt[7]{1-x}$

B)
$$f(x) = \sqrt[7]{1-x}$$

21. a)
$$f(x) = \frac{x^2}{\sqrt{4+x}}$$

$$f(x) = e^{\sqrt[3]{x}}$$

6)
$$f(x) = e^{\sqrt[3]{x}}$$
 B) $f(x) = \frac{\ln(1-x^2)}{x^2}$

22. a)
$$f(x) = arctg\sqrt[3]{x}$$

$$f(x) = \sin(x^3)$$

6)
$$f(x) = \sin(x^3)$$
 B) $f(x) = x \cdot \sqrt{4 + x}$

23. a)
$$f(x) = \ln \sqrt{1 + 2x}$$

$$5) \ f(x) = x \cdot \cos \sqrt{x}$$

6)
$$f(x) = x \cdot \cos \sqrt{x}$$
 B) $f(x) = \frac{1}{\sqrt[3]{1+2x}}$

24. a)
$$f(x) = x \cdot arctgx$$
 6) $f(x) = (x+1)^{\frac{3}{4}}$ B) $f(x) = e^{\frac{x}{2}}$

$$f(x) = (x+1)^{\frac{3}{4}}$$

$$\mathbf{B})\,f(x)=e^{\frac{x^2}{2}}$$

25. a)
$$f(x) = x \cdot \ln\left(1 + \frac{x}{3}\right)$$
 6) $f(x) = \frac{1}{\sqrt[3]{3 - x}}$ B) $f(x) = arctg(-x)$

6)
$$f(x) = \frac{1}{\sqrt[3]{3-x}}$$

$$\mathbf{B}) f(\mathbf{x}) = arctg(-\mathbf{x})$$

26. a)
$$f(x) = \ln \sqrt[5]{3+x}$$
 6) $f(x) = \frac{x}{2-x}$ B) $f(x) = \frac{\sin 2x}{x}$

$$f(x) = \frac{x}{2 - x}$$

$$f(x) = \frac{\sin 2x}{x}$$

27. a)
$$f(x) = \ln \sqrt[3]{1-x}$$

$$f(x) = \frac{1}{3+x}$$

28. a)
$$f(x) = 3^x$$

28. a)
$$f(x) = 3^x$$
 6) $f(x) = \frac{\ln(1+x^2)}{x}$ B) $f(x) = \sqrt{1+\frac{x}{3}}$

B)
$$f(x) = \sqrt{1 + \frac{x}{3}}$$

$$6) f(x) = x \cdot 5$$

$$f(x) = \sin 3x$$

30. a)
$$f(x) = \frac{\ln(1+x)}{x}$$

<u>ТИП 2</u>. Найти первые пять членов ряда Тейлора для данной функции f(x) в окрестности точки \mathcal{X}_0 .

1.
$$f(x) = \ln(1 + e^{x-1}), x_0 = 1$$

16.
$$f(x) = \frac{1}{x-4}, x_0 = -2$$

2.
$$f(x) = \frac{1}{1-x}, x_0 = 2$$

17.
$$f(x) = 2^x$$
, $x_0 = 3$

3.
$$f(x) = x^3 \cdot \ln x$$
, $x_0 = 1$

18.
$$f(x) = \frac{1}{1+3x}, x_0 = -1$$

4.
$$f(x) = \cos x, x_0 = \frac{\pi}{4}$$

19.
$$f(x) = \sqrt[3]{x}$$
, $x_0 = -1$

5.
$$f(x) = \frac{1}{x}, x_0 = -2$$

20.
$$f(x) = x \cdot \ln x, x_0 = 1$$

6.
$$f(x) = \sqrt{x}$$
, $x_0 = 4$

21.
$$f(x) = \frac{1}{x}, x_0 = 3$$

7.
$$f(x) = e^x$$
, $x_0 = -2$

22.
$$f(x) = \ln x, x_0 = 2$$

8.
$$f(x) = \arcsin x, x_0 = 0$$

23.
$$f(x) = ctgx, x_0 = \frac{\pi}{4}$$

9.
$$f(x) = \ln x, x_0 = 3$$

24.
$$f(x) = \ln(1+3^{x+1}), x_0 = -1$$

10.
$$f(x) = \sin x, x_0 = \frac{\pi}{2}$$

25.
$$f(x) = \frac{1}{x+3}, x_0 = 1$$

11.
$$f(x) = \ln(x+2), x_0 = 1$$

26.
$$f(x) = e^{2x}, x_0 = 1$$

12.
$$f(x) = \frac{1}{x+2}, x_0 = 1$$

27.
$$f(x) = 2 + e^{x-3}, x_0 = 3$$

13.
$$f(x) = e^{3x}, x_0 = 1$$

28.
$$f(x) = e^x$$
, $x_0 = -3$

14.
$$f(x) = tgx$$
, $x_0 = \frac{\pi}{4}$

15.
$$f(x) = \ln(1 + e^{x+1}), x_0 = -1$$

29.
$$f(x) = \ln(1+2^{x-1}), x_0 = 1$$

30.
$$f(x) = x^2 \cdot \ln x, \ x_0 = 1$$

ТИП 3. Пользуясь разложением в ряд Маклорена функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^m$ и arctgx, вычислить с точностью до $\varepsilon = 0.001$

2.
$$\sqrt[5]{33}$$

3.
$$\sin 19^{\circ} (\pi = 3,14159)$$

4.
$$\sqrt[3]{30}$$

7.
$$\frac{1}{\sqrt[3]{e}}$$

9.
$$\cos 25^{\circ} (\pi = 3,14159)$$

11.
$$\sqrt[3]{65}$$

13.
$$\cos 0.3$$

14.
$$e^{-0.1}$$

16.
$$\cos 16^{\circ} (\pi = 3,14159)$$

17.
$$\sqrt{1,2}$$

$$19. \qquad \frac{1}{\sqrt{3}}$$

20.
$$\cos 22^{\circ} (\pi = 3,14159)$$

23.
$$e^{-0.2}$$

$$24. \quad \sin 0.4$$

$$\sqrt[5]{e^2}$$

27.
$$\sqrt{1,2}$$

28.
$$\sin 13^{\circ} (\pi = 3,14159)$$

30.
$$e^{-0}$$

<u>ТИП 4</u>. Вычислить приближенные значения интегралов с точностью до $\varepsilon = 0.001$.

$$1. \qquad \int\limits_{0}^{\frac{1}{4}} e^{-x^2} dx$$

11.
$$\int_{0}^{\frac{1}{4}} x \cdot \cos \sqrt{x} dx$$

21.
$$\int_{0}^{0.5} \frac{\sin x^{2}}{x^{2}} dx$$

1.
$$\int_{0}^{\frac{1}{4}} e^{-x^{2}} dx$$
11.
$$\int_{0}^{\frac{1}{4}} x \cdot \cos \sqrt{x} dx$$
21.
$$\int_{0}^{0.5} \frac{\sin x^{2}}{x^{2}} dx$$
22.
$$\int_{0}^{0.1} \frac{\ln(1+x)}{x} dx$$
3.
$$\int_{0}^{0.5} x \cdot \ln(1+x^{3}) dx$$
13.
$$\int_{0}^{0.5} arctgx^{2} dx$$
24.
$$\int_{0}^{1} x^{3} \cdot \sin x dx$$
5.
$$\int_{0}^{1} x \cdot \sin x^{2} dx$$
15.
$$\int_{0}^{0.5} \sqrt{x} \cdot e^{-x} dx$$
21.
$$\int_{0}^{0.5} \frac{\sin x^{2}}{x^{2}} dx$$
22.
$$\int_{0}^{0.1} \frac{\ln(1+x)}{x} dx$$
23.
$$\int_{0}^{0.5} \frac{dx}{1+x^{4}}$$
24.
$$\int_{0}^{1} x^{3} \cdot \sin x dx$$
25.
$$\int_{0}^{1} \sqrt[3]{x} \cdot \cos x dx$$

12.
$$\int_{0}^{\frac{1}{4}} \sqrt[3]{1+x^2} dx$$

$$22. \qquad \int\limits_{0}^{0.1} \frac{\ln(1+x)}{x} \, dx$$

3.
$$\int_{0}^{0.5} x \cdot \ln(1+x^3) dx$$

13.
$$\int_{0}^{0.5} arctgx^{2} dx$$

23.
$$\int_{0}^{0.5} \frac{dx}{1+x^4}$$

$$4. \qquad \int\limits_{0}^{1} e^{-\frac{x^2}{2}} dx$$

14.
$$\int_{0}^{1} \sqrt{x} \cdot \cos x dx$$

24.
$$\int_{0}^{1} x^{3} \cdot \sin x dx$$

$$5. \qquad \int_{0}^{1} x \cdot \sin x^{2} dx$$

$$15. \qquad \int_{0.5}^{0.5} \sqrt{x} \cdot e^{-x} dx$$

$$25. \qquad \int_{0}^{1} \sqrt[3]{x} \cdot \cos x dx$$

6.
$$\int_{0}^{0.5} \frac{\sin x}{x} dx$$
16.
$$\int_{0}^{0.3} x \cdot \ln(1+x) dx$$
26.
$$\int_{0}^{0.5} \cos \frac{x^{2}}{4} dx$$
7.
$$\int_{0}^{1} \cos^{3} \sqrt{x} dx$$
17.
$$\int_{0}^{0.5} \sqrt{1+x^{3}} dx$$
27.
$$\int_{0}^{0.5} e^{-\frac{x^{2}}{2}} dx$$
8.
$$\int_{0}^{0.5} \arctan x dx$$
18.
$$\int_{0}^{0.5} \frac{1-\cos x}{x^{2}} dx$$
28.
$$\int_{0}^{1} \frac{\sin x}{\sqrt{x}} dx$$
9.
$$\int_{0}^{0.5} \sqrt{1+x^{2}} dx$$
19.
$$\int_{0}^{1} \sqrt{x} \cdot \sin x dx$$
29.
$$\int_{0}^{1} \cos \sqrt{x} dx$$
10.
$$\int_{0}^{0.3} \ln(1+x^{2}) dx$$
20.
$$\int_{0}^{\frac{1}{3}} x \cdot \cos \sqrt{x} dx$$
30.
$$\int_{0}^{0.5} \frac{dx}{\sqrt{1+x^{4}}}$$

ТИП 5. Разложить функции в ряд Фурье в указанных интервалах.

1.
$$f(x) = \frac{x^2}{2}$$
, $(-2;2)$
2. $f(x) = x + 2$, $(-2;2)$

3.
$$f(x) = \begin{cases} 0, & ecnu - 2 < x \le 0 \\ x, & ecnu \ 0 \le x \le 1 \\ 1, & ecnu \ 1 < x \le 2 \end{cases}$$

4.
$$f(x)=x$$
, $(-\pi;\pi)$

5.
$$f(x) = |x|, (-1;1)$$

6.
$$f(x) = e^x$$
, $(-\pi; \pi)$

7.
$$f(x) = x^2 + 2x$$
, $(-\pi, \pi)$

8.
$$f(x) = \begin{cases} -1, ecnu - \pi < x < 0 \\ 1, ecnu 0 < x < \pi \end{cases}$$

5.
$$f(x) = |x|, \quad (-\pi; \pi)$$
6.
$$f(x) = e^{x}, \quad (-\pi; \pi)$$
7.
$$f(x) = x^{2} + 2x, \quad (-\pi; \pi)$$
8.
$$f(x) = \begin{cases} -1, ecnu - \pi < x < 0 \\ 1, ecnu \quad 0 < x < \pi \end{cases}$$
9.
$$f(x) = \begin{cases} -2x, ecnu - \pi < x < 0 \\ 3x, ecnu \quad 0 \le x < \pi \end{cases}$$

10.
$$f(x) = \begin{cases} -x, ecnu - \pi < x < 0 \\ 0, ecnu \ 0 \le x < \pi \end{cases}$$

11.
$$f(x) = x^2, (-\pi; \pi)$$

12.
$$f(x) = \begin{cases} 1, & ecnu - \pi < x < 0 \\ 3, & ecnu \ 0 < x < \pi \end{cases}$$

13.
$$f(x) = \cos \frac{x}{2}, \quad (-\pi; \pi)$$

14.
$$f(x) = \sin \frac{x}{2}, \quad (-\pi; \pi)$$

15.
$$f(x) = \pi^2 - x^2, (-\pi; \pi)$$

16.
$$f(x) = \frac{2}{3}x^2$$
, $(-3;3)$

17.
$$f(x) = 3 - x$$
, $(-3;3)$

18.
$$f(x) = \begin{cases} 1, & ecnu - 2 < x \le -1 \\ -x, & ecnu - 1 < x \le 0 \\ 0, & ecnu \ 0 < x \le 2 \end{cases}$$

19.
$$f(x) = \frac{|x|}{2}, \ (-\pi;\pi)$$

20.
$$f(x) = e^{-x}, (-\pi; \pi)$$

21.
$$f(x) = \begin{cases} -2, ecnu & -1 < x < 0 \\ 0, ecnu & 0 < x < 1 \end{cases}$$

22.
$$f(x) = e^{\frac{x}{2}}, (-\pi;\pi)$$

23.
$$f(x) = \begin{cases} 2x, ecnu & -1 < x \le 0 \\ -3x, ecnu & 0 \le x < 1 \end{cases}$$

24.
$$f(x) = (1-x)(1+x), (-1;1)$$

25.
$$f(x) = \cos\frac{x}{3}, \ (-\pi;\pi)$$

26.
$$f(x) = \sin\frac{x}{3}, \ (-\pi;\pi)$$

27.
$$f(x) = \begin{cases} x, ecnu & -1 < x \le 0 \\ 2x, ecnu & 0 \le x < 1 \end{cases}$$

28.
$$f(x) = \begin{cases} 17, ecnu & -1 < x < 0 \\ 1, ecnu & 0 < x < 1 \end{cases}$$

29.
$$f(x)=1+x+x^2$$
, $(-2;2)$

30.
$$f(x) = e^{2x}, (-\pi;\pi)$$

ТИП 6. Разложить данные функции в указанных интервалах в ряд синусов:

1.
$$f(x) = x^2$$
, $(0; \pi)$

2.
$$f(x) = x - \frac{x^2}{3}$$
, (0;3)

3.
$$f(x) = \pi - 2x$$
, $(0; \pi)$

4.
$$f(x) = \frac{2}{3}x^2$$
, (0;1)

5.
$$f(x) = \cos 2x$$
, $(0; \pi)$

6.
$$f(x) = x - 1$$
, $(0,2)$

7.
$$f(x) = \frac{\pi}{4} - \frac{x}{2}$$
, $(0; \pi)$

8.
$$f(x) = \cos\frac{x}{2}, \quad (0;\pi)$$

9.
$$f(x) = x(\pi - x), (0; \pi)$$

10.
$$f(x) = e^x$$
, $(0; \pi)$

11.
$$f(x) = \cos x$$
, $(0; \pi)$

12.
$$f(x) = \frac{x^2}{2} - x$$
, (0;2)

13.
$$f(x) = \begin{cases} x, ecnu & 0 < x \le 1 \\ 2 - x, ecnu & 1 \le x < 2 \end{cases}$$

14.
$$f(x) = \begin{cases} 1, ecnu & 0 < x < 1 \\ 0, ecnu & 1 < x < 2 \end{cases}$$

15.
$$f(x) = \begin{cases} x, ecnu & 0 < x < 1 \\ 0, ecnu & 1 < x < 2 \end{cases}$$

16.
$$f(x) = \frac{x^2}{2}$$
, $(0;2)$

17.
$$f(x) = \begin{cases} x, ecnu & 0 < x < \frac{\pi}{2} \\ 1, ecnu & \frac{\pi}{2} < x < \pi \end{cases}$$

18.
$$f(x) = e^{-x} - 1$$
, $(0;1)$

19.
$$f(x) = \cos 3x$$
, $(0; \pi)$

20.
$$f(x)=2^x-1$$
, $(0;\pi)$

21.
$$f(x) = \sin \frac{x}{2}$$
, $(0; \pi)$

22.
$$f(x)=1-x+x^2$$
, $(0;2)$

23.
$$f(x) = 2^{-x}$$
, $(0;\pi)$

24.
$$f(x)=17$$
, $(0;\pi)$

25.
$$f(x)=1+x+x^2$$
, (0;1)

26.
$$f(x) = \sin \frac{x}{3}$$
, $(0; \pi)$

27.
$$f(x) = \begin{cases} 1, ecnu & 0 \le x \le 1 \\ x, ecnu & 1 < x < 2 \end{cases}$$

28.
$$f(x) = 3^x$$
, $(0;\pi)$

29.
$$f(x) = \frac{x^2}{4} - x$$
, (0;4)

30.
$$f(x)=17^x$$
, $(0;\pi)$

<u>ТИП 7</u>. Разложить данные функции в указанных интервалах в ряд косинусов:

1.
$$f(x) = \frac{\pi}{4} - \frac{x}{2}$$
, $(0; \pi)$

2.
$$f(x) = x - \frac{x^2}{3}$$
, (0;3)

3.
$$f(x) = \pi - 2x$$
, $(0; \pi)$

4.
$$f(x) = x$$
, (0;1)

5.
$$f(x) = \begin{cases} x, ecnu & 0 < x \le 1 \\ 2 - x, ecnu & 1 < x < 2 \end{cases}$$

6.
$$f(x) = x^2 + 3x$$
, $(0;\pi)$

7.
$$f(x) = \begin{cases} 1, ecnu & 0 < x < \frac{\pi}{2} \\ 0, ecnu & \frac{\pi}{2} < x < \pi \end{cases}$$

8.
$$f(x) = \sin \frac{x}{2}, \quad (0; \pi)$$

9.
$$f(x) = \begin{cases} x, ecnu & 0 < x < 1 \\ 0, ecnu & 1 < x < 2 \end{cases}$$

10.
$$f(x) = x(\pi - x), (0; \pi)$$

11.
$$f(x) = e^x$$
, $(0; \pi)$

12.
$$f(x) = \sin x$$
, $(0; \pi)$

13.
$$f(x) = \begin{cases} x, ecnu & 0 < x < 1 \\ 1, ecnu & 1 < x < 2 \end{cases}$$

14.
$$f(x)=1+x+x^2$$
, (0;1)

15.
$$f(x) = 2^x$$
, $(0; \pi)$

16.
$$f(x) = \cos \frac{x}{2}$$
, $(0; \pi)$

17.
$$f(x) = \begin{cases} 1, ecnu & 0 < x < 1 \\ x, ecnu & 1 < x < 2 \end{cases}$$

18.
$$f(x)=1-x+x^2$$
, (0;1)

19.
$$f(x) = x + 1$$
, $(0; \pi)$

20.
$$f(x) = \begin{cases} x, ecnu & 0 < x < 2 \\ 4 - x, ecnu & 2 < x < 4 \end{cases}$$

21.
$$f(x) = x^2 + x$$
, (0;1)

22.
$$f(x) = x^2 - x$$
, (0;1)

23.
$$f(x) = 4^x$$
, $(0; \pi)$

24.
$$f(x) = \begin{cases} 1, ecnu & 0 < x < 1 \\ -1, ecnu & 1 < x < 2 \end{cases}$$

25.
$$f(x) = \pi^x$$
, $(0; \pi)$

26.
$$f(x) = e^{-x}$$
, (0;1)

27.
$$f(x)=17^x$$
, $(0;\pi)$

28.
$$f(x) = \sin x$$
, $(0; \pi)$

29.
$$f(x) = x^2 - 17x$$
, $(0; \pi)$

30.
$$f(x) = \begin{cases} 1, ecnu & 0 < x < 1 \\ x, ecnu & 1 < x < 3 \end{cases}$$