



ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Кафедра «Математика»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

и варианты заданий для выполнения контрольной работы №1,2,3,4 по дисциплине «Математика» для студентов заочной формы обучения технических направлений (нормативный и сокращенный срок обучения)

Составители : Волокитин Г.И., Ступникова Н.П.

Ростов-на-Дону, 2013

Управление дистанционного обучения и повышения квалификации Математика

Аннотация

Методическая разработка предназначена для студентов заочной формы обучения технических специальностей. Содержит программу курса математики по темам: «Линейная алгебра», «Векторная алгебра и аналитическая геометрия» , «Введение в анализ», «Дифференциальное исчисление». Указана рекомендуемая литература, варианты контрольной работы № 1,2,3,4 а также даны образцы решения задач. В контрольной работе представлены задачи, содержащие десять вариантов. Вариант задания студент определяет по последней цифре номера зачетной книжки. Цифра 0 соответствует варианту 10.

Составители:

к. ф-м. н., доцент Волокитин Г.И., Ступникова Н.П.

пері	выи семестр	. 4
конт	РОЛЬНАЯ РАБОТА №1	. 4
	ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯЛИТЕРАТУРАВАРИАНТЫ ЗАДАНИЙ КОНТРОЛЬНОЙ РАБОТЫ № 1ОБРАЗЦЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНОЙ РАБОТЫ №1	4 4 5
конт	РОЛЬНАЯ РАБОТА №2	15
	Введение в анализ	15 15 16
Втор	оой семестр2	27
конт	РОЛЬНАЯ РАБОТА №3	27
коэф	ВАРИАНТЫ ЗАДАНИЙ КОНТРОЛЬНОЙ РАБОТЫ №3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ №3 Общие понятия и положения теории дифференциальных уравнений Классификация ОДУ ОДУ первого порядка Линейные дифференциальные уравнения второго порядка с постоянны официентами Литература	32 36 38 39 ми 46
конт	РОЛЬНАЯ РАБОТА №4	51
ΡΔ3/	ВАРИАНТЫ ЗАДАНИЙ КОНТРОЛЬНОЙ РАБОТЫ №4 КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ И ОБРАЗЦЫ РЕШЕНИЙ ЗАДАЧ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ I IEЛУ «ТЕОРИЯ ВЕРОЯТНОСТЕЙ»	59 ΠΟ

ПЕРВЫЙ СЕМЕСТР

КОНТРОЛЬНАЯ РАБОТА №1

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

Матрицы, виды матриц и действия с матрицами. Числовые характеристики матриц. Определители второго и третьего порядков: определения, свойства и способы вычисления. Элементарные преобразования матриц. Обратная матрица: определение, критерий существования и способы вычисления обратной матрицы. Базисный минор и ранг матрицы. Системы линейны алгебраических уравнений, их виды. Теорема Кронекера-Капелли. Решение определенных систем третьего порядка методом Крамера, матричным методом и методом Гаусса. Общее решение однородных и неоднородных неопределенных систем. Понятие линейного пространства. Линейный оператор, матрица линейного оператора.

ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Понятие геометрического вектора. Проекция вектора на ось. Линейные операции над векторами. Линейная независимость векторов, базис на плоскости и в пространстве. Координаты вектора, их геометрический смысл. Действия с векторами в координатах. Условие коллинеарности векторов. Скалярное произведение двух векторов: определение, свойства, вычисление в координатах и приложения. Векторное произведение двух векторов: определение, свойства, вычисление в координатах и приложения. Смешанное произведение трех векторов, теорема о геометрическом смысле, вычисление в координатах и свойства. Условие компланарности трех векторов.

Прямая на плоскости. Угловой коэффициент прямой. Различные виды уравнений прямой (каноническое уравнение, общее, «в отрезках», нормальное). Угол между прямыми. Расстояние от точки до прямой.

Плоскость: нормальный вектор, общее уравнение плоскости. Различные виды уравнений плоскости («в отрезках», нормальное уравнение). Угол между плоскостями, расстояние от точки до плоскости.

Прямая в пространстве: канонические, параметрические уравнения. Прямая как пересечение двух плоскостей. Угол между прямыми и угол между прямой и плоскостью.

Системы координат на плоскости: прямоугольная и полярная. Системы координат в пространстве: прямоугольная, цилиндрическая и сферическая. Кривые второго порядка: определения и канонические уравнения эллипса, окружности, гиперболы и параболы. Поверхности второго порядка: Эллипсоиды, сфера, однополостный и двуполостный гиперболоиды, эллиптический и гиперболический параболоиды. Конус второго порядка. Цилиндры второго порядка.

ЛИТЕРАТУРА

1. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. - М.: Наука, 1984.

- 2. Данко П.В., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. М.: Высшая школа, 1986.
- 3. Волокитин Г.И., Ларченко В.В., Азаров Д.А., Редько Ю.С. Начала линейной алгебры. Учебное пособие. Ростов-на-Дону: Издательский центр ДГТУ, 2012.
- 4. Я.С. Бугров, С.М. Никольский. Элементы линейной алгебры и аналитическая геометрия. Москва «Наука». Главная редакция физико-математической литературы, 1980.
- 5. В.А. Ильин, Э.Г. Позняк. Аналитическая геометрия. Издание четвертое, дополненное. Москва «Наука» Главная редакция физико-математической литературы, 1973.

ВАРИАНТЫ ЗАДАНИЙ КОНТРОЛЬНОЙ РАБОТЫ № 1

Задача 1. Даны матрицы A и B. E - единичная матрица. Найти:

- a) матрицу $(A-2E)\cdot B$;
- б) обратную матрицу A^{-1} и проверить, что $A^{-1} \cdot A = E$:

1.
$$A = \begin{bmatrix} 4 & -1 & -5 \\ 0 & 2 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} -13 \\ 16 \end{bmatrix};$$

$$A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix};$$

$$A = \begin{bmatrix} 2 & 2 & -1 \\ -2 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 5 \\ -3 \\ -2 \end{bmatrix};$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 5 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ -4 \\ -3 \end{bmatrix};$$

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 5 \\ 5 \\ 8 \end{bmatrix};$$

$$A = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -1 & 2 \\ 3 & -4 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix};$$

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & -1 & 2 \\ 3 & 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -2 \\ 0 \\ -1 \end{bmatrix};$$

$$A = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -1 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 6 \\ 7 \end{bmatrix};$$

$$A = \begin{pmatrix} 3 & -1 & 1 \\ -2 & 2 & 1 \\ 1 & 1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 3 \\ 1 \\ 6 \end{pmatrix},$$

$$A = \begin{pmatrix} 2 & -2 & 1 \\ -3 & 1 & 2 \\ 1 & 1 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix},$$

$$10.$$

Задача 2. Тремя методами (Крамера, матричным методом и методом Гаусса) решить систему линейных алгебраических уравнений: $A \cdot X = B$, где матрицы A и B заданы в

условии задачи 1, а X - матрица-столбец неизвестных $X = \left| x_2 \right|$

Задача 3. Даны точки

$$A(x_1;y_1;z_1)$$
, $B(x_2;y_2;z_2)$, $C(x_3;y_3;z_3)$, $D(x_4;y_4;z_4)$. Найти:

- а) Координаты, модуль и направляющие косинусы вектора AB;
- б) Проекцию вектора AB на вектор CD;
- в) Скалярное произведение векторов AB и BC , а также угол между ними;
- г) Векторное произведение векторов \overline{AB} и \overline{AC} , а также площадь треугольника $\Box ABC$:
- д) Смешанное произведение векторов $\overline{AB}, \ \overline{AC}, \ \overline{AD}$, а также объем пирамиды ABCD.

$$A(1;3;1), B(2;3;-2), C(-1;2;1), D(1;3;2)$$

1.
$$A(1;3;1)$$
; $B(2;3;-2)$; $C(-1;2;1)$; $D(1;3;2)$;
2. $A(2;-1;1)$; $B(5;5;4)$; $C(3;2;-1)$; $D(4;1;3)$;

3.
$$A(1;0;1)$$
; $B(3;2;4)$; $C(-1;4;4)$; $D(1;1;3)$;

4.
$$A(2;-1;-1); B(5;5;4); C(3;2;-1); D(9;0;1);$$

5.
$$A(2;3;1); B(4;1;-2); C(6;3;7); D(-5;-4;8);$$

6.
$$A(2;0;0); B(0;3;0); C(0;0;6); D(2;3;8)$$

7.
$$A(1;3;1)$$
; $B(2;1;-1)$; $C(-1;2;-2)$; $D(1;1;1)$;

8.
$$A(5;1;-4); B(1;2;-1); C(3;3;-4); D(2;2;2)$$

9.
$$A(2;1;-3)$$
; $B(3;-1;3)$; $C(1;-2;4)$; $D(2;-1;3)$;

10.
$$A(1; 2; 3); B(9; 6; 4); C(3; 0; 4); D(5; 2; 6)$$

Задача 4. На плоскости даны вершины треугольника $\square ABC$. Найти:

- а) Канонические уравнения сторон AB и AC;
- б) Уравнение высоты, опущенной из вершины В;
- в) Внутренний угол $\angle A$;
- г) Уравнение медианы, проведенной из вершины В;
- д) Расстояние от точки В до стороны AC . Сделать чертеж:

1.
$$A(1;3)$$
, $B(2;3)$, $C(-1;2)$

2.
$$A(2;-1), B(5;5), C(3;2)$$

3.
$$A(1;0), B(3;2), C(-1;4)$$

1.
$$A(2;-1)$$
, $B(5;5)$, $C(3;2)$;
3. $A(1;0)$, $B(3;2)$, $C(-1;4)$;
4. $A(2;-1)$, $B(5;3)$, $C(3;-2)$;
5. $A(2;3)$, $B(4;1)$, $C(6;3)$;
6. $A(2;0)$, $B(0;3)$, $C(0;0)$;

5.
$$A(2;3), B(4;1), C(6;3)$$

6.
$$A(2;0), B(0;3), C(0;0)$$

7.
$$A(1;3), B(2;1), C(-1;2)$$

8.
$$A(5;1)$$
, $B(1;2)$, $C(3;3)$;
9. $A(2;1)$, $B(3;-1)$, $C(1;-2)$;
10. $A(1;2)$, $B(9;6)$, $C(3;0)$.

9.
$$A(2;1), B(3;-1), C(1;-2)$$

10.
$$A(1;2), B(9;6), C(3;0)$$

Задача 5. Точки A , B , C , D , координаты которых заданы в условии задачи 3, являются вершинами пирамиды. Найти:

- а). Уравнения ребра AB;
- б). Угол между ребрами AB и AC;
- в). Уравнение грани ABC;
- г). Угол между ребром AD и гранью ABC;
- д). Уравнение высоты пирамиды, опущенной из вершины $\,D$, а также проекцию этой вершины на плоскость ABC .

ОБРАЗЦЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНОЙ РАБОТЫ №1

Пример 1. Даны матрицы A и B. E - единичная матрица. Найти: а) матрицу $(A-2E)\cdot B$; б) обратную матрицу A^{-1} и проверить, что $A^{-1}\cdot A=E$:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 5 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

Решение. а) Раскроем скобки, получим

$$(A-2E) \cdot B = A \cdot B - 2E \cdot B = A \cdot B - 2B$$

Применяя правило умножения матрицы на матрицу, имеем

$$A \cdot B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 5 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \cdot 2 + 2 \cdot 0 + 3 \cdot 0 \\ 2 \cdot 2 + 3 \cdot 0 + 1 \cdot 0 \\ 3 \cdot 2 + 5 \cdot 0 + 2 \cdot 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$$

Следовательно

$$(A-2E) \cdot B = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} - 2 \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} - \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \\ 6 \end{pmatrix}$$

б) Обратную матрицу A^{-1} найдем, используя присоединенную матрицу A^{+} . Элементы присоединенной матрицы - это алгебраические дополнения соответствующих элементов матрицы A, расположенные по столбцам:

$$A^{+} = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}.$$

Обратная матрица определяется формулой:

$$A^{-1} = \frac{1}{\det A} A^{+}$$

Вычислим определитель матрицы, проверим, что матрица невырожденная, следовательно, имеет обратную матрицу. Определитель найдем, раскрывая по элементам первой строки:

$$\det A = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 5 & 2 \end{vmatrix} = 1 \cdot \begin{vmatrix} 3 & 1 \\ 5 & 2 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} + 3 \cdot \begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix} = 1 - 2 \cdot (4 - 3) + 3 \cdot (10 - 9) = 2 \neq 0$$

Находим алгебраические дополнения элементов исходной матрицы A:

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 3 & 1 \\ 5 & 2 \end{vmatrix} = 3 \cdot 2 - 5 \cdot 1 = 1; \qquad A_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = -(4 - 3) = -1;$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix} = 10 - 9 = 1;$$

$$A_{21} = -\begin{vmatrix} 2 & 3 \\ 5 & 2 \end{vmatrix} = 11; \qquad A_{22} = \begin{vmatrix} 1 & 3 \\ 3 & 2 \end{vmatrix} = -7; \qquad A_{23} = -\begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} = 1; \qquad A_{31} = \begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix} = -7;$$

$$A_{32} = -\begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = 5; \qquad A_{33} = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1$$

Итак, присоединенная матрица имеет вид:

$$A^{+} = \begin{pmatrix} 1 & 11 & -7 \\ -1 & -7 & 5 \\ 1 & 1 & -1 \end{pmatrix}$$

Таким образом, обратная матрица равна

$$A^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 11 & -7 \\ -1 & -7 & 5 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1/2 & 11/2 & -7/2 \\ -1/2 & -7/2 & 5/2 \\ 1/2 & 1/2 & -1/2 \end{pmatrix}$$

Проверим, что обратная матрица найдена правильно, должно выполняться условие $A^{-1} \cdot A = E$. Вычислим элементы произведения матриц:

$$e_{11} = \frac{1}{2} \cdot 1 + \frac{11}{2} \cdot 2 + \left(-\frac{7}{2}\right) \cdot 3 = \frac{23 - 21}{2} = 1$$
 - верно, $e_{21} = -\frac{1}{2} \cdot 1 + \left(-\frac{7}{2}\right) \cdot 2 + \frac{5}{2} \cdot 3 = \frac{-1 - 14 + 15}{2} = 0$ - верно, $e_{31} = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2 + \left(-\frac{1}{2} \cdot 3\right) = 0$ - верно.

Пример 2. Тремя методами (Крамера, матричным методом и методом Гаусса) решить систему линейных алгебраических уравнений: $A\cdot X=B$, где матрицы A и B заданы в условии задачи 1, а X - матрица-столбец неизвестных $X=\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}$.

Решение. Учитывая правило перемножения матриц, запишем подробный вид системы:

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 2\\ 2x_1 + 3x_2 + x_3 = 0\\ 3x_1 + 5x_2 + 2x_3 = 0 \end{cases}$$

Получим решение по формулам Крамера: $x_1=\frac{\Delta_1}{\Delta}, \quad x_2=\frac{\Delta_2}{\Delta}, \quad x_3=\frac{\Delta_3}{\Delta}$. Здесь $\Delta=\det A=2$ - определитель матрицы системы, он найден в задаче 1 при нахождении обратной матрицы. $\Delta_1, \quad \Delta_2, \quad \Delta_3$ - определители, полученные из определителя матрицы системы заменой соответственно первого, второго, третьего столбца матрицы столбцом правых частей:

$$\Delta_{1} = \begin{vmatrix} 2 & 2 & 3 \\ 0 & 3 & 1 \\ 0 & 5 & 2 \end{vmatrix} = 2, \quad \Delta_{2} = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 0 & 2 \end{vmatrix} = -2, \quad \Delta_{3} = \begin{vmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 3 & 5 & 0 \end{vmatrix} = 2$$

Таким образом, получаем,

$$x_1 = \frac{2}{2} = 1$$
, $x_2 = \frac{-2}{2} = -1$, $x_3 = \frac{2}{2} = 1$

Получим решение матричным методом. В этом случае решение определяется формулой:

$$X = A^{-1} \cdot B$$

Обратная матрица была найдена при решении задачи 1. Поэтому сразу запишем

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1/2 & 11/2 & -7/2 \\ -1/2 & -7/2 & 5/2 \\ 1/2 & 1/2 & -1/2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \cdot 2 + 11/2 \cdot 0 - 7/2 \cdot 0 \\ -1/2 \cdot 2 - 7/2 \cdot 0 + 5/2 \cdot 0 \\ 1/2 \cdot 2 + 1/2 \cdot 0 - 1/2 \cdot 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Сравнивая соответствующие элементы матриц слева и справа, снова находим

$$x_1 = 1$$
, $x_2 = -1$, $x_3 = 1$

Получим решение методом Гаусса. При помощи элементарных преобразований строк расширенной матрицы A последовательно исключаем неизвестные в уравнениях системы. На месте клетки A получим единичную матрицу E, при этом на месте клетки B появится вектор решения.

$$(A|B) = \begin{pmatrix} \boxed{1} & 2 & 3 & 2 \\ 2 & 3 & 1 & 0 \\ 3 & 5 & 2 & 0 \end{pmatrix} \square \stackrel{2c-2\times1c}{3c-3\times1c} \square \begin{pmatrix} 1 & 2 & 3 & 2 \\ 0 & -1 & -5 & -4 \\ 0 & -1 & -7 & -6 \end{pmatrix} \square 2c\times(-1)\square \begin{pmatrix} 1 & 2 & 3 & 2 \\ 0 & \boxed{1} & 5 & 4 \\ 0 & -1 & -7 & -6 \end{pmatrix} \square 1c-2\times2c \square \begin{pmatrix} 1 & 0 & -7 & -6 \\ 0 & 1 & 5 & 4 \\ 0 & 0 & -2 & -2 \end{pmatrix} \square 3c:(-2)\square \begin{pmatrix} 1 & 0 & -7 & -6 \\ 0 & 1 & 5 & 4 \\ 0 & 0 & \boxed{1} & 1 \end{pmatrix} \square \stackrel{2c-5\times3c}{1c+7\times3c}\square \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

Пример 3. Даны точки

$$A(1;0;-1), \quad B(2;2;-3), \quad C(3;1;1), \quad D(4;-3;5)$$
. Найти:

- а) Координаты, модуль и направляющие косинусы вектора \overline{AB} ;
- 6) Проекцию вектора \overline{AB} на вектор CD;
- в) Скалярное произведение векторов \overline{AB} и \overline{BC} , а также угол между ними;
- г) Векторное произведение векторов \overline{AB} и \overline{AC} , а также площадь треугольника $\square ABC$;
- д) Смешанное произведение векторов $\overline{AB}, \ \overline{AC}, \ \overline{AD}$, а также объем пирамиды ABCD.

Решение. а) Вектор \overline{AB} найдем по формуле $\overline{AB} = \left\{ x_B - x_A; y_B - y_A; z_B - z_A \right\}$: $\overline{AB} = \left\{ 2 - 1; 2 - 0; -3 - \left(-1 \right) \right\} = \left\{ 1; 2; -2 \right\}$.

Модуль вектора $\mathbf{a}=\left\{a_1,a_2,a_3\right\}$ определяется соотношением $\left|\mathbf{a}\right|=\sqrt{a_1^2+a_2^2+a_3^2}$. Получаем отсюда $\left|\overline{AB}\right|=\sqrt{1^2+2^2+\left(-2\right)^2}=3$. Направляющие косинусы — это координаты орта вектора \overline{AB} . Т.е. вектора $\overline{AB}^0=\frac{\overline{AB}}{\left|\overline{AB}\right|}=\frac{\left\{1;2;-2\right\}}{3}=\left\{\frac{1}{3};\frac{2}{3};-\frac{2}{3}\right\}$. Направляющие косинусы равны: $\cos\alpha=\frac{1}{2}$, $\cos\beta=\frac{2}{3}$, $\cos\gamma=-\frac{2}{3}$.

б) Проекцию вектора вычислим с помощью скалярного произведения:

$$np_{\overline{CD}}\overline{AB} = \frac{AB \cdot CD}{\left|\overline{CD}\right|}$$

Найдем вектор $\overline{CD} = \big\{1; -4; 4\big\}$. Учитывая формулу вычисления скалярного произведения векторов в координатах

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

найдем проекцию

$$np_{\overline{CD}}\overline{AB} = \frac{1 \cdot 1 + 2 \cdot (-4) + (-2) \cdot 4}{\sqrt{1^2 + (-4)^2 + 4^2}} = \frac{-15}{\sqrt{33}}$$

в) Найдем вектор \overline{BC} и вычислим скалярное произведение векторов \overline{AB} и \overline{BC} . $\overline{BC} = \{1;-1;4\}$. $\overline{AB} \cdot \overline{BC} = \{1;2;-2\} \cdot \{1;-1;4\} = 1 \cdot 1 + 2 \cdot (-1) + (-2) \cdot 4 = -9$.

Косинус угла arphi между векторами \overline{AB} и \overline{BC} определяется равенством

$$\cos \varphi = \frac{\overline{AB} \cdot \overline{BC}}{\left| \overline{AB} \right| \left| \overline{BC} \right|} = \frac{-9}{3\sqrt{1^2 + \left(-1\right)^2 + 4^2}} = -\frac{1}{\sqrt{2}}$$

Отсюда заключаем, что угол $\, \varphi = \frac{3}{4} \pi \, . \,$

Найдем вектор \overline{AC} и вычислим векторное произведение векторов с помощью формулы

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$\overline{AC} = \left\{2;1;2\right\}. \qquad \overline{AB} \times \overline{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -2 \\ 2 & 1 & 2 \end{vmatrix} = 6\mathbf{i} - 6\mathbf{j} + (-3)\mathbf{k} = \left\{6;6;-3\right\}$$

 $AC = \{2;1;2\}$. 2 - 1 - 2 . Учитывая, что модуль векторного произведения — площадь параллелограмма, для площади треугольника

$$S_{\triangle ABC} = \frac{1}{2} \left| \overline{AB} \times \overline{AC} \right| = \frac{1}{2} \left| \{6; 6; -3\} \right| = \frac{1}{2} \sqrt{6^2 + 6^2 + \left(-3\right)^2} = \frac{9}{2}$$

д) Найдем вектор AD и вычислим смешанное произведение по формуле

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

Имеем
$$\overline{AD} = \{3; -3; 6\}. (\overline{AB}, \overline{AC}, \overline{AD}) = \begin{vmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & -3 & 6 \end{vmatrix} = 18.$$

Учитывая, что модуль смешанного произведения численно равен объему параллелепипеда, построенного па векторах-сомножителях, а объем пирамиды составляет шестую часть объема параллелепипеда, получаем

$$V_{nup} = \frac{18}{6} = 3$$

Пример 4. На плоскости даны вершины треугольника $\Box ABC$. Найти:

- а) Канонические уравнения сторон AB и AC;
- б) Уравнение высоты, опущенной из вершины В;
- в) Внутренний угол $\angle A$;
- г) Уравнение медианы, проведенной из вершины В;

д) Расстояние от точки В до стороны AC . Сделать чертеж:

Решение. а) Уравнения сторон найдем, используя уравнение прямой, прохо-

$$\frac{y-y_1}{}=\frac{x-x_1}{}$$

дящей через две заданные точки: $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$

$$AB: \frac{y-0}{2-0} = \frac{x-1}{2-1}, \quad y = 2x-2.$$

$$AB: \frac{y-0}{2-0} = \frac{x-1}{2-1}, \quad y = 2x-2.$$
 $AC: \frac{y-0}{1-0} = \frac{x-1}{3-1}, \quad y = \frac{1}{2}x - \frac{1}{2}.$

Угловой коэффициент прямой AC равен $k_{AC} = \frac{1}{2}$.

б) Угловой коэффициент высоты BH связан с угловым коэффициентом стороны AC соотношением $k_{AC} \cdot k_{BH} = -1$. Отсюда находим, $k_{BH} = -2$. Уравнение высоты составим, используя уравнение прямой, имеющей заданный наклон и проходящей через заданную точку: $y - y_0 = k(x - x_0)$.

$$BH: y-2=-2(x-2), y=-2x+6$$

в) Для нахождения внутреннего угла $\angle A$ используем формулу

$$tg \angle A = \frac{k_{AB} - k_{AC}}{1 + k_{AB} \cdot k_{AC}}$$

Получаем,
$$tg \angle A = \frac{2-1/2}{1+2\cdot 1/2} = \frac{3}{4}$$
. $\angle A = arctg \frac{3}{4}$.

г) Чтобы составить уравнение медианы, найдем координаты точки $\,M\,$ - середи-

ны стороны
$$AC$$
: $x_M = \frac{x_A + x_C}{2} = \frac{1+3}{2} = 2$, $y_M = \frac{y_A + y_C}{2} = \frac{0+1}{2} = \frac{1}{2}$.

$$BM: \frac{y-2}{1/2-2} = \frac{x-2}{2-2}, \quad x=2$$

(каноническое уравнение вертикальной прямой).

д) Расстояние от вершины B до стороны AC найдем по формуле:

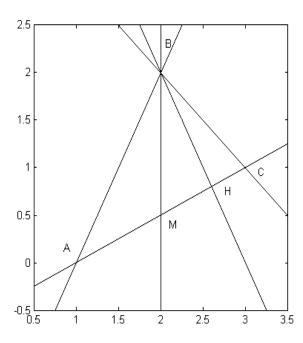
$$d=rac{\left|Ax_{0}+By_{0}+C
ight|}{\sqrt{A^{2}+B^{2}}}$$
 , где $Ax+By+C=0$ - общее уравнение прямой, $\left(x_{0};y_{0}
ight)$ -

точка, от которой определяется расстояние. Общее уравнение стороны AC

$$d = \frac{|2 - 2 \cdot 2 - 1|}{\sqrt{1^2 + (-2)^2}} = \frac{3}{\sqrt{5}}$$

вид: x-2y-1=0. Поэтому

Строим треугольник в координатных осях:



Пример 5. Точки A(1;2;3), B(3;0;2), C(6;3;-1), D(4;1;5) являются вершинами пирамиды. Найти:

- а) Уравнения ребра AB;
- б) Угол между ребрами AB и AC;
- в) Уравнение грани ABC;
- г) Угол между ребром AD и гранью ABC ;
- д) Уравнение высоты пирамиды, опущенной из вершины $\ D$, а также проекцию этой вершины на плоскость ABC .

Решение. а) Канонические уравнения прямой в пространстве, проходящей через две заданные точки, определяются соотношениями

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

Следовательно, уравнения ребра
$$AB$$
 имеют вид
$$\frac{x-1}{3-1} = \frac{y-2}{0-2} = \frac{z-3}{2-3}, \qquad \qquad \frac{x-1}{2} = \frac{y-2}{-2} = \frac{z-3}{-1}.$$

б) Угол между ребрами - это угол φ между векторами \overline{AB} и \overline{AC} .

Эти векторы соответственно равны $\overline{AB} = \{2; -2; -1\}$ и $\overline{AC} = \{5; 1; -4\}$. Поэтому

$$\cos \varphi = \frac{\overline{AB} \cdot \overline{AC}}{|\overline{AB}||\overline{AC}|} = \frac{2 \cdot 5 + (-2) \cdot 1 + (-1) \cdot (-4)}{\sqrt{2^2 + (-2)^2 + (-1)^2} \sqrt{5^2 + 1^2 + (-4)^2}} = \frac{4}{\sqrt{42}}$$

в) Составим уравнение грани ABC , используя условие компланарности векторов \overline{AB} , \overline{AC} и текущего вектора $\overline{AM} = \{x-1; y-2; z-3\}$:

$$\left(\overline{AM}, \overline{AB}, \overline{AC}\right) = \begin{vmatrix} x-1 & y-2 & z-3 \\ 2 & -2 & -1 \\ 5 & 1 & -4 \end{vmatrix} = 0$$

Раскрывая определитель, получим

$$egin{aligned} \left(x-1
ight)igg|-2 & -1 \ 1 & -4 \ -\left(y-2
ight)igg|5 & -4 \ +\left(z-3
ight)igg|2 & -2 \ 5 & 1 \ = 0 \ 3x+y+4z-17=0 \end{aligned}$$
 , или

г) Угол lpha между прямой с направляющим вектором $^{f a}$ и плоскостью с нормальным вектором $^{f N}$ определяется формулой

$$\sin \alpha = \frac{\mathbf{a} \cdot \mathbf{N}}{|\mathbf{a}||\mathbf{N}|}$$

Направляющий вектор ребра равен $\mathbf{a} = \overline{AD} = \left\{3; -1; 2\right\}$, координаты нормального вектора плоскости — это коэффициенты в общем уравнении плоскости, т.е. $\mathbf{N} = \left\{3; 1; 4\right\}$. Отсюда получаем

$$\sin \alpha = \frac{3 \cdot 3 + (-1) \cdot 1 + 2 \cdot 4}{\sqrt{3^2 + (-1)^2 + 2^2} \sqrt{3^2 + 1^2 + 4^2}} = \frac{8}{\sqrt{91}}$$

$$\alpha = \arcsin \frac{8}{\sqrt{91}}$$

д) Направляющим вектором высоты пирамиды, опущенной из вершины D , является нормальный вектор плоскости $\mathbf{N} = \{3;1;4\}$. Поэтому канонические уравнения высоты следующие

$$\frac{x-4}{3} = \frac{y-1}{1} = \frac{z-5}{4}$$

Проекцию P вершины D на плоскость основания найдем как пересечение прямой DP и плоскости ABC . Для этого от канонических уравнений высоты перейдем к параметрическим уравнениям:

$$\frac{x-4}{3} = \frac{y-1}{1} = \frac{z-5}{4} = t$$
, $x = 3t+4$, $y = t+1$, $z = 4t+5$

Подставляя последние соотношения в уравнение плоскости ABC , получаем уравнение для определения значения параметра t , соответствующего точке P :

$$3(3t+4)t+1+4(4t+5)-17=0$$
, $t=-\frac{8}{13}$

Подставляя полученное значение t в параметрические уравнения высоты, находим координаты точки P :

$$x = 3\left(-\frac{8}{13}\right) + 4 = \frac{28}{13}, \quad y = -\frac{8}{13} + 1 = \frac{5}{13}, \quad z = 4\left(-\frac{8}{13}\right) + 5 = \frac{33}{13}$$

КОНТРОЛЬНАЯ РАБОТА №2

Введение в анализ

Функция одной переменной. Предел последовательности и функции. Бесконечно малые и бесконечно большие величины. Сравнение бесконечно малых. Теоремы о первом и втором специальных пределах. Число \boldsymbol{e} , экспонента, натуральный логарифм. Непрерывность функции. Точки разрыва, их классификация. Свойства непрерывных на отрезке функций.

Дифференциальное исчисление

Задачи, приводящие к понятию производной (о касательной к кривой и о скорости). Определение производной, ее геометрический и механический смысл.. Правила дифференцирования. Таблица производных основных элементарных функций. Повторное дифференцирование. Вычисление производных функций, заданных неявно и параметрически. Дифференциал функции: определение, свойства, геометрический смысл, инвариантность. Применение дифференциалов в приближенных вычислениях. Теоремы Ферма, Ролля, Лагранжа и Коши. Правило Лопиталя раскрытия неопределенностей. Приложение дифференциального исчисления к исследованию функций: монотонность, экстремумы, направление выпуклости кривых и точки перегиба. Асимптоты. Общая схема исследования функции. Формула Тэйлора для многочлена и для функции с остаточным членом в форме Лагранжа, формулы для основных элементарных функций.

Литература

- 1. Данко П.В., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. М.: Высшая школа, 1986.
- 2. Бермант А.Ф., Араманович А.Г. Краткий курс математического анализа для втузов, ч.1. М.: Наука, 1978.
- 3. Фролов С.В., Шостак Р.Я. Курс высшей математики для втузов. М.: Высшая школа, 1973.
- 4. Пискунов Н.С. Дифференциальное и интегральное исчисления. Т.1. М.: Интеграл-Пресс, 2005.
- 5. Ворович Е.И., Глушкова В.Н., Тукодова О.М., Федосеев В.Б. Введение в математический анализ. Понятие производной. Учебное пособие. Ростов н/Д. Издательский центр ДГТУ, 2012.
- 6. Мишняков Н.Т., Ароева Г.А., Коровина К.С. Приложение производной к исследованию функций. Учебное пособие. Ростов н/Д. Издательский центр ДГТУ, 2012.

ВАРИАНТЫ ЗАДАНИЙ КОНТРОЛЬНОЙ РАБОТЫ № 2

Задача 1. Найти области определения функций:

1. a)
$$y = \sqrt{\frac{5x+4}{x^2-x-2}}$$
; 6) $y = \sqrt{x-1} + \lg(2-x)$.

2. a)
$$y = \sqrt[4]{\frac{3x-4}{x^2-9}}$$
; 6) $y = \sqrt{1-x^2} + \arcsin(2x-1)$.

3. a)
$$y = \frac{x-3}{x^2 - 5x + 6}$$
; 6) $y = \lg(x^2 - 9)$.

4. a)
$$y = \frac{2x-1}{x^2+3x+2}$$
; 6) $y = \sqrt{1+x}-2\sqrt{5-x}$.

5. a)
$$y = \frac{\sqrt{x-1}}{x^2 - 4}$$
; 6) $y = \frac{tg x}{\sqrt{x^2 - x + 1}}$.

6. a)
$$y = \frac{2x^2}{x^2 - 16}$$
; 6) $y = \arcsin \frac{2x}{1 + x}$.

7. a)
$$y = \lg(x+3) + \sqrt{x}$$
; 6) $y = \arccos \frac{1-2x}{3}$.

8. a)
$$y = \frac{3x+1}{x^3-8}$$
; 6) $y = \sqrt{x^2-3x+2}$.

9. a)
$$y = \sqrt{x^2 - \frac{1}{x^2}} + e^{\frac{1}{x-2}}$$
 6) $y = \lg(x-3) + \lg(x+3)$.

Задача 2. Найти пределы функций, не пользуясь правилом Лопиталя.

1.a)
$$\lim_{x \to 7} \frac{2x^2 - 11x - 21}{x^2 - 9x + 14}$$
; 6) $\lim_{x \to 4} \frac{\sqrt{1 + 2x} - 3}{\sqrt{x} - 2}$;

B)
$$\lim_{x\to 0} \frac{\sin^2 x - tg^2 x}{x^4}$$
; $r) \lim_{x\to \infty} \left(\frac{x^2 - 2}{x^2 + 5}\right)^{3x^2}$.

2.a)
$$\lim_{x \to \infty} \frac{2x^2 - 3x + 4}{3x^2 - 5}$$
; 6) $\lim_{x \to 2} \frac{\sqrt[3]{10 - x} - 2}{x - 2}$;

B)
$$\lim_{x\to 0} \frac{2x\sin x}{1-\cos x}$$
; $\int \lim_{x\to \infty} x \left[\ln(2+x) - \ln x\right]$.

3.a)
$$\lim_{x \to 4} \frac{x^2 - 5x + 4}{x^2 - 6x + 8}$$
; 6) $\lim_{x \to \infty} (\sqrt{x^2 + x + 3} - \sqrt{x^2 - 4x})$;

$$B) \lim_{x \to 0} \frac{1 - \cos 6x}{x \sin x} ;$$

$$\Gamma) \lim_{x \to \infty} \left(\frac{x-5}{x+2} \right)^{2x}.$$

4.a)
$$\lim_{x\to 1} \frac{x^2-1}{2x^2-x-1}$$
;

6)
$$\lim_{x\to 0} \frac{\sqrt{9+5x+4x^2}-3}{x}$$
;

B)
$$\lim_{x\to 0} \frac{tg \ x - \sin x}{x(1-\cos 2x)};$$

$$\Gamma) \lim_{x\to\infty} x \ln\left(1-\frac{3}{x}\right).$$

5.a)
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^3 - x^2 - x + 1}$$
;

6)
$$\lim_{x \to \infty} \left(\frac{x^3}{3x^2 - 4} - \frac{x^2}{3x + 2} \right)$$
;

B)
$$\lim_{x\to 0} \frac{1-\cos^3 x}{12 x^2}$$
;

r)
$$\lim_{x \to \infty} \left(\frac{x^2 + 4}{x^2 - 4} \right)^{3x^2}$$
.

6.a)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x^2 - 1}$$
;

6)
$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - \sqrt[3]{x}};$$

B)
$$\lim_{x \to 0} \frac{\sin 2x + 2\sin x}{x}$$
; $r) \lim_{x \to \infty} x \ln (1 - \frac{3}{x})$.

$$\Gamma) \lim_{x \to \infty} x \ln \left(1 - \frac{3}{x}\right).$$

7.a)
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x^2 - 16}$$
;

6)
$$\lim_{x \to \infty} \left(\frac{x^3 + 3x^2}{x^2 + 1} - x \right)$$
;

$$B) \lim_{x \to 0} \frac{tg \ x - \sin x}{x^3}$$

B)
$$\lim_{x\to 0} \frac{tg \ x - \sin x}{x^3}$$
; $r) \lim_{x\to \infty} \left(\frac{4x-1}{4x+3}\right)^{2x}$.

8.a)
$$\lim_{x \to 1} \left(\frac{\sqrt{1+x} - \sqrt{2x}}{x^2 - 1} \right)$$

8.a)
$$\lim_{x \to 1} \left(\frac{\sqrt{1+x} - \sqrt{2x}}{x^2 - 1} \right)$$
; 6) $\lim_{x \to +\infty} (3x - 2) [\ln(2x - 1) - \ln(2x + 1)]$;

B)
$$\lim_{x\to 0} \frac{\cos 5x - \cos 3x}{\sin^2 x}$$
; Γ) $\lim_{x\to \infty} \left(\frac{3x+2}{3x-5}\right)^{2x}$.

9.a)
$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9}$$
; 6) $\lim_{x \to 1} \left(\frac{\sqrt{1+x} - \sqrt{2x}}{x^2 - 1} \right)$;

6)
$$\lim_{x \to 1} \left(\frac{\sqrt{1+x} - \sqrt{2x}}{x^2 - 1} \right)$$
;

B)
$$\lim_{x\to 0} \frac{tg \ x - \sin x}{x \sin x}$$
;

$$\Gamma \lim_{x \to \infty} (2x+1) \left[\ln (x+3) - \ln x \right].$$

10.a)
$$\lim_{x\to 2} \left(\frac{1}{x-2} - \frac{12}{x^3 - 8} \right);$$
 6) $\lim_{x\to \infty} \left(\frac{x^3}{x^2 + 1} - x + 1 \right);$

6)
$$\lim_{x \to \infty} \left(\frac{x^3}{x^2 + 1} - x + 1 \right)$$
;

$$\text{B)} \quad \lim_{x \to 0} \frac{\cos 3x - \cos x}{tg^2 2x}$$

B)
$$\lim_{x\to 0} \frac{\cos 3x - \cos x}{tg^2 2x}$$
; $r) \lim_{x\to \infty} \left(\frac{2x^2 + 3}{2x^2 + 5}\right)^{8x^2 + 3}$.

Задача 3. Найти производную $\frac{dy}{dx}$: а) исходя из определения производной функции y = y(x); б) используя правила дифференцирования и формулы таблицы производных основных элементарных функций; в) сложной функции y = y(u(v(x))); г) функции, заданной в неявном виде; д) функции, заданной параметрически:

1. a)
$$y = 2x^2 - x$$

1. a)
$$y = 2x^2 - x$$
; 6) $y = 2\sqrt{x} + x^5 \sin x - \frac{\lg(2x+1)}{\arcsin x}$;

B)
$$y = e^{\cos^2 x}$$
; Γ)

$$(x^2 + y^2)^3 = xy$$
, $x = \frac{1+t^3}{t^2-1}$, $y = \frac{t}{t^2-1}$.

2. a)
$$y = 3 - x^2$$
;

2. a)
$$y = 3 - x^2$$
; 6) $y = 1 + \frac{2}{x} - \sqrt{x} tgx + \frac{5^x}{\sin x}$;

B)
$$y = \lg^2(3x-4)$$
; $y = \arcsin(x+y)$;

д)
$$x = \ln t - \frac{1}{t}$$
, $y = e^{2t} + t^2$.

3. a)
$$y = x + \frac{1}{x} + 1$$
; 6) $y = 1 + x^2 e^{-x} + \frac{\arccos x}{3\sqrt{x}}$;

B)
$$y = \arctan^2(6\sqrt[3]{x} + 1);$$
 $r) \ln^2(x - y) = x + y;$

$$A) \quad x = te^t, \quad y = te^{-t}.$$

4. a)
$$y = e^{2x} + 1$$
; 6) $y = 2 + 10x \ln x - \frac{\sin 3x}{\sqrt{x}}$;

B)
$$y = \left(3^{x^2} + \arctan 2x + \frac{1}{2}\right)^5$$
; r) $x^4 + y^4 = 9\left(x^2 + y^2\right)$; $x = \frac{3t}{t^3 + 1}$, $y = \frac{3t^2}{t^3 + 1}$.

$$\begin{array}{ccc} & \text{ (f)} & x^4 + y^4 = 9(x^2 + y^2); & \text{ (f) } & x = \frac{3t}{t^3 + 1}, & y = \frac{3t}{t^3 + 1}. \end{array}$$

5. a)
$$y = x^3 + 2$$
; 6) $y = \frac{3}{x^4} + x2^x - \frac{\lg x}{\sqrt[4]{x}}$;

B)
$$y = \cos^3\left(\frac{1}{x} - e^{2x}\right)$$
; Γ) $\operatorname{arctg}(x - y) = xy$;

д)
$$x = 4\cos t - 2\cos 2t$$
, $y = 4\sin t - 2\sin 2t$.

6. a)
$$y = 6x - 5x^2$$

6. a)
$$y = 6x - 5x^2$$
; 6) $y = \frac{\sqrt[10]{x}}{2} - 3x \ln x + \frac{x + \sin x}{x + \cos x}$; B) $y = 2^{\sin(x^2 + 1)}$;

B)
$$y = 2^{\sin(x^2+1)}$$
; Γ

$$y=1+xe^y$$

д)
$$x = 2\sin^3 t$$
, $y = 2\cos^3 t$.

7. a)
$$y = 2x - x^2$$
; 6) $y = 1 + 4\sqrt[4]{x} - x^5 e^{-3x} + \frac{\text{tg}x}{\sqrt{x}}$;

B)
$$y = \arcsin^2\left(x^3 - \frac{1}{x}\right)$$
; r) $2^{x^3 + y^3} = xy$;

$$x = t^3 + 3t + 1$$
, $y = t^3 - 3t + 1$.

8. a)
$$y = \frac{1}{3}x^3 - 2$$
; 6) $y = 1 + 3x + x^2 2^{2x} - \frac{\text{ctg}x}{\sqrt{x}}$;

в)
$$y = \left(\arccos^5 x + \sqrt{1 - x^2}\right)^4$$
; r r $y = \left(\arccos^5 x + \sqrt{1 - x^2}\right)^4$; r д)

 $x = e^t \cos t$, $y = e^t \sin t$

9. a)
$$y = \sin x$$
; 6) $y = 12 - 3x^4 + \sqrt{x} \operatorname{arcctg} x + \frac{\ln x}{x}$; B) $y = \cos(2^{\sqrt{x}+1})$; r)
$$e^x \sin y - e^{-y} \cos x = 0$$

$$(x = 2 \ln \cot y, \quad y = \tan x) + \cot y$$

10. a)
$$y = \cos x$$
; 6) $y = 5 + 3^x \sin x - \frac{3x^2 + 6x}{\sqrt{x+1}}$;

B)
$$y = \sqrt{\ln(x^2 + 1)}$$
; r) $x + 2\sqrt{x - y} + y = 0$; $x = \sqrt{1 - t^2}$, $y = \frac{\ln t}{t}$.

Задача 4.

- 1. Найти уравнение касательной и нормали к кривой $y = e^{1-x^2}$ в точках пересечения с прямой y = 1.
- 2. Найти уравнение касательной и нормали к кривой $x^2 + y^2 + 2x 8 = 0$ в точке с ординатой y = 3.
- 3. Найти уравнения касательной и нормали к кривой $y = \arcsin \frac{x-1}{2}$ в точке пересечения с осью Ox.
- 4. Найти уравнения касательной и нормали к кривой:

$$\begin{cases} x = \frac{1+t}{t^3} \\ y = \frac{3}{2t^2} + \frac{1}{2t} \end{cases}$$
 в точке (2;2).

- 5. Найти уравнения касательной и нормали к кривой $y = x^2 + 2x 1$ в точке её пересечения с параболой $y = 2x^2$.
- 6. Составить уравнения касательной и нормали к кривой $y = \frac{1}{1+x^2}$ в точке с абсциссой x=2.
- 7. Найти уравнения касательной и нормали к кривой $y = x^4 + 3x^2 16$ в точках её пересечения с параболой $y = 3x^2$.
- 8. Найти уравнения касательной и нормали к кривой $\left\{ \begin{array}{l} x=t\cos t \\ y=t\sin t \end{array} \right.$

в точке
$$t = \frac{\pi}{4}$$
.

9. Найти уравнение касательной и нормали к кривой $y = \frac{2x}{1+x^2}$ в точке с абсциссой $x = \sqrt{2}$.

10. Найти уравнение касательной и нормали к кривой $x^3 + y^3 + 2y - 6 = 0$ в точке с ординатой y = 3.

Задача 5. Провести полное исследование функции y=f(x) и построить ее график.

План исследования функции.

- 1) Находим область существования функции.
- 2) Проверяем функцию на четность и нечетность и периодичность.
- 3) Находим точки пересечения графика функции с осями координат.
- 4) Находим асимптоты графика функции.
- 5) Вычисляем первую производную функции. Находим интервалы возрастания, убывания функции и точки экстремума.
- 6) Вычисляем вторую производную функции. Находим интервалы выпуклости, вогнутости графика функции и точки перегиба.
- 7) Если для построения графика функции полученных данных недостаточно, берем несколько дополнительных точек из области существования функции.

Строим график функции:

1.
$$y = \frac{1}{1 - x^2}$$
.

$$y = \frac{x}{1 - x^2}.$$

$$3. y = \frac{x}{1+x^2}.$$

4.
$$y = \frac{x^3}{3 - x^2}$$
.

5.
$$y = \frac{2x-1}{(x-1)^2}$$
.

6.
$$y = \frac{x^4}{x^3 - 1}$$
.

7.
$$y = \frac{(x-1)^2}{(x+1)^3}$$
.

8.
$$y = \frac{x^3 + 2x^2 + 7x - 3}{2x^2}.$$

$$y = \frac{x^2}{e^x}.$$

10.
$$y = \frac{x}{e^{x^2/2}}$$

ОБРАЗЦЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНОЙ РАБОТЫ №2

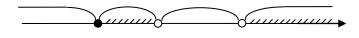
Пример 1. Найти область определения функции $y = \sqrt[4]{\frac{5x-2}{r^2-5r+6}}$.

Решение. Область определения функции в данном случае находим из условия неотрицательности подкоренного выражения:

$$\frac{5x-2}{x^2-5x+6} \ge 0.$$

Это дробно-рациональное неравенство. Решаем его методом интервалов. Нули числителя и знаменателя:

$$5x-2=0 \rightarrow x_1=\frac{2}{5}, \quad x^2-5x+6=0 \rightarrow x_2=2, \quad x_3=3.$$



2/5 2 3 Область определения: $x \in [2/5, 2) \cup (3, +\infty)$.

Пример 2. Найти пределы функций, не пользуясь правилом Лопиталя:

a)
$$\lim_{x \to \infty} \frac{(x^2 - 3x + 4)(x + \sqrt{x})}{(3x - 5)^3}$$
; 6) $\lim_{x \to 1} \frac{\sqrt[3]{2 - x} - 1}{x^3 - 1}$;

B)
$$\lim_{x\to 0} \frac{4 \operatorname{tg} x \arcsin 2x}{1-\cos x}$$
; Γ) $\lim_{x\to \infty} \left(\frac{x^2-x+1}{x^2+x+1}\right)^{3x}$.

Решение. a) Это неопределенность типа $\left(\frac{\infty}{\infty}\right)$. «Раскроем» ee:

$$\lim_{x\to\infty}\frac{(x^2-3x+4)(x+\sqrt{x})}{(3x-5)^3}=$$
 в каждом сомножителе выносим за скобки старшую степень =

$$= \lim_{x \to \infty} \frac{x^2 \left(1 - \frac{3}{x} + \frac{4}{x^2}\right) x \left(1 + \frac{1}{\sqrt{x}}\right)}{x^3 \left(3 - \frac{5}{x}\right)^3} = \frac{\left(1 - 0 + 0\right) \left(1 + 0\right)}{\left(3 - 0\right)^3} = \frac{1}{27}$$

б) Это неопределенность типа $\left(\frac{0}{0}\right)$. Чтобы ее раскрыть, выражения, не содержащие

раскладываем на множители. Среди них обязательно появится скобка, предельное значение которой 0: (x-1). При этом используются известные формулы сокращенного умножения. Выражение с радикалами, предельное значение которого 0, умножаем и делим на соответствующее выражение, чтобы в результате применения формулы также появилась такая же скобка.

$$\lim_{x \to 1} \frac{\sqrt[3]{2-x} - 1}{x^3 - 1} = \left(\frac{0}{0}\right) = \lim_{x \to 1} \frac{\left(\sqrt[3]{2-x} - 1\right)\left(\left(2-x\right)^{2/3} + \left(2-x\right)^{1/3} + 1\right)}{\left(\left(2-x\right)^{2/3} + \left(2-x\right)^{1/3} + 1\right)\left(x-1\right)\left(x^2 + x + 1\right)} = \lim_{x \to 1} \frac{(2-x)^{3/3} - 1^3}{\left(\left(2-1\right)^{2/3} + \left(2-1\right)^{1/3} + 1\right)\left(x-1\right)\left(1^2 + 1 + 1\right)} = \lim_{x \to 1} \frac{(1-x)}{3(x-1)3} = -\frac{1}{9}$$

в) В примерах этого типа используется «первый замечательный предел» или его следствия. Можно применять цепочку эквивалентных бесконечно малых: $x \square \sin x \square \tan x \square \arcsin x \square \arctan x$. Бесконечно малый сомножитель можем заменить более простой эквивалентной величиной.

$$\lim_{x \to 0} \frac{4 \operatorname{tg} x \arcsin 2x}{1 - \cos x} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{4 x \cancel{2} x}{\cancel{2} \sin^2 \frac{x}{2}} = \lim_{x \to 0} \frac{4 x^2}{\left(\frac{x}{2}\right)^2} = \lim_{x \to 0} \frac{16 \cancel{x}^2}{\cancel{x}^2} = 16$$

г) Здесь следует применить «второй замечательный предел» или его следствия.

$$\lim_{x \to \infty} \left(\frac{x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \left(1^{\infty} \right) = \lim_{x \to \infty} \left(1 - 1 + \frac{x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x^2 - x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x + 1}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x + x + 1}{x + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x + x + x + 1}{x + x + 1} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-x^2 - x - 1 + x + x + x + x + 1}{x + x$$

$$= \lim_{x \to \infty} \left(1 + \frac{-2x}{x^2 + x + 1} \right)^{3x} = \lim_{x \to \infty} \left[\left(1 + \frac{-2x}{x^2 + x + 1} \right)^{\frac{x^2 + x + 1}{-2x}} \right]^{\frac{-2x}{x^2 + x + 1}} = \lim_{x \to \infty} e^{\frac{-6x^2}{x^2 + x + 1}} = e^{-6}$$

Пример 3. Найти производную $\frac{dy}{dx}$: а) исходя из определения производной функции y = y(x); б) используя правила дифференцирования и формулы таблицы производных основных элементарных функций; в) сложной функции y = y(u(v(x))); г) функции, заданной в неявном виде; д) функции, заданной параметрически:

a)
$$y = x^3 - \frac{1}{x}$$
; 6) $y = \frac{1}{2} + 3\operatorname{ctg} x - x^4 10^x + \frac{\sin 5x}{\sqrt{x}}$;

B)
$$y = \lg^9(\arcsin x + x)$$
; Γ) $\arctan^2(x + y) = xy$;

д)
$$x = a(t - \sin t), y = a(1 - \cos t).$$

Решение.

а)
$$y(x) = x^3 - \frac{1}{x}$$
, $y(x + \Delta x) = (x + \Delta x)^3 - \frac{1}{x + \Delta x}$. Отсюда следует

$$\Delta y = y(x + \Delta x) - y(x) = ((x + \Delta x)^3 - x^3) + \frac{1}{x} - \frac{1}{x + \Delta x} =$$

$$= (x + \Delta x - x)((x + \Delta x)^2 + x(x + \Delta x) + x^2) + \frac{x + \Delta x - x}{x(x + \Delta x)} =$$

$$= \Delta x((x + \Delta x)^2 + x(x + \Delta x) + x^2) + \frac{\Delta x}{x(x + \Delta x)}$$

Используя определение производной, получаем

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left(\Delta x \left((x + \Delta x)^2 + x(x + \Delta x) + x^2 \right) + \frac{\Delta x}{x(x + \Delta x)} \right) = 3x^2 + \frac{1}{x^2}$$

б) Применяя правила дифференцирования, получим

$$y' = \left(\frac{1}{2} + 3\operatorname{ctg}x - x^{4}10^{x} + \frac{\sin 5x}{\sqrt{x}}\right)' = \left(\frac{1}{2}\right)' + 3\left(\operatorname{ctg}x\right)' - \left(x^{4}10^{x}\right)' + \left(\frac{\sin 5x}{\sqrt{x}}\right)' =$$

$$= 0 + 3\left(-\frac{1}{\sin^{2}x}\right) - \left(x^{4}\right)'10^{x} - x^{4}\left(10^{x}\right)' + \frac{\left(\sin 5x\right)'\sqrt{x} - \sin 5x\left(\sqrt{x}\right)'}{\left(\sqrt{x}\right)^{2}} =$$

$$= -\frac{3}{\sin^{2}x} - 4x^{3}10^{x} - x^{4}10^{x}\ln 10 + \frac{5\cos 5x\sqrt{x} - \frac{\sin 5x}{2\sqrt{x}}}{x}$$

в) Применим формулу дифференцирования сложной функции:

$$(y(u(v(x))))' = y'_u \cdot u'_v \cdot v'_x.$$

$$y'_x = (\lg^9(\arcsin x + x))' = 9\lg^8(\arcsin x + x) \cdot (\lg(\arcsin x + x))' =$$

$$= 9\lg^8(\arcsin x + x) \cdot \frac{1}{(\arcsin x + x)\ln 10} (\arcsin x + x)' =$$

$$= 9\lg^8(\arcsin x + x) \cdot \frac{1}{(\arcsin x + x)\ln 10} \left(\frac{1}{\sqrt{1 - x^2}} + 1\right)$$

г) Если в уравнение, задающее неявную функцию, подставить решение y = y(x), то уравнение превращается в тождество. Тождество можно дифференцировать — равенство не нарушится. Дифференцируем обе части соотношения $\arctan y = xy$, учитывая, что y - функция x:

$$\left(\arctan \left(x+y\right)\right)' = (xy)', \quad 2\arctan \left(x+y\right)\left(\arctan \left(x+y\right)\right)' = x'y + xy',$$

$$2\arctan \left(x+y\right) \frac{1}{1+(x+y)^2} (1+y') = y + xy',$$

$$\frac{2\arctan \left(x+y\right)}{1+(x+y)^2} + y' \frac{2\arctan \left(x+y\right)}{1+(x+y)^2} = y + xy',$$

$$y' \left(\frac{2\arctan \left(x+y\right)}{1+(x+y)^2} - x\right) = y - \frac{2\arctan \left(x+y\right)}{1+(x+y)^2},$$

Получили уравнение относительно неизвестной y' . Решая его, находим

$$y' = -\frac{\frac{2\arctan(x+y)}{1+(x+y)^2} - y}{\frac{2\arctan(x+y)}{1+(x+y)^2} - x}.$$

д) Производную функции, заданной параметрически, определим по формуле $y_x' = \frac{y_t'}{x'}$.

Получаем:
$$y'_{x} = \frac{a(1-\cos t)'}{a(t-\sin t)'} = \frac{\sin t}{1-\cos t} = \frac{2\sin\frac{t}{2}\cos\frac{t}{2}}{2\sin^{2}\frac{t}{2}} = \operatorname{ctg}\frac{t}{2}.$$

Пример 4. Найти уравнение касательной и нормали к кривой $x^3 + y^3 + 2x - 6 = 0$ в точке с абсциссой x = 3.

Решение. Найдем сначала ординату точки с абсциссой x=3. Из уравнения линии имеем: $3^3+y^3+2\cdot 3-6=0$, $y^3=-27$, y=-3. Касательная в точке $M_0\left(x_0,y_0\right)$ определяется уравнением

$$y - y_0 = y'(x_0)(x - x_0).$$

Нормаль определяется уравнением

$$y - y_0 = -\frac{1}{y'(x_0)}(x - x_0).$$

Определим значение производной $y'(x_0) = y'(3; -3)$. Функция в данном случае зада-

на неявно. Имеем $(x^3 + y^3 + 2x - 6)' = 0$, $3x^2 + 3y^2y' + 2 = 0$,

$$y' = -\frac{2+3x^2}{3y^2}$$
, $y'(3;-3) = -\frac{2+3\cdot 3^2}{3(-3)^2} = -\frac{29}{27}$.

Подставляя найденные значения в уравнения касательной и нормали, получим

$$y+3=-\frac{29}{27}(x-3), \quad y=-\frac{29}{27}x+\frac{2}{9}$$
 - касательная. Нормаль:

$$y+3=\frac{27}{29}(x-3)$$
, $y=\frac{27}{29}x-\frac{168}{29}$.

Пример 5. Построить график функции $y = \frac{x^3}{1-x^2}$.

Решение. Проведем полное исследование данной функции по вышеуказанной схеме.

Областью определения функции является вся числовая ось, кроме точек x=1; x=-1. Функция нечетная т.к. f(-x)=-f(x). Для построения графика данной функции y=f(x) достаточно исследовать ее для $x\geq 0$, а затем воспользоваться ее симметричностью. Находим точки пересечения графика функции с осями координат: x=0, y=0, O(0,0)-график функции проходит через начало системы координат.

Находим асимптоты вертикальные, горизонтальные и наклонные. x^3

 $y = \frac{x^3}{1 - x^2}$ Т.к. знаменатель обращается в нуль в точках x = 1, x = -1, то $\lim_{x \to 1 \pm 0} f(x) = \mp \infty$,

 $\lim_{x \to -1 \pm 0} f(x) = \pm \infty$ и прямые *x*=1; *x*=-1. являются вертикальными асимптотами.

Находим наклонные асимптоты y=kx+b.

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^2}{1 - x^2} = -1,$$

$$b = \lim_{x \to \pm \infty} [f(x) - kx] = \lim_{x \to \pm \infty} \left(\frac{x^3}{1 - x^2} + x \right) = \lim_{x \to \pm \infty} \frac{1}{1 - x^2} = 0.$$

Кривая имеет двустороннюю наклонную асимптоту y = -x.

Вычислим производную. Находим интервалы монотонности и точки экстремума функ-

ции: $f'(x) = \frac{x^2(3-x^2)}{\left(1-x^2\right)^2}$. Производная существует во всех точках числовой оси, кроме

 $x=1, \ x=-1$ и равна нулю в точках $x=0, \ x=\pm\sqrt{3}$. Следовательно, критическими точками будут: $x_1=-\sqrt{3}, \ x_2=0, \ x_3=\sqrt{3}$.

Исследуем поведение f'(x) в окрестности каждой критической точки. Т.к. данная функция f(x) нечетная, достаточно рассмотреть знак f'(x) на промежутках (-1,0); (0,1); $(1,\sqrt{3})$;

Для наглядности результаты соберем в таблицу 1.

Таблица 1.

$$x$$
 - $x=0$ 0< $x<$ 1< $x<$ $x=\sqrt{3}$ $\sqrt{3} < x<$ 1< $x<$ 0 + ∞

В точках x=1, x=-1 функция не имеет экстремума, так как эти точки не принадлежат области определения данной функции. Т.к. функция f(x) нечетная,то в точке x=- $\sqrt{3}$ функция достигает минимума данной функции:

$$y_{\min} = \frac{(-\sqrt{3})^3}{1 - (\sqrt{3})^2} = \frac{3\sqrt{3}}{2};$$

Найдем интервалы выпуклости, вогнутости и точки перегиба графика данной функции y=f(x).

Вычислим вторую производную: $f''(x) = \frac{2x(x^2+3)}{(1-x^2)^3}$.

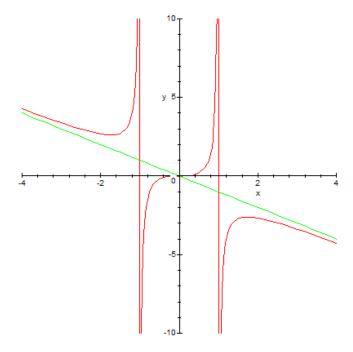
Критические точки данной функции по второй производной x=0, x=1, x=-1. Точки x=1, x=-1 не принадлежат области определения функции, поэтому точкой перегиба

кривой является только точка с абсциссой x=0. Результаты исследования запишем в таблицу 2.

Таблица 2.

X	<i>x</i> <-1	-1< <i>x</i> <0	<i>x</i> =0	0< <i>x</i> <1	<i>x</i> >1
Знак $f''(x)$	+	-	0	+	-
f(x)	Кривая	Кривая	Точка	Кривая	Кривая
	вогнута	выпукла	перегиба	вогнута	выпукла

Строим график функции:



ВТОРОЙ СЕМЕСТР

КОНТРОЛЬНАЯ РАБОТА №3

1. Функции нескольких переменных.

Основные определения. Геометрический смысл функции двух переменных. Понятие предела и непрерывность функции двух переменных. Определение частной производной и ее геометрический смысл. Полный дифференциал функции двух переменных. Необходимые и достаточные условия дифференцируемости. Дифференцирование сложных функций. Касательная и нормаль к поверхности. Экстремумы функции двух переменных: необходимые и достаточные условия экстремума. Градиент скалярного поля, производная по направлению.

2. Неопределенный интеграл.

Первообразная, неопределенный интеграл и его свойства. Таблица интегралов. Основные приемы интегрирования: непосредственное интегрирование, метод подстановки, интегрирование по частям. Интегралы группы «четырех». Интегрирование дробно-рациональных функций. Интегралы от тригонометрических функций. Интегрирование некоторых иррациональностей.

3. Определенный интеграл.

Задача о площади криволинейной трапеции. Понятие определенного интеграла, его геометрический и механический смысл. Свойства определенного интеграла, выражаемые равенствами. Свойства определенного интеграла, выражаемые неравенствами. Теорема о среднем. Связь определенного и неопределенного интегралов, формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Формула интегрирования по частям.

4. Несобственные интегралы.

Несобственные интегралы первого рода. Несобственные интегралы второго рода.

5. Приложения определенного интеграла.

Вычисление площадей плоских фигур. Вычисление длины дуги плоской кривой. Вычисление объема тела вращения.

6. Основные определения и понятия теории дифференциальных уравнений

7. Задача Коши для ДУ первого порядка.

Геометрический смысл решений задачи Коши. Понятие общего, частного и особого решений.

8. Основные типы ДУ первого порядка.

ДУ с разделяющимися переменными, однородные, линейные 1-го порядка, ДУ Бернулли, ДУ в полных дифференциалах.

9. ДУ второго порядка, допускающие понижение порядка.

Три основных типа – правая часть не содержит функции и её производных, правая часть не содержит функции, правая часть не содержит аргумент.

10. Линейные ДУ высших порядков.

Постановка задачи Коши и краевой задачи. Структура общего решения однородного и неоднородного ДУ.

- 11. Линейные однородные и неоднородные ДУ с постоянными коэффициентами.
- 12. Частные решения ЛНДУ специального типа. Метод вариации про- извольных постоянных.

ВАРИАНТЫ ЗАДАНИЙ КОНТРОЛЬНОЙ РАБОТЫ №3

Задача №1. Вычислить неопределенные интегралы:

Вариант 1.

a)
$$\int \frac{dx}{\sqrt[6]{5x-2}}$$
;

6)
$$\int \frac{(3x-2)dx}{\sqrt{2x^2+3}}$$
;

B)
$$\int (3x-2)e^{-x}dx$$
;

в)

$$\Gamma) \int \frac{x^3 + 6x^2 + 13x + 15}{x^3 + 5x} dx;$$

$$Д) \int 3^{\cos 2x} \sin 2x dx;$$

e)
$$\int \frac{\sqrt{x}}{1 + \sqrt[4]{x}} dx$$
.

Вариант 2.

a)
$$\int \frac{\sin 2x}{e^{\cos^2 x}} dx;$$

$$\int (x-2)\sin 2x dx;$$

$$\Gamma) \int \frac{x+3}{(x+1)(x^2+x+1)} dx;$$

$$6) \quad \int \frac{2x-3}{x^2-x+1} dx;$$

e)
$$\int \frac{1-\sqrt{x-1}}{\sqrt{1+x}} dx$$
.

a)
$$\int \frac{\cos 2x}{(15+\sin 2x)} dx;$$

6)
$$\int \frac{x+3}{\sqrt{7x^2-1}} dx$$
;

 $Д) \int \cos x \sin 2x dx;$

$$B) \int (9x-2) \ln x dx;$$

$$\Gamma$$
) $\int \frac{x^3 + 5}{(x-1)(x^2 + 4)} dx$;

$$\int \sin^4 \frac{x}{2} dx ;$$

e)
$$\int \frac{xdx}{\sqrt[3]{2x-3}}.$$

Вариант 4.

a)
$$\int \frac{(1+\sqrt{x})^2 - 2x\cos x}{x} dx$$
; 6) $\int \frac{4x-3}{\sqrt{2x^2+1}} dx$;

$$5) \int \frac{4x - 3}{\sqrt{2x^2 + 1}} \, dx \, dx$$

B)
$$\int (x^2-2)2^x dx$$
;

$$\Gamma) \int \frac{x^2}{(x+2)(x-1)^2} dx;$$

$$Д) \int \cos^4 x dx;$$

e)
$$\int \frac{xdx}{\sqrt{1-x} + \sqrt[4]{x-1}}.$$

a)
$$\int \frac{dx}{(2x-1)\ln(2x-1)};$$

6)
$$\int \frac{x+5}{5x^2+3} dx$$
;

$$B) \int x \sin x \cos x dx;$$

$$\Gamma) \int \frac{x^2 + 2x - 3}{x^3 - 2x^2 - 3x} dx;$$

Д)
$$\int \sin^6 \frac{x}{2} \cos \frac{x}{2} dx;$$

e)
$$\int \frac{dx}{1+\sqrt[3]{x+1}}.$$

Вариант 6.

a)
$$\int \sin \frac{2}{x} \frac{dx}{x^2};$$

$$\int (x^2 - 1)\cos 2x dx;$$

6)
$$\int \frac{8x-3}{\sqrt{4x^2+4x+5}} dx$$
;

$$\Gamma) \int \frac{\left(3x^2+1\right)}{\left(x^4-1\right)} dx;$$

$$\Box) \int \cos^3 x dx ;$$

e)
$$\int \frac{dx}{\sqrt{x} + 2\sqrt[3]{x}}.$$

Вариант 7.

a)
$$\int \frac{\arcsin^3 x}{\left(1-x^2\right)^{\frac{1}{2}}} dx;$$

$$6) \quad \int \frac{x+1}{\sqrt{8x-4x^2}} \, dx;$$

$$B) \int (2x-1)\sin x dx;$$

$$\Gamma) \int \frac{x^2 - x + 6}{x^3 + 8} dx;$$

$$\Delta$$
) $\int s in^3 x dx$;

e)
$$\int \frac{x-2}{\sqrt{x}+1} dx$$
.

Вариант 8.

a)
$$\int \frac{ctg^5x}{4\sin^2x} dx;$$

$$\int (2x-4)\sin 3x dx;$$

$$\Gamma) \qquad \int \frac{x^3 - 1}{4x^3 - x} dx;$$

$$\int \frac{dx}{\sqrt{x-1} + \sqrt[4]{x-1}}.$$

$$6) \quad \int \frac{dx}{\sqrt{2x^2 - 4x + 3}};$$

$$\int \sin^3 x \cos^2 x dx; \qquad e)$$

Вариант 9.

a)
$$\int \frac{\sin x dx}{2\sqrt[3]{\cos^2 x}};$$

$$\Gamma) \int \frac{x^2 dx}{x^4 - 16};$$

6)
$$\int \frac{xdx}{2x^2 - 3x - 2}$$
;

Д)
$$\int \frac{dx}{\cos x \sin^3 x}$$
;

B)
$$\int xarctgxdx$$
;

e)
$$\int \frac{\sqrt{x}}{x+1} dx$$
.

Вариант 10.

a)
$$\int \frac{4\cos 3x dx}{4+\sin 3x};$$

$$\Gamma) \int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx;$$

$$6) \int \frac{dx}{4x^2 + 4x + 5};$$

д)
$$\int \frac{\cos^3 x dx}{\sin^4 x}$$
;

B)
$$\int \arccos x dx$$
;

e)
$$\int \frac{dx}{x(\sqrt{x}+6)}.$$

в)

Задача 2. Приложения определенного интеграла: а) вычислить площадь плоской фигуры, ограниченной линиями; б) вычислить длину дуги плоской кривой; в) найти объем тела, полученного вращением фигуры, ограниченной линиями.

Вариант 1.

a)
$$y = e^x$$
, $y = e^{-x}$, $x = 1$;

6)
$$y = x^{3/2}, \quad 1 \le x \le \frac{\pi}{2};$$

 $y = \cos x$, y = 0, $-\pi/2 \le x \le \pi/2$.

Вариант 2.

a)
$$y = x^2$$
, $y = 2 - x$, $y = 0$; 6) $y = \ln \cos x$, $1 \le x \le \pi/4$;

$$\mathsf{6)}\ y = \ln \cos x,$$

$$1 \le x \le \pi/4$$
;

B)
$$y = x^3, \quad y = x.$$

Вариант 3.

a)
$$y = 2x$$
, $y = x$, $x = 1$;
 $y = x^2 + 2x + 2$, $y = 2$.

6)
$$y = 1 - \ln \sin x$$
, $\pi/4 \le x \le \pi/2$; B)

Вариант 4.

a)
$$y^2 = 3x$$
, $x^2 = 3y$;

a)
$$y^2 = 3x$$
, $x^2 = 3y$;
6) $y = \frac{1}{4}x^2 - \frac{1}{2}\ln x$, $1 \le x \le 2$;
B) $\frac{x^2}{9} + \frac{y^2}{4} = 1$.

B)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

Вариант 5.

a)
$$yx = 2$$
, $x + 2y - 5 = 0$;

a)
$$yx = 2$$
, $x + 2y - 5 = 0$; 6) $y = \sqrt{(x-2)^3}$, $2 \le x \le 6$; B) $y = x^2$, $y = 2 - x$.

B)
$$y = x^2$$
, $y = 2 - x$.

Вариант 6.

a)
$$y = -x^2 + 6x - 5$$
, $x = 0$, $y = 0$; 6) $y = \ln x$, $1 \le x \le \sqrt{3}$;
 $y = 4^x$, $y = 1$, $x = 2$.

Вариант 7.

a)
$$y = \sqrt{x}, y = \frac{1}{x}, x = 4;$$

6)
$$y = \frac{1}{2} \ln \cos 2x$$
, $\pi/8 \le x \le \pi/6$;

B)
$$y = \sin \frac{x}{2}$$
, $y = 0$, $x = \pi$.

Вариант 8.

a)
$$y = x^2$$
, $y = 2 - x$, $x = 0$;

a)
$$y = x^2$$
, $y = 2 - x$, $x = 0$; 6) $y = 1 + \ln \cos x$, $0 \le x \le \pi/4$;

B)
$$\frac{x^2}{5} + \frac{y^2}{4} = 1$$
.

Вариант 9.

a)
$$y = 2x^2$$
, $y = -2x + 4$;
 $y = x^2$, $x + y = 2$, $y = 0$.

6)
$$y = 7 + x^{3/2}, \quad 0 \le x \le 1;$$

Вариант 10.

a)
$$y = 2x$$
, $y = \frac{x}{2}$, $yx = 2$

a)
$$y = 2x$$
, $y = \frac{x}{2}$, $yx = 2$; 6) $y = \frac{1}{3} \ln \sin 3x$, $\pi/12 \le x \le \pi/6$; B) $y = x^2$, $y = 4$.

Задача 3. Дифференциальные уравнения с разделяющимися переменными

$$1. 4xdx - 3ydy = 3x^2ydy - 2xy^2dx$$

$$2. \ x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0$$

$$3. \ \sqrt{4+y^2} dx - y dy = x^2 y dy$$

4.
$$\sqrt{3+y^2} dx - y dy = x^2 y dy$$

5.
$$6xdx - 6ydy = 2x^2ydy - 3xy^2dx$$

6.
$$x\sqrt{3+y^2}dx + y\sqrt{2+x^2}dy = 0$$

7.
$$(e^{2x} + 5)dy + ye^{2x}dx = 0$$

8.
$$y'y\sqrt{\frac{1-x^2}{1-y^2}} + 1 = 0$$

9.
$$6xdx - 6ydy = 3x^2ydy - 2xy^2dx$$

$$10. \ x\sqrt{5+y^2} \, dx + y\sqrt{4+x^2} \, dy = 0$$

Задача 4. Однородные дифференциальные уравнения

1.
$$(x+2y)dx - xdy = 0$$

$$2. (y^2 - 2xy)dx + x^2 dy = 0$$

3.
$$y^2 + x^2y' = xyy'$$

4.
$$(x^2 - y^2)dx + 2xydy = 0$$

$$5. \ y' = \frac{y}{x+y}$$

$$6. \ \frac{dx}{v+x} = \frac{dy}{v-x}$$

7.
$$y' - \frac{2xy}{x^2 + y^2} = 0$$

$$8. xy' = y \ln \frac{y}{x}$$

9.
$$y' = \frac{y}{x} + \frac{\cos\frac{y}{x}}{\sin\frac{y}{x}}$$

10.
$$y' = e^{\frac{y}{x}} + \frac{y}{x}$$

Задача 5. Линейные дифференциальные уравнения первого порядка

$$y' - \frac{y}{x} = x,$$

$$y' - \frac{2y}{x} = x^{2},$$

$$y' - \frac{y}{1 - x^{2}} = 1 + x,$$

$$xy' + y - e^{x} = 0,$$

$$y' + y \cos x = \sin 2x,$$

$$y' \cos x - y \sin x = \sin 2x,$$

$$y' - tgx = \frac{1}{\cos x},$$

$$y' + x^{2}y = e^{1}/x,$$

$$y' - \frac{y}{x} = -2\frac{\ln x}{x},$$

$$y' - \frac{yx}{2(1 - x^{2})} = \frac{x}{2},$$

$$y(0) = \frac{2}{3}$$

Задача 6. Линейные неоднородные уравнения второго порядка с постоянными коэффициентами

$$y'' - 4y' + 5y = 5x^{2} - 12x + 2$$

$$y'' + 4y' + 4y = \cos 2x$$

$$y'' - y = e^{x}(x^{2} - 1)$$

$$y'' - 2y' + y = 4e^{x}$$

$$y'' - 4y' + 4y = x^{2}e^{2x}$$

$$y'' + 3y = e^{-2x}x\sin 5x$$

$$y'' + 3y' - 4y = e^{-4x} + xe^{-x}$$

$$y'' + 9y = 2\cos x + 3\sin 3x$$

$$y'' - 9y = e^{3x} + \sin 2x$$

$$y'' - 6y' + 9y = 4e^{x} - 16e^{3x}$$

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ №3

В задаче 1 требуется вычислить неопределенные интегралы. При этом интеграл в задании 1 а) вычисляется методом подведения выражений под знак дифференциала. Интеграл задания 1 б) относится к интегралам «группы четырех». Для приведения таких интегралов к табличным необходимо выделять в знаменателе подынтегральных дробей полные квадраты и применить далее соответствующую подстановку. Можно, также, сразу выполнить замену переменной интегрирования по такому правилу: новая переменная интегрирования равна старой переменной интегрировании плюс половина коэффициента при первой степени старой переменной интегрирования в приведенном квадратном трехчлене. Для решения примера 1 в) надо применить формулу интегрирования по частям:

$$\int u dv = uv - \int v du.$$

В задании 1 г) требуется проинтегрировать дробно-рациональную функцию. Если дробь под интегралом неправильная, надо выделить сначала целую часть. Это можно сделать, например, с помощью приема деление многочлена на многочлен «уголком». Затем правильную дробь следует представить суммой простых дробей в соответствии с корнями знаменателя. Неизвестные вначале коэффициенты простых дробей определяются методом неопределенных коэффициентов. Интеграл 1д) содержит тригонометрические функции и решается соответствующей подстановкой. Замену переменной интегрирования необходимо выполнить и для решения последнего примера этой группы заданий. Подстановка должна быть такой, чтобы избавиться от иррациональностей.

Приведем образцы решений примеров задачи 1, где более детально разъясняются вышеуказанные рекомендации.

Пример 1. Вычислить неопределенный интеграл $\int \frac{x^2}{x^6+4} dx$.

Решение.

$$\int \frac{x^2}{x^6 + 4} dx = \frac{1}{3} \int \frac{3x^2}{x^6 + 4} dx = \frac{1}{3} \int \frac{d\left(x^3\right)}{x^6 + 4} = \begin{vmatrix} x^3 = t, \\ dt = 3x^2 dx \end{vmatrix} = \frac{1}{3} \int \frac{dt}{t^2 + 2^2} = \frac{1}{3} \cdot \frac{1}{2} \operatorname{arctg} \frac{t}{2} + C = \frac{1}{6} \operatorname{arctg} \frac{x^3}{2} + C$$

Пример 2. Вычислить неопределенный интеграл $\int \frac{x-3}{\sqrt{3-2x-x^2}} dx$.

Решение.

$$\int \frac{x-3}{\sqrt{3-2x-x^2}} dx = \int \frac{(x+1)-4}{\sqrt{4-(x+1)^2}} dx = \begin{vmatrix} x+1=t, \\ dx=dt \end{vmatrix} = \int \frac{t-4}{\sqrt{4-t^2}} dt = \int \frac{tdt}{\sqrt{4-t^2}} - 4\int \frac{dt}{\sqrt{4-t^2}} =$$

$$= -\frac{1}{2} \int \frac{d(4-t^2)}{\sqrt{4-t^2}} - 4\arcsin\frac{t}{2} + C = -\sqrt{4-(x+1)^2} - 4\arcsin\frac{x+1}{2} + C.$$

Пример 3. Вычислить неопределенный интеграл $\int \frac{\arcsin x}{\sqrt{x+1}} dx$.

Решение.

$$\int \frac{\arcsin x}{\sqrt{x+1}} dx = \begin{vmatrix} u = \arcsin x, & du = \frac{dx}{\sqrt{1-x^2}} \\ dv = \frac{dx}{\sqrt{x+1}}, & v = 2\sqrt{x+1} \end{vmatrix} = 2\sqrt{x+1} \cdot \arcsin x - 2\int \sqrt{x+1} \frac{dx}{\sqrt{1-x^2}} = 2\sqrt{x+1} \cdot \arcsin x - 2\int \frac{\sqrt{x+1} dx}{\sqrt{(1+x)(1-x)}} = 2\sqrt{x+1} \cdot \arcsin x + 2\int \frac{d(1-x)}{\sqrt{1-x}} = 2\sqrt{x+1} \cdot \arcsin x + 4\sqrt{1-x} + C.$$

Пример 4. Вычислить неопределенный интеграл $\int \frac{x^3+1}{x^3-x^2} dx$.

<u>Решение.</u> Выделяем сначала целую часть подынтегральной дроби:

$$\frac{x^3+1}{x^3-x^2} = \frac{x^3-x^2+x^2+1}{x^3-x^2} = 1 + \frac{x^2+1}{x^3-x^2}.$$

Знаменатель правильной дроби имеет один простой корень $x\!=\!1$ и один кратный корень $x\!=\!0$.

Поэтому дробь заменим суммой простых дробей вида:

$$\frac{x^2+1}{x^3-x^2} = \frac{A}{x-1} + \frac{B}{x^2} + \frac{C}{x}.$$

Неизвестные вначале коэффициенты находим следующим образом (метод неопределенных коэффициентов). Просуммируем дроби в правой части, приводя их к общему знаменателю. Сравнивая числители дробей, справа и слева, имеем тождество $Ax^2 + B(x-1) + Cx(x-1) \equiv x^2 + 1$.

Поочередно задавая удобные значения x, составим уравнения для нахождения неизвестных коэффициентов. Пусть x=0, тогда A=1. Пусть A=1. Пусть A=1. Пусть A=1.

Пусть x = -1, тогда $A - 2B + 2C = 2 \Rightarrow \boxed{C = -1}$. Таким образом, $\frac{x^2 + 1}{x^3 - x^2} = \frac{2}{x - 1} - \frac{1}{x^2} - \frac{1}{x}$. Следовательно,

 $\int \frac{x^3 + 1}{x^3 - x^2} dx = \int \left(1 + \frac{2}{x - 1} - \frac{1}{x^2} - \frac{1}{x} \right) dx = x + \ln \frac{\left(x - 1\right)^2}{|x|} + \frac{1}{x} + C.$

Пример 5. Вычислить неопределенный интеграл $\int \cos^4 x dx$.

Решение.

$$\int \cos^4 x dx = \int \left(\frac{1+\cos 2x}{2}\right)^2 dx = \int \left(\frac{1}{4} + \frac{1}{2}\cos 2x + \frac{1}{4}\cos^2 2x\right) dx =$$

$$= \int \left(\frac{1}{4} + \frac{1}{2}\cos 2x + \frac{1}{4}\frac{1+\cos 4x}{2}\right) dx = \int \left(\frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x\right) dx =$$

$$= \frac{3}{8}x + \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + C.$$

Пример 6. Вычислить неопределенный интеграл $\int \frac{\sqrt{x}}{\sqrt{x}+5} dx$.

Решение.

$$\int \frac{\sqrt{x}}{\sqrt{x}+5} dx = \left| \frac{x=t^2}{dx=2t} \right| = \int \frac{2t^2}{t+5} dt = 2 \int \frac{t^2-25+25}{t+5} dt = 2 \int \left(\frac{(t-5)(t+5)}{t+5} + \frac{25}{t+5} \right) dt = 2 \int (t-5) dt + 50 \int \frac{dt}{t+5} = (t-5)^2 + 50 \ln|t+5| + C = (\sqrt{x}-5)^2 + 50 \ln(\sqrt{x}+5) + C.$$

В задаче 2 контрольной работы требуется вычислить определенные интегралы. Определенный интеграл вычисляется по формуле Ньютона-Лейбница:

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big|_{a}^{b}$$

Здесь F(b), F(a) - значения первообразной функции f(x), вычисленные на концах промежутка интегрирования. Отметим, также, при использовании подстановок в определенном интеграле заменяется не только «старая» переменная интегрирования и ее дифференциал, но и границы промежутка интегрирования. Однако, обратная замена при этом не нужна. При решении задачи 2 б) следует применить формулу интегрирования по частям:

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du.$$

Пример 7 Вычислить
$$\int_{0}^{1} \frac{dx}{x^2 + 4x + 5}$$
.

Решение.

$$\int_{0}^{1} \frac{dx}{x^{2} + 4x + 5} = \left| t = x + 2, \quad dt = dx \right| = \int_{2}^{3} \frac{dx}{(t - 2)^{2} + 4(t - 2) + 5} = \int_{2}^{3} \frac{dx}{t^{2} - 4t + 4 + 4t - 8 + 5} = \int_{2}^{3} \frac{dx}{t^{2} + 1} = \arctan \left| \frac{1}{2} - \frac{1}$$

Пример 8. Вычислить определенный интеграл $\int_{0}^{1} \sqrt{1-x^2} dx$.

Решение.

Интеграл можно вычислить, применяя тригонометрическую подстановку $x = \sin t$. Однако, здесь будем использовать прием интегрирования по частям:

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \begin{vmatrix} u = \sqrt{1 - x^{2}}, & du = \frac{-xdx}{\sqrt{1 - x^{2}}} \\ dv = dx, & v = x \end{vmatrix} = x\sqrt{1 - x^{2}} \Big|_{0}^{1} + \int_{0}^{1} \frac{x^{2} dx}{\sqrt{1 - x^{2}}} = 0 + \int_{0}^{1} \frac{x^{2} - 1}{\sqrt{1 - x^{2}}} dx + \int_{0}^{1} \frac{dx}{\sqrt{1 - x^{2}}} = -\int_{0}^{1} \sqrt{1 - x^{2}} dx + \arcsin x \Big|_{0}^{1}.$$

Итак, получено реккурентное соотношение для искомого интеграла:

$$\int_{0}^{1} \sqrt{1-x^{2}} dx = -\int_{0}^{1} \sqrt{1-x^{2}} dx + \arcsin 1 - \arcsin 0.$$

$$2\int_{0}^{1} \sqrt{1-x^{2}} dx = \frac{\pi}{2} - 0. \text{ Окончательно } \int_{0}^{1} \sqrt{1-x^{2}} dx = \frac{\pi}{4}.$$

В задаче 3 необходимо вычислить несобственные интегралы или установить их расходимость. Различают несобственные интегралы первого рода — интегралы на бесконечном промежутке и несобственные интегралы второго рода — интегралы от неограниченных функций. Эти интегралы являются обобщениями определенного интеграла: несобственный интеграл первого рода определяется как предел собственных

интегралов, рассматриваемых на конечном промежутке, когда граница промежутка интегрирования устремляется в бесконечность

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx.$$

Если x = a - особая точка подынтегральной функции, то

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a-\varepsilon}^{b} f(x)dx.$$

В случае, когда найдена первообразная подынтегральной функции, исследование сходимости несобственных интегралов достаточно простое.

Пример 9. Вычислить несобственный интеграл $\int\limits_{1}^{\infty} \frac{dx}{x^{10}}$ или установить его расхо-

димость.

Решение. Это несобственный интеграл первого рода. По определению,

$$\int_{1}^{\infty} \frac{dx}{x^{10}} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^{10}} = \lim_{b \to \infty} \frac{1}{-9x^{9}} \Big|_{1}^{b} = \frac{1}{9} - \lim_{b \to \infty} \frac{1}{9b^{9}} = \frac{1}{9}.$$

Пример 10. Вычислить несобственный интеграл

$$\int_{1}^{2} \frac{dx}{x \ln^{2} x} = \lim_{\varepsilon \to 0} \int_{1+\varepsilon}^{2} \frac{dx}{x \ln^{2} x} = \lim_{\varepsilon \to 0} \left(-\frac{1}{\ln x} \right) \Big|_{1+\varepsilon}^{2} = \lim_{\varepsilon \to 0} \frac{1}{\ln (1+\varepsilon)} - \frac{1}{\ln 2} = -\infty \Longrightarrow$$

Интеграл расходится.

В заключение, приведем примеры решений заданий, касающихся приложений определенного интеграла.

Пример 11 Вычислить площадь плоской фигуры, ограниченной линиями $y = 2x - x^2$, y = -x, x = 1.

Решение.

Используем формулу $S = \int_a^b \left[y_1(x) - y_2(x) \right] dx$, где a, b - абсциссы точек пересечения граничных линий. $y_1(x)$ - уравнение «верхней» кривой ($y_1(x) = 2x - x^2$), $y_2(x)$ - уравнение «нижней» кривой ($y_2(x) = -x$). a = 0, b = 1. Получаем

$$S = \int_{0}^{1} \left[\left(2x - x^{2} \right) - \left(-x \right) \right] dx = \int_{0}^{1} \left(3x - x^{2} \right) dx = \left(\frac{3}{2} x^{2} - \frac{x^{3}}{3} \right) \Big|_{0}^{1} = \frac{3}{2} - \frac{1}{3} = \frac{7}{6}$$
 кв.ед.

Пример 12. Вычислить длину дуги плоской кривой — цепной линии y = chx от точки A(0;1) до точки $B\left(\ln 2; \frac{5}{4}\right)$.

Решение. Используем формулу:

$$l_{\stackrel{\circ}{AB}} = \int_{x_B}^{x_B} \sqrt{1 + \left(y'\right)^2} dx.$$

Далее, $y' = (chx)' = \left(\frac{e^x + e^{-x}}{2}\right)' = \frac{e^x - e^{-x}}{2} = shx$. Здесь chx, shx - соответственно косинус и

синус гиперболический. Учитывая, что

$$\sqrt{1+\left(y'\right)^{2}} = \sqrt{1+\frac{\left(e^{x}-e^{-x}\right)^{2}}{4}} = \sqrt{\frac{4+e^{2x}-2e^{x}e^{-x}+e^{-2x}}{4}} = chx,$$

Получаем

$$l_{AB} = \int_{0}^{\ln 2} chx dx = shx \Big|_{0}^{\ln 2} = sh(\ln 2) - sh0 = \frac{e^{\ln 2} - e^{\ln \frac{1}{2}}}{2} = \frac{3}{4}.$$

Пример 13. Найти объем тела, полученного вращением вокруг оси абсцисс фигуры, ограниченной линией $x^4 + y^4 = x^2$.

Решение. Т.к. переменные входят в уравнение в четной степени, то фигура симметрична относительно обеих координатных осей. Поэтому можно рассмотреть вращение «четвертинки» фигуры, которая ограничена линией от точки (0;0) до точки (1;0) и прямой y=0. Объем тела вращения вокруг оси абсцисс определяется формулой $V=\pi\int\limits_a^b y^2(x)dx$. Поскольку в данном случае $y^2=x\sqrt{1-x^2}$, то половина искомого объема определяется соотношением

$$\frac{1}{2}V_{\text{m.sp.}} = \pi \int_{0}^{1} x \sqrt{1 - x^{2}} dx = -\frac{\pi}{2} \int_{0}^{1} \sqrt{1 - x^{2}} d\left(1 - x^{2}\right) = -\frac{\pi}{2} \frac{\left(1 - x^{2}\right)^{\frac{3}{2}}}{\frac{3}{2}} \Big|_{0}^{1} = \frac{\pi}{3}. \qquad V_{\text{m.sp.}} = \frac{2}{3}\pi.$$

Общие понятия и положения теории дифференциальных уравнений.

В математике часто встречаются уравнения, в которые, кроме неизвестной переменной (или нескольких переменных) входит неизвестная функция и ее производные (частные производные). Такие уравнения называются **дифференциальными уравнениями**.

Если функция зависит от одной переменной, то такое уравнение называют обыкновенным дифференциальным уравнением — ОДУ. Если же функция зависит от нескольких переменных, то такое уравнение называют (дифференциальным) уравнением в частных производных — ДУвЧП. Исторически дифференциальные уравнения возникли из задач механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции времени.

В данном пособии будут рассматриваться обыкновенные дифференциальные уравнения.

Уравнение вида

$$F(x, y, y', y''...y^{(n)}) = 0$$
(1)

называется *ОДУ n-го порядка* из-за того, что максимальный порядок производной в этом уравнении равен n.

Пример: второй закон Ньютона представляется в виде ОДУ второго порядка

$$mx = F(x,t)$$
,

где где m — масса тела, x — его координата, F(x,t) — внешняя сила, действующее на

тело с координатой x в момент времени t, x вторая производная x по времени t. Решением этого уравнения является траектория движения тела под действием указанной силы.

Общим решением дифференциального уравнения называют функцию $y = f(x, C_0, C_1, C_2...C_{n-1})$, которая при подстановке в дифференциальное уравнение

вида $F(x,y,y',y"...y^{(n)})=0$ обращает его в тождество. Постоянные $C_0,C_1,C_2...C_{n-1}$ являются константами интегрирования.

Пример:

Рассмотрим уравнение $y'=6x^2$. Это ОДУ первого порядка. Очевидно, что функция, например, $y_1=2x^3+5$ является решением этого уравнения (это легко проверить, просто посчитав производную функции). Но решением будет также и функция $y_2=2x^3-11$ и $y_3=2x^3+554,8$. Аналогично можно показать, что любое решение вида $y=2x^3+C$, где C- произвольная постоянная, является решением данного уравнения. Функции такого вида и являются общим решением ДУ $y'=6x^2$.

Частным решением ДУ называют функцию вида y = f(x), которая при подстановке ее в дифференциальное уравнение вида $F(x,y,y',y"...y^{(n)}) = 0$ обращает уравнение в тождество.

Пример:

Все функции y_1 , y_2 и y_3 из предыдущего примера являются частными решениями уравнения $y' = 6x^2$.

Таким образом, можно сказать, что общее решение ДУ это совокупность всех его частных решений.

Задачей Коши или **начальной задачей** для ОДУ n-го порядка называется совокупность самого дифференциального уравнения и начальных условий, т.е. значений функции и ее производных до n-1 порядка включительно, заданных в одной точке:

$$\begin{cases} F(x, y, y', y''...y^{(n)}) = 0 \\ y(x_0) = y_0 \\ y'(x_0) = y_0 \\ y''(x_0) = y_2 \\ ... \\ y^{(n-1)}(x_0) = y_{n-1} \end{cases}$$
(2)

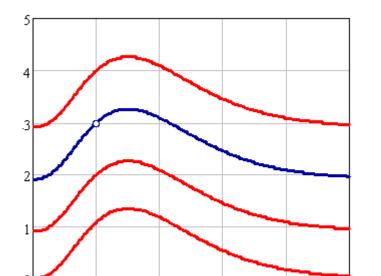
При определенных, достаточно общих ограничениях на функцию F (которые здесь оговаривать не будем) задача Коши имеет решение, и оно является единственным. Число начальных условий задачи Коши должно соответствовать порядку дифференциального уравнения для однозначного нахождения всех неизвестных постоянных интегрирования $C_0, C_1, C_2...C_{n-1}$. Решение задачи Коши является частным решением ОДУ.

Пример: поставлена задача Коши для ОДУ первого порядка.

$$\begin{cases} y' = 6x^2 \\ y(1) = -2 \end{cases}$$

Общее решение этого ОДУ, как показано выше, имеет вид $y=2x^3+C$. Подставляя в него начальное условие, получаем: $-2=2\cdot 1^3+C$, откуда находим значение постоянной C=-4. Таким образом, решение задачи Коши примет вид $y=2x^3-4$.

На рисунке представлены несколько графиков, соответствующих четырем частным решениям некоторого ОДУ. Допустим, надо найти решение задачи Коши с начальными условиями y(2) = 3, т.е. изо всей совокупности частных решений (общее решение) надо выбрать то, график которого проходит через точку с координатами (2,3).



б

выделенный синим цветом.

Классификация ОДУ.

Очевидно, что это будет график,

К основным видам дифференциальных уравнение, рассматриваемых в данном пособии относятся.

- ОДУ первого порядка
 - 1. С разделяющимися переменными
 - 2. Однородные ДУ
 - 3. Линейные ДУ
 - 4. Уравнения Бернулли
 - 5. Уравнения в полных диф-
- II. Дифференциальные уравнения высших порядков, допускающие понижение поряд-

10

8

- III. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
 - 1. Однородные.
 - 2. Неоднородные.

ференциалах.

ОДУ первого порядка

ОДУ первого порядка с разделяющимися переменными.

Если в результате каких-либо преобразований ДУ первого порядка F(x,y,y')=0 удалось привести к виду

$$\varphi(x)dx = \psi(y)dy, \qquad (3)$$

то говорят, что это дифференциальное уравнение является уравнением с разделяющимися переменными (переменные «разделились» по разные стороны от знака равенства). Тогда решение этого ДУ может быть найдено в квадратурах:

$$\int \varphi(x) dx = \int \psi(y) dy$$

$$\Phi(x) = \Psi(y) + C$$
 , где $\Phi(x)$ и $\Psi(y)$ - первообразные функций $\phi(x)$ и $\psi(y)$ соответственно.

Пример:

Найти общее решение Ду: $y^2 - y \sin^2 x = 0$

$$y' = \frac{dy}{dx}$$
Представим производную как отношение дифференциалов:

Представим производную как отношение дифференциалов:

$$y^2 - \frac{dy}{dx}\sin^2 x = 0$$

Разнесем слагаемые по разные стороны от знака равенства:

$$y^2 = \frac{dy}{dx} \sin^2 x$$
 , откуда $\frac{dx}{\sin^2 x} = \frac{dy}{y^2}$

Получили уравнение с разделяющимися переменными, откуда, интегрируя правую и левую части, получим:

$$\int \frac{dx}{\sin^2 x} = \int \frac{dy}{y^2} \implies -\operatorname{ctgx} = -\frac{1}{y} - C$$

 $\int \frac{\mathrm{d}x}{\sin^2 x} = \int \frac{\mathrm{d}y}{v^2}$ \Rightarrow $-\operatorname{ctg}x = -\frac{1}{y} - C$. Знак постоянной C выбран отрицательным для того, чтобы можно было чуть упростить решение, отбросив знак минус.

$$ctgx = \frac{1}{v} + C$$

Это выражение и является общим решением ДУ.

Пример:

Найти решение задачи Коши для ДУ:

$$y' = 3\sqrt[3]{y^2}$$
 с начальным условием $y(2) = 0$.

$$\frac{\mathrm{dy}}{\mathrm{dx}} = 3\sqrt[3]{\mathrm{y}^2}$$

$$\frac{dy}{\sqrt[3]{v^2}} = 3dx$$

$$\int \frac{\mathrm{d}y}{\sqrt[3]{y^2}} = \int 3\mathrm{d}x$$

$$\int y^{-\frac{2}{3}} dy = \int 3dx$$
$$3y^{\frac{1}{3}} = 3x + 3C$$
$$\sqrt[3]{y} = x + C$$

Подставим в полученное выражение начальное условие:

$$\sqrt[3]{0} = 2 + C$$

Решение задачи Коши: $\sqrt[3]{y} = x - 2$

Однородные ДУ

Обыкновенное дифференциальное уравнение называется однородным если при замене $x \to kx$, а $y \to ky$ оно не меняется.

Другими словами, если уравнение можно привести к виду

$$y' = f\left(\frac{y}{x}\right) \tag{4}$$

где f – любая функция, то оно является однородным.

Однородное уравнение приводится к уравнению с разделяющимися переменными ти-

па (3) с помощью подстановки
$$u = \frac{y}{x}$$
 .

Пример: решить уравнение xdy = (x + y)dx.

Покажем, что это уравнение однородное. Для этого поделим его обе части на x dx.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+y}{x}$$

Поделив почленно правую часть на х:

$$y'=1+\frac{y}{x}$$
.

Слева стоит производная у, а справа функция, зависящая только от $\frac{y}{x}$. Уравнение

является однородным. Применим замену $u = \frac{y}{x} \implies y = ux \implies y' = u'x + u$.

$$u'x+u=1+u$$

Сократим на и и поделим на х:

$$\frac{du}{dx} = \frac{1}{x}$$

$$du = \frac{dx}{x}$$

$$\int du = \int \frac{dx}{x}$$

$$u = \ln|x| + C$$

Возвращаясь к исходной неизвестной функции $u=rac{y}{x}$

$$\frac{y}{x} = \ln|x| + C$$
$$y = x \ln|x| + Cx.$$

Кроме этого, есть еще решение x = 0, которое было потеряно при делении на x.

Линейные ДУ первого порядка.

Если обыкновенное дифференциальное уравнение можно привести к виду

$$y' + p(x)y = q(x),$$
 (5)

где p(x) и q(x) функции, не зависящие от у, а только от переменной x, то такое уравнение называется линейным (относительно у).

Линейные ОДУ первого порядка решают с помощью замены
$$y(x) = U(x) \cdot V(x)$$
, (6)

где U(x) и V(x) две пока неизвестные функции.

Найдем теперь производную y'(x) по правилу дифференцирования произведения:

$$y'(x) = U'(x) \cdot V(x) + U(x) \cdot V'(x)$$
 (7)

Подставив выражения (6) и (7) для у и у' в уравнение, получим:

$$U' \cdot V + U \cdot V' + U \cdot V \cdot p(x) = q(x)$$

Одной из функций U или V можно распорядиться по нашему усмотрению так, чтобы максимально упростить полученное уравнение. Чтобы понять, как наиболее удобно это сделать, вынесем из второго и третьего слагаемых общий множитель U за скобку: $U' \cdot V + U \cdot (V' + V \cdot p(x)) = q(x)$

Теперь видно, что если положить $V'+V\cdot p(x)=0$, то оставшееся уравнение приобретет максимально простой вид. Таким образом, это уравнение распадается на два уравнения, каждое из которых является уравнением с разделяющимися переменными: $V'+V\cdot p(x)=0$

$$U' \cdot V = q(x)$$

Теперь, найдя из первого уравнения функцию V(x), подставим ее во второе и найдем функцию U(x). А так как неизвестная функция y(x)=UV, то, значит, мы нашли и ее.

Пример: решить ДУ: $x^2y'+xy+1=0$

Поделим уравнение на x^2 и перенесем слагаемое $\frac{1}{x^2}$ в правую часть:

$$y' + \frac{y}{x} = -\frac{1}{x^2}$$

Следуя процедуре, изложенной выше, подставим в уравнение замену $y(x) = U(x) \cdot V(x)$:

$$U' \cdot V + U \cdot V' + \frac{U \cdot V}{x} = -\frac{1}{x^2}$$

$$U' \cdot V + U \cdot (V' + \frac{V}{x}) = -\frac{1}{x^2}$$

Уравнение распадается на два уравнения с разделяющимися переменными:

$$\frac{dV}{dx} = -\frac{V}{x}$$

$$\frac{dV}{V} = -\frac{dx}{x}$$

Интегрируем

$$\int \frac{\mathrm{d}V}{V} = -\int \frac{\mathrm{d}x}{x}$$

$$\ln |V| = -\ln |x|$$

Находим V

$$\ln |V| = \ln |x^{-1}|$$

$$V = \frac{1}{x}$$

Подставляем во второе уравнение \Rightarrow

$$\Rightarrow U' \cdot V = -\frac{1}{x^2}$$

$$U' \cdot \frac{1}{x} = -\frac{1}{x^2}$$

$$\frac{dU}{dx} = -\frac{1}{x}$$

$$dU = -\frac{dx}{x}$$

$$\int dU = -\int \frac{dx}{x}$$

$$U = -\ln|x|$$

1 1

Итак:
$$U = -\ln|x|$$
, а $V = \frac{1}{x}$. Тогда $y = -\ln|x| \cdot \frac{1}{x} + C$.

Уравнения Бернулли.

Уравнение Бернулли имеет вид:

$$y' + p(x)y = q(x)y^{\alpha}, \tag{8}$$

где $\alpha \neq 0$, $\alpha \neq 1$.

При $\alpha\!=\!0$ получаем уравнение с разделяющимися переменными, а при $\alpha\!=\!1$ - линейное ДУ.

Метод решения уравнения Бернулли тот же, что и для линейных уравнений.

Пример Найти общее решение ДУ:

$$xy' + 2y = \frac{2\sqrt{y}}{\cos^2 x}.$$

Решение. Разделим уравнение на $x \neq 0$ (x = 0 не является решением данного ДУ):

$$y' + \frac{2y}{x} = \frac{2\sqrt{y}}{x\cos^2 x}.$$

Полученное уравнение имеет вид (9), следовательно, это уравнение Бернулли. Сделаем замену y = UV, y' = U'V + UV'. Получим:

$$U'V + UV' + \frac{2UV}{x} = \frac{2\sqrt{UV}}{x\cos^2 x},$$

$$U'V + U\left(V' + \frac{2V}{x}\right) = \frac{2\sqrt{UV}}{x\cos^2 x}.$$

$$\frac{dV}{dx} = -\frac{2V}{x}$$

$$\int \frac{dV}{V} = -2 \int \frac{dx}{x}$$

$$\int \ln |V| = -2 \ln |x|$$

$$V = x^{-2}$$

$$V = \frac{1}{x^2}$$

$$U'V = \frac{2\sqrt{UV}}{x\cos^2 x}$$

$$U' \cdot \frac{1}{x^2} = \frac{2\sqrt{\frac{U}{x^2}}}{x\cos^2 x}$$

$$\frac{U'}{x^2} = \frac{2\sqrt{U}}{x^2 \cos^2 x}$$

$$U' = \frac{2\sqrt{U}}{\cos^2 x}$$

$$\frac{dU}{dx} = \frac{2\sqrt{U}}{\cos^2 x}$$

$$\frac{1}{2} \int \frac{dU}{\sqrt{U}} = \int \frac{dx}{\cos^2 x}$$

$$\sqrt{U} = tgx$$

$$U = tg^2x$$

Таким образом, общее решение ДУ:

$$y = \frac{tg^2x}{x^2} + C$$

Случай V=0 и $\Rightarrow y=0$ является решением ДУ, и так как оно не может быть получено из общего решения, то является особым решением.

Дифференциальные уравнения второго порядка

Как было сказано выше, дифференциальным уравнением n-го порядка называется уравнение вида $F(x,y,y',y"...y^{(n)})=0$, связывающее независимую переменную, искомую функцию и ее производные до n-го порядка включительно.

Основным способом интегрирования ДУ n-го порядка является понижение порядка. Рассмотрим три случая, когда это возможно.

ДУ, допускающие понижение порядка.

1) Если дифференциальное уравнение имеет вид:

$$y^{(n)} = f(x), \tag{9}$$

т. е. правая часть не содержит y, y и т.д. до n-1 производной функции y, то ДУ решается n-кратным последовательным интегрированием:

$$y^{(n-1)} = \int f(x)dx + C_1$$
$$y^{(n-2)} = \int (\int f(x)dx + C_1)dx + C_2$$

и т.д. пока не будет найдена искомая функция y(x).

Пример: решить ДУ $y''' = \sin 2x$,

Интегрируем это выражение в первый раз

$$y'' = \int \sin 2x dx = -\frac{1}{2}\cos 2x + C_1$$

И далее

$$y' = \int \left(-\frac{1}{2}\cos 2x + C_1\right) dx = -\frac{1}{4}\sin 2x + C_1x + C_2$$

$$y = \int \left(-\frac{1}{4}\sin 2x + C_1x + C_2\right) dx = \frac{1}{8}\cos 2x + C_1\frac{x^2}{2} + C_2x + C_3$$

$$\text{Итак:} \quad y = \frac{1}{8}\cos 2x + C_1\frac{x^2}{2} + C_2x + C_3$$

2) Если дифференциальное уравнение имеет вид:

$$F(x, y^{(n-1)}, y^{(n)}) = 0 (10)$$

т.е. в уравнении отсутствуют все младшие производные и сама функция, кроме двух последних производных $y^{(n-1)}$ и $y^{(n)}$. Тогда, введя новую функцию $z=y^{(n-1)}$ и, соответственно $z'=y^{(n)}$ получим ОДУ первого порядка вида F(x,z,z')=0. Это уравнение можно решать одним из вышеописанных способов для уравнений первого порядка.

Пример

$$y^{\prime\prime\prime} = (y^{\prime\prime})^2$$

Решение

Данное дифференциальное уравнение второго порядка не содержит явно искомую функцию y и ее первую производную y'. Введем новую функцию z=y", тогда z'=y". Получим уравнение:

$$z' = z^{2}$$

$$\frac{dz}{dx} = z^{2}$$
; $\frac{dz}{z^{2}} = dx$
; $\frac{1}{z} = x + C_{1}$
; $z = -\frac{1}{x + C_{1}}$

Вернемся к первоначальной переменной:

$$y'' = -\frac{1}{x + C_1}$$

Последовательно интегрируя, получим:

$$y' = -ln(x + C_1) + C_2$$

$$y = -(x + C_1)ln(x + C_1) + (x + C_1) + C_2x + C_3$$

$$y = -(x + C_1)ln(x + C_1) + x(C_2 + 1) + C_1 + C_3$$

Для простоты можно переобозначить C_2+1 на C_2 , а C_1+C_3 на C_3 , тогда общее решение примет вид:

$$y = -(x + C_1) ln(x + C_1) + C_2 x + C_3$$

3) Если дифференциальное уравнение второго порядка имеет вид:

$$F(y, y', y'') = 0,$$
 (11)

т.е. если в уравнении отсутствует явно переменная x.

Тогда проведем замену y' = p(y), считая производную функцией от y. Тогда по фор-

муле дифференцирования сложной функции:
$$y'' = \frac{dp(y)}{dx} = \frac{dp(y)}{dy} \frac{dy}{dx} = p'p$$
. И, подста-

вив все эти выражения в исходное ДУ, получим его в виде дифференциального уравнения первого порядка относительно функции p и переменной y: F(y,p,p')=0. Его можно решать методами, описанными выше.

Пример: решить ДУ
$$2(y')^2 = (y-1)y''$$

Видно, что в этом уравнении второго порядка отсутствует в явном виде переменная x. Тогда, применяя описанную выше замену y' = p(y) и y'' = p'p, получим:

$$2p^2 = (y-1)p'p$$

$$2p = (y-1)p'$$

или
$$p=0 \Rightarrow y'=0 \Rightarrow y=C$$
 - первое решение ДУ.

Продолжая решать первое уравнение

$$2p = (y-1)\frac{dp}{dy}$$

$$\frac{dy}{y-1} = \frac{dp}{2p}$$

$$\ln(y-1) + \ln C_1 = \frac{1}{2} \ln p$$

$$C_1(y-1) = \sqrt{p}$$

$$p = C_1^2 (y-1)^2$$

Возвращаемся к исходной функции y(x):

$$y' = C_1^2 (y-1)^2$$

$$\frac{dy}{dx} = C_1^2 (y-1)^2$$

$$\frac{dy}{C_1^2(y-1)^2} = dx$$

$$\int \frac{dy}{C_1^2(y-1)^2} = \int dx$$

$$-\frac{1}{C_1^2(y-1)} = x + C_2$$

$$-\frac{1}{C_1^2} = (x + C_2)(y - 1)$$

$$C_1 = (x + C_2)(y - 1)$$
, где переобозначили $-\frac{1}{C_1^2} = C_1$

Итак, первое решение ДУ y = C, второе $C_1 = (x + C_2)(y - 1)$.

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами

Однородные.

Линейные однородные ДУ 2-го порядка с постоянными коэффициентами имеют вид:

$$y'' + p_1 y' + p_2 y = 0, (12)$$

где p_1 и p_2 — действительные числа.

Согласно теореме о структуре общего решения линейного однородного ДУ достаточно найти два линейно независимых частных решения $y_1(x)$ и $y_2(x)$ уравнения (12), чтобы записать общее решение:

$$y_{00}(x)=C_1y_1(x)+C_2y_2(x).$$

Где y_{00} – общее решение однородного уравнения.

Будем искать решение уравнения (12) в виде $y = e^{\lambda x}$, где λ — некоторая постоянная.

Чтобы определить λ , подставим y, y', y'' в уравнение (12).

В результате подстановки получим уравнение $e^{\lambda x}(\lambda^2 + p_1\lambda + p_2) = 0$.

Так как $e^{\lambda x} \neq 0$, то

$$\lambda^2 + p_1 \lambda + p_2 = 0. \tag{13}$$

Квадратное уравнение (13) называют *характеристическим уравнением* для ДУ (15), а его корни λ_1 и λ_2 *характеристическими числами*. При решении характеристического уравнения (16) могут возникнуть три случая:

а) Корни λ_1 и λ_2 действительные и различные. Тогда общее решение уравнения (15) будет иметь вид:

$$y_{00} = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}. (14)$$

б) Корни λ_1 и λ_2 действительные и равные, $\lambda_1 = \lambda_2 = \lambda$. Общее решение уравнения (15) будет иметь вид:

$$y_{00} = e^{\lambda x} (C_1 + C_2 x). \tag{15}$$

в) Корни λ_1 и λ_2 комплексно сопряженные, $\lambda_{1,2} = a \pm ib$. Тогда общее решение уравнения (12) примет вид:

$$y_{00} = e^{ax} (C_1 \cos bx + C_2 \sin bx). \tag{16}$$

Пример 2.2. Найти общие решения линейных однородных ДУ 2-го порядка с постоянными коэффициентами:

a)
$$4y'' + 9y' + 2y = 0$$
;

6)
$$y'' - 10y' + 25y = 0$$
;

B)
$$y'' - 2y' + 17y = 0$$
;

$$\Gamma$$
) $y'' + 1,69y = 0;$

Решение.

а) 4y'' + 9y' + 2y = 0. Составим характеристическое уравнение:

$$4\lambda^2 + 9\lambda + 2 = 0.$$

Решим его, используя формулу корней квадратного уравнения:

$$a\lambda^{2} + b\lambda + C = 0$$
, $\lambda_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$.

Получим корни:

$$\lambda_{1,2} = \frac{-9 \pm \sqrt{9^2 - 4 \cdot 4 \cdot 2}}{2 \cdot 4} = \frac{-9 \pm \sqrt{49}}{8} = \frac{-9 \pm 7}{8};$$

$$\lambda_1 = \frac{-9-7}{8} = -2, \quad \lambda_2 = \frac{-9+7}{8} = -\frac{1}{4}.$$

Поскольку λ_1 , $\lambda_2 \in R$ и $\lambda_1 \neq \lambda_2$, то общее решение запишем в виде (14):

$$y_{00} = C_1 e^{-2x} + C_2 e^{-\frac{x}{4}}.$$

6)
$$y'' - 10y' + 25y = 0$$
.

Характеристическое уравнение:

$$\lambda^2 - 10\lambda + 25 = 0$$

его корни найдем по формуле корней квадратного уравнения:

$$\lambda_{1,2} = \frac{10 \pm \sqrt{10^2 - 4 \cdot 1 \cdot 25}}{2} = \frac{10 \pm 0}{2} = 5.$$

Поскольку $\lambda_1 = \lambda_2 = \lambda \in R$, то общее решение запишем в виде (15):

$$y_{00} = e^{5x} (C_1 + C_2 x).$$

B)
$$y'' - 2y' + 17y = 0$$
.

Характеристическое уравнение:

$$\lambda^2 - 2\lambda + 17 = 0,$$

его корни найдем по формуле корней квадратного уравнения:

$$\lambda_{1,2} = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 17}}{2 \cdot 1} = \frac{2 \pm \sqrt{-64}}{2} = \frac{2 \pm 8i}{2} = 1 \pm 4i.$$

Получим комплексно сопряженные корни $\lambda_{1,2} = a \pm ib$, где a=1, b=4.

Решение запишем в виде (16):

$$y_{00} = e^x (C_1 \cos 4x + C_2 \sin 4x).$$

$$y'' + 1,69y = 0.$$

Характеристическое уравнение:

$$\lambda^2 + 1.69 = 0.$$

Решим его:

$$\lambda^2 = -1,69; \quad \lambda_{1,2} = \pm \sqrt{-1,69}; \quad \lambda_{1,2} = \pm 1,3i.$$

 $\lambda_{1,2}$ — комплексно сопряженные корни вида $\lambda_{1,2} = a \pm ib$, где a = 0, b = 1,3. Решение запишем в виде (16), при этом учтем, что $e^0 = 1$:

$$y_{00} = C_1 \cos 1.3x + C_2 \sin 1.3x$$
.

Неоднородные линейные ДУ.

Линейные неоднородные ДУ 2-го порядка с постоянными коэффициентами имеют вид:

$$y'' + p_1 y' + p_2 y = f(x). (18)$$

Здесь f(x) — известная функция, непрерывная на некотором промежутке.

Согласно теореме о структуре общего решения линейного неоднородного ДУ общее решение ДУ (18) $y_{\rm oh}(x)$ есть сумма общего решения $y_{\rm oo}(x)$ соответствующего однородного уравнения (15) и любого частного решения $y_{\rm чh}(x)$ неоднородного уравнения (18), т. е.

$$y_{\text{oH}}(x) = y_{\text{oo}}(x) + y_{\text{чH}}(x).$$
 (19)

Рассмотрим, в каком виде можно искать частное решение $y_{\text{чн}}(x)$ ДУ (18), когда правая часть уравнения f(x) имеет специальный вид.

Пусть λ_1 и λ_2 корни характеристического уравнения (13), а правая часть уравнения имеет вид:

$$f(x) = e^{\alpha x} (P_n(x) \cos \beta x + Q_m(x) \sin \beta x), \tag{20}$$

где $P_n(x)$, $Q_m(x)$ — многочлены от x степеней n и m соответственно с известными коэффициентами.

Тогда частное решение $y_{\scriptscriptstyle \mathrm{ЧH}}$ следует искать в виде:

$$y_{\text{\tiny YH}} = x^k e^{\alpha x} \left(R_l(x) \cos \beta x + S_l(x) \sin \beta x \right), \tag{21}$$

где k— кратность корня $\alpha \pm i\beta$ характеристического уравнения:

$$k = \begin{cases} 0, \text{ если } \alpha \pm i\beta \text{ не является корнем;} \\ 1, \text{ если } \alpha \pm i\beta \text{— однократный корень;} \\ 2, \text{ если } \alpha \pm i\beta \text{— двукратный корень (этот случай реализуется только при } \beta = 0). \end{cases}$$

При этом $R_l(x)$, $S_l(x)$ —многочлены от x степени $l=\max\{n,m\}$ с некоторыми, пока неизвестными, коэффициентами. Неизвестные коэффициенты многочленов $R_l(x)$ и $S_l(x)$ находят методом неопределенных коэффициентов.

Пример 2.3. Найти общее решение линейных неоднородных ДУ 2-го порядка с постоянными коэффициентами:

a)
$$y'' - 4y' = \sin 4x$$
; 6) $y'' - y' - 2y = e^{-x}(x+2)$.

Решение.

a)
$$y'' - 4y' = \sin 4x$$
.

Найдем общее решение соответствующего однородного ДУ: y'' - 4y' = 0.

Характеристическое уравнение:

$$\lambda^2 - 4\lambda = 0 \Rightarrow \lambda(\lambda - 4) = 0 \Rightarrow \lambda_1 = 0, \lambda_2 = 4.$$

Поскольку λ_1 , $\lambda_2 \in R$ и $\lambda_1 \neq \lambda_2$, то общее решение запишем в виде (17), при этом учтем, что $e^0 = 1$:

$$y_{00} = C_1 + C_2 e^{4x}$$
.

Найдем частное решение неоднородного уравнения. Правая часть уравнения $f(x) = \sin 4x$.

Сравнивая ее с видом (20) $f(x) = e^{\alpha x} (P_n(x) \cos \beta x + Q_m(x) \sin \beta x)$, заключаем, что $\alpha = 0$, $\beta = 4$, n = 0, m = 0. Определим параметры частного решения (21). Учитывая, что $\alpha = 0$, а $\beta = 4$, получим, что $\alpha \pm i\beta = \pm 4i$ —не является корнем характеристиче-

ского уравнения, поскольку корни $\lambda_1 = 0$, $\lambda_2 = 4$. Следовательно, k = 0. Найдем $l = \max\{0,0\} = 0$. Следовательно, порядок многочленов R и S равен 0, т. е. $R_0 = A$, а $S_0 = B$, где A и B — некоторые неизвестные пока коэффициенты. Подставив полученные параметры в $y_{\text{чн}} = x^k e^{\alpha x} \left(R_l(x) \cos \beta x + S_l(x) \sin \beta x \right)$, имеем:

$$y_{\text{\tiny YH}} = x^0 e^0 (R_0 \cos 4x + S_0 \sin 4x) = A \cos 4x + B \sin 4x.$$

Коэффициенты A и B определим из условия, что функция $y_{\rm чh}$ — решение уравнения и поэтому должна ему удовлетворять. Найдем $y_{\rm чh}'$ и $y_{\rm чh}''$:

$$y'_{4H} = -4A \sin 4x + 4B \cos 4x$$
,

$$y''_{HH} = -16A\cos 4x - 16B\sin 4x$$

и подставим в исходное уравнение:

 $-16A\cos 4x - 16B\sin 4x + 16A\sin 4x - 16B\cos 4x = \sin 4x$.

Приравняем коэффициенты при $\sin 4x$ и $\cos 4x$ в правой и левой частях полученного равенства:

$$\sin 4x$$
 $\begin{vmatrix}
-16B + 16A = 1, & \Rightarrow 16A + 16A = 1, \Rightarrow A = \frac{1}{32}, \\
\cos 4x
\end{vmatrix}$
 $-16A - 16B = 0. \Rightarrow B = -A \Rightarrow B = -\frac{1}{32}.$

Итак,
$$y_{\text{чн}} = \frac{1}{32}\cos 4x - \frac{1}{32}\sin 4x$$
.

Тогда согласно (19) общее решение неоднородного ДУ имеет вид:

$$y_{\text{OH}} = C_1 + C_2 e^{4x} + \frac{1}{32} \cos 4x - \frac{1}{32} \sin 4x.$$

6)
$$y'' - y' - 2y = e^{-x}(x+2)$$
.

Найдем общее решение соответствующего однородного ДУ:

$$y'' - y' - 2y = 0.$$

Характеристическое уравнение:

$$\lambda^2 - \lambda - 2 = 0.$$

Найдем его корни по формуле (17):

$$\lambda_{1,2} = \frac{1 \pm \sqrt{1 - 4 \cdot 1(-2)}}{2 \cdot 1} = \frac{1 \pm 3}{2};$$

$$\lambda_1 = \frac{1-3}{2} = -1$$
, $\lambda_2 = \frac{1+3}{2} = 2$.

Поскольку λ_1 , $\lambda_2 \in R$ и $\lambda_1 \neq \lambda_2$, то общее решение запишем в виде (17):

$$y_{00} = C_1 e^{-x} + C_2 e^{2x}.$$

Найдем частное решение неоднородного уравнения. Правая часть уравнения $f(x)=e^{-x}(x+2)$. Сравнивая ее с видом (20) $f(x)=e^{\alpha x}\left(P_n(x)\cos\beta x+Q_m(x)\sin\beta x\right)$, заключаем $\alpha=-1$, $\beta=0$, n=1, m=0. Определим параметры частного решения (21). Учитывая, что $\alpha=-1$, а $\beta=0$, получим, что $\alpha\pm i\beta=-1$ —однократный корень характеристического уравнения, поскольку корни $\lambda_1=-1$, $\lambda_2=2$. Следовательно, k=1. Найдем $l=\max\{1,0\}=1$. Следовательно, порядок многочленов R и S равен 1, т. е. $R_1=Ax+B$, а $S_1=Cx+D$, где A, B, C, D— неизвестные коэффициенты. Подставляя полученные параметры в $y_{\text{чн}}=x^ke^{\alpha x}\left(R_l(x)\cos\beta x+S_l(x)\sin\beta x\right)$, имеем:

$$y_{\text{\tiny YH}} = x^1 e^{-x} ((Ax + B)\cos 0 + (Cx + D)\sin 0) = x e^{-x} (Ax + B) = e^{-x} (Ax^2 + Bx).$$

Для определения коэффициентов A и B найдем $y'_{\scriptscriptstyle \mathtt{HH}}$ и $y''_{\scriptscriptstyle \mathtt{HH}}$:

$$y'_{\text{\tiny YH}} = -e^{-x} (Ax^2 + Bx) + e^{-x} (2Ax + B),$$

$$y''_{\text{\tiny YH}} = e^{-x} (Ax^2 + Bx) - e^{-x} (2Ax + B) - e^{-x} (2Ax + B) + e^{-x} 2A =$$

$$= e^{-x} (Ax^2 + Bx) - 2e^{-x} (2Ax + B) + e^{-x} 2A$$

и подставим в исходное уравнение:

$$e^{-x}(Ax^{2}+Bx)-2e^{-x}(2Ax+B)+2Ae^{-x}+e^{-x}(Ax^{2}+Bx)-$$

$$-e^{-x}(2Ax+B)-2e^{-x}(Ax^{2}+Bx)=e^{-x}(x+2).$$

Разделим обе части уравнения на $e^{-x} \neq 0$ и приведем подобные члены:

$$-3(2Ax+B)+2A=x+2 \Rightarrow$$

$$-6Ax - 3B + 2A = x + 2$$
.

Приравняем коэффициенты при одинаковых степенях x в правой и левой частях уравнения:

$$x^{1}$$
 $\begin{vmatrix} -6A = 1, & \Rightarrow A = -\frac{1}{6}, \\ x^{0} & -3B + 2A = 2. & \Rightarrow -3B + 2 \cdot \left(-\frac{1}{6}\right) = 2 \Rightarrow -3B = \frac{7}{3} \Rightarrow B = -\frac{7}{9}.$ Итак, $y_{\text{\tiny ЧH}} = e^{-x} \left(-\frac{1}{6}x^{2} - \frac{7}{9}x\right).$

Тогда согласно (19) общее решение неоднородного ДУ имеет вид:

$$y_{\text{oH}} = C_1 e^{-x} + C_1 e^{2x} + e^{-x} \left(-\frac{1}{6} x^2 - \frac{7}{9} x \right).$$

Литература

- 1. Н.С. Пискунов, Дифференциальное и интегральное исчисление. Том 1,2. 1972-2000.
- 2. А.Ф. Бермант, И.Г. Араманович. Краткий курс математического анализа для втузов. Москва: "Наука". Главная редакция физико-математической литературы, 1973.
- 3. Г.М. Берман, Сборник задач по курсу математического анализа (для втузов). Москва: "Наука". 1985.
- 4. П. Е. Данко, и др. Высшая математика в упражнениях и задачах: Учебное пособие для втузов. В 2-х ч. 1980 ч.1, 1984 ч.2.

КОНТРОЛЬНАЯ РАБОТА №4

1. Числовые ряды.

Определение суммы ряда и основные свойства. Примеры геометрического и гармонического рядов. Необходимый признак сходимости.

2. Положительные ряды.

Критерий сходимости положительных рядов. Достаточные признаки сходимости: первый и второй признаки сравнения, признак Даламбера, радикальный и интегральный признаки Коши.

3. Знакочередующиеся ряды.

Понятие абсолютной и условной сходимости знакопеременных рядов. Теорема Лейбница о сходимости знакочередующихся рядов и следствие из этой теоремы об оценке остатка ряда.

4.Степенные ряды.

Теорема Абеля и следствие из этой теоремы о существовании для степенных рядов интервала сходимости. Радиус сходимости степенного ряда и его вычисление. Свойства степенных рядов: теоремы о непрерывности суммы степенного ряда, о почленном интегрировании и почленном дифференцировании. Логарифмический ряд. Ряды Тэйлора и Маклорена. Условия представимости функции ее рядом Тэйлора. Единственность представления заданной функции степенным рядом. Разложение элементарных функций e^x , $\cos x$, $\sin x$, $(1+x)^\mu$ в степенные ряды. Применение степенных рядов к приближенным вычислениям.

5. Ряды Фурье.

Понятие тригонометрического ряда. Определение ортогональных систем функций и тригонометрическая система функций. Формулы Эйлера-Фурье и определение ряда Фурье. Достаточные условия представимости функции с периодом $T=2\pi$ ее рядом Фурье (теорема Дирихле). Ряд Фурье для четных и нечетных функций. Периодическое продолжение функций. Ряд Фурье в случае произвольного периода $T=2\lambda$ и ряд Фурье для функции, заданной на несимметричном интервале.

6. Основные понятия.

Случайные события. Алгебраические операции над событиями. Множество элементарных событий.

7. Алгебра событий.

Аксиоматическое определение вероятности события. Вероятностное пространство.

- 8. Классическое определение вероятности события.
- 9. Статистическое определение вероятности события.
- 10. Геометрическое определение вероятности события.
- 11. Задачи классической вероятности.

Элементы комбинаторики. Комбинаторный метод вычисления вероятностей в классической схеме.

12. Теорема умножения.

Определение условной вероятности. Независимость событий.

13. Вероятности сложных событий.

Формулы умножения вероятностей. Теоремы сложения вероятностей.

- 14. Формула полной вероятности, формулы Байеса.
- 15. Схема независимых испытаний Бернулли.

Формула Бернулли.

16. Предельные теоремы в схеме Бернулли.

Формулы Муавра-Лапласа и Пуассона.

17. Случайные величины.

Определение случайной величины. Дискретные случайные величины (ДСВ) и случайные величины непрерывного типа (СВНТ).

18. Задание случайных величин.

Закон распределения ДСВ.

19. Числовые характеристики ДСВ.

Математическое ожидание, дисперсия и другие моменты. Свойства математического ожидания и дисперсии.

20. Примеры ДСВ.

Гипергеометрическое распределение, биномиальное распределение, закон Пуассона.

21. Задание СВНТ.

Функция распределения и функция плотности вероятностей. Свойства этих функций.

- 22. Числовые характеристики СВНТ.
- 23. Совместное распределение нескольких случайных величин.

Функции случайных величин и их числовые характеристики.

- 24. Независимость случайных величин.
- 25. Примеры непрерывных распределений.

Равномерное, нормальное и показательное распределения.

- 26. Ковариация, коэффициент корреляции.
- 27. Закон больших чисел.

Неравенство Чебышева. Теорема Чебышева.

28. Предельные теоремы.

Понятие о предельных теоремах. Центральная предельная теорема для суммы одинаково распределенных слагаемых. Теорема Ляпунова.

29. Математическая статистика.

Выборка и способы ее представления. Числовые характеристики выборочного распределения.

30. Точечные оценки и их свойства.

Статистическое оценивание характеристик распределения генеральной совокупности по выборке.

31. Интервальные оценки.

Доверительный интервал, надежность и точность оценки.

- 32. Доверительный интервал для центра нормального распределения при известной дисперсии.
- 33. Доверительный интервал для среднего квадратичного отклонения нормального распределения.
 - 34. Проверка статистических гипотез.

Критерий согласия Пирсона.

35. Линейная регрессия.

Элементы регрессионного анализа и метод наименьших квадратов. Характер связи и его оценивание по коэффициенту корреляции.

ВАРИАНТЫ ЗАДАНИЙ КОНТРОЛЬНОЙ РАБОТЫ №4

Задача №1. Исследовать сходимость положительного ряда, применяя какой — либо из достаточных признаков сходимости (сравнения, Даламбера, радикальный или интегральный):

$$1.a) \sum_{n=1}^{\infty} \frac{n}{2^{n}}; \qquad b) \sum_{n=1}^{\infty} \left(\frac{4+3n}{6n-1}\right)^{n} \qquad c) \sum_{n=1}^{\infty} n e^{-n^{2}};$$

$$2.a) \sum_{n=1}^{\infty} \frac{(n+1)!}{10^{n}}; \qquad b) \sum_{n=1}^{\infty} \frac{1}{n^{n}}; \qquad c) \sum_{n=2}^{\infty} \frac{1}{n \ln^{2} n};$$

$$3.a) \sum_{n=1}^{\infty} \frac{3^{2n+1}}{2^{3n-4}}; \qquad b) \sum_{n=1}^{\infty} \left(\frac{2n^{2}-1}{5n^{2}-4}\right)^{n} \qquad c) \sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+1\right)^{2}};$$

$$7.a) \sum_{n=1}^{\infty} n^{2} \sin \frac{\pi}{2^{n}}; \qquad b) \sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^{n^{2}} \qquad c) \sum_{n=1}^{\infty} \frac{n^{2}}{e^{3n^{3}}};$$

$$8.a) \sum_{n=1}^{\infty} \frac{n^{n}}{n!}; \qquad b) \sum_{n=1}^{\infty} arctg \frac{n^{2}-n}{n^{2}+1}; \qquad c) \sum_{n=1}^{\infty} e^{-\sqrt{n}};$$

$$4.a) \sum_{n=1}^{\infty} \frac{2^{n}}{n^{2\log n}}; \qquad b) \sum_{n=1}^{\infty} \left(\frac{b}{2n+1}\right) \sum_{n=1}^{\infty} \frac{1}{3^{2n}}; \qquad c) \sum_{n=1}^{\infty} \frac{1}{n^{p}}, \sum_{n=1}^{\infty} \frac{\ln n}{\ln p};$$

$$10.a) \sum_{n=1}^{\infty} \frac{1}{n^{2}} \frac{1}{3^{2}} \frac{3}{3^{2}} \frac{5}{6} \cdot 9 \cdot \dots \cdot (2n-1)}{n^{2}}; \qquad b) \sum_{n=1}^{\infty} arcsin^{n} \frac{1}{n^{2}+n}; \qquad c) \sum_{n=1}^{\infty} \frac{1}{n^{p}} \frac{n}{(p + 1)^{2}};$$

$$6.a) \sum_{n=1}^{\infty} \frac{5^{n}}{n!}; \qquad b) \sum_{n=1}^{\infty} \frac{n^{n}}{(2n+2)^{n}}; \qquad c) \sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln^{3} n}};$$

Задача №2. Найти интервал сходимости степенного ряда, исследовать его поведение на концах интервала сходимости и указать область сходимости:

$$1).\sum_{n=1}^{\infty} \frac{\left(\frac{x}{2}\right)^{n-1}}{n};$$

2).
$$\sum_{n=1}^{\infty} \frac{(2x)^n}{n^2}$$
;

3).
$$\sum_{n=1}^{\infty} n^2 \left(\frac{x}{3}\right)^{n-1}$$
;

4).
$$\sum_{n=1}^{\infty} \frac{(-5x)^{n-1}}{n^2 + n - 1};$$

5).
$$\sum_{n=1}^{\infty} \frac{(-x)^{n-1}}{\sqrt{2n-1}};$$

$$6).\sum_{n=1}^{\infty}\frac{x^{n-1}}{(n-1)!};$$

7).
$$\sum_{n=1}^{\infty} \frac{x^{n-1}}{n^{3/2} + n}$$
;

8).
$$\sum_{n=1}^{\infty} \frac{n+2}{n^2+n} \left(\frac{x}{4}\right)^n$$
;

9).
$$\sum_{n=1}^{\infty} \frac{(-10x)^{n-1}}{\sqrt{n}}$$
;

10).
$$\sum_{n=1}^{\infty} \frac{(x-2)^{n-1}}{2^n}$$
;

Задача №3 (Комбинаторный метод вычисления вероятностей в классической схеме).

Варианты 1, 2

В магазин поступило n телевизоров. Из них k имеют скрытые дефекты. Покупателю для выбора наудачу предложено /телевизоров. Какова вероятность того, что все предложенные покупателю изделия не содержат дефектов?

Варианты 3,4

Из партии, содержащей n изделий, среди которых k бракованных, наудачу извлекают mизделий для контроля. Найти вероятности следующих событий: А={в полученной выборке ровно / бракованных изделий $\}$, B= $\{$ в полученной выборке нет бракованных изделий $\}$.

3.
$$n=10$$

$$n=10$$
, $k=3$, $l=1$, $m=4$.

Варианты 5,6

Имеются два ящика с деталями. В первом n деталей, из них m годных. Во втором ящике Nизделий, из них M годных. Сборщик наудачу выбрал по одной детали из каждого ящика. Найти вероятность того, что обе выбранные детали годные. Какова вероятность того, что обе выбранные детали бракованные?

$$M=7.$$

Варианты 7,8

Группа, состоящая из 8 человек, занимает места с одной стороны прямоугольного стола. Найти вероятность того, что два определенных лица окажутся рядом, если:

- 7. число мест равно 8.
- 8. число мест равно *12*.

Варианты 9,10

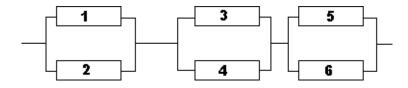
Из урны, содержащей m+n шаров, из которых m белых и n черных, на удачу отбирают k шаров и откладывают в сторону. Найти вероятности следующих событий: $A=\{$ все отложенные шары белые $\}$, $B=\{$ среди отложенных шаров ровно /белых $\}$.

- 9. *m=10, n=6, k=5, l=3.*
- **10**. *m=8*, *n=12*, *k=6*, *l=4*.

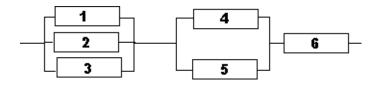
Задача № 4 (Вероятности сложных событий и применение теорем сложения и умножения)

Электрическая цепь прибора составлена по схеме, приведенной на рисунке Вашего варианта. Событие $A_k = \{k$ -ый элемент вышел из строя $\}$. k = 1, 2, ..., 6. Отказы элементов являются независимыми в совокупности событиями. Известна надежность $p_k = P(\overline{A_k})$ k-го элемента (соответственно $q_k = 1 - p_k$ - вероятность отказа). Событие $B = \{pазрыв цепи\}$. Выразить событие $B = \{paspыв цепи\}$. Найти вероятность отказа прибора и вероятность надежности схемы. $p_1 = p_2 = 0.9$, $p_3 = p_4 = 0.8$, $p_5 = p_6 = 0.85$.

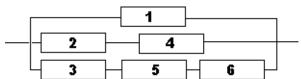
Вариант 1



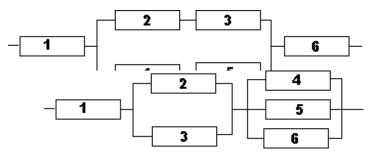
Вариант 2



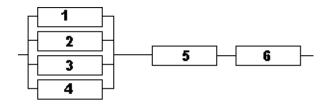
Вариант 3



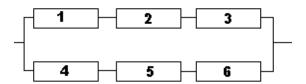
Вариант 4



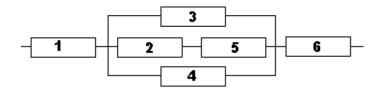
Вариант 6



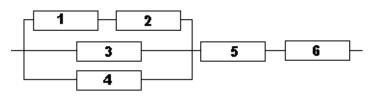
Вариант 7



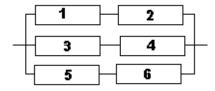
Вариант 8



Вариант 9



Вариант 10



Задача № 5 (Формула полной вероятности и формула Байеса)

Варианты № 1, 2

В сборочный цех поступает некоторая деталь с трёх станков-автоматов. Среди изделий первой линии m_1 % стандартных, у второй линии m_2 %, m_3 % - у третьей линии. Объём продукции первой линии n_1 %, второй линии n_2 %. Определить вероятность того, что наудачу взятая сборщиком деталь окажется бракованной. Определить вероятность того, что деталь изготовлена на третьей линии, если оказалось, что она бракованная.

1.
$$m_1 = 98\%$$
, $m_2 = 95\%$, $m_3 = 92\%$, $n_1 = 40\%$, $n_2 = 30\%$.

2.
$$m_1 = 97\%$$
, $m_2 = 96\%$, $m_3 = 95\%$, $n_1 = 45\%$, $n_2 = 35\%$.

Варианты № 3, 4

В тире имеется три вида винтовок: n_1 - первого типа, n_2 - второго типа, n_3 третьего типа. Вероятность попадания в цель из винтовок первого типа p_1 , второго типа p_2 , третьего типа p_3 . После выстрела из винтовки, выбранной наудачу, цель была поражена. Какова вероятность того, что выстрел был сделан из винтовки третьего типа?

3.
$$n_1 = 3$$
, $n_2 = 4$, $n_3 = 3$, $p_1 = 0.9$, $p_2 = 0.85$, $p_3 = 0.65$.
4. $n_1 = 1$, $n_2 = 3$, $n_3 = 5$, $p_1 = 0.65$, $p_2 = 0.7$, $p_3 = 0.75$.

4.
$$n_1 = 1$$
, $n_2 = 3$, $n_3 = 5$, $p_1 = 0.65$, $p_2 = 0.7$, $p_3 = 0.75$

Варианты № 5.6

В магазин поступают телевизоры с трёх заводов. С первого завода поступает m_1 % телевизоров со скрытыми дефектами, m_2 % со второго завода и m_3 % с третьего завода. Какова вероятность того, что в магазин привезут исправный телевизор, если известно, что с первого завода поступило телевизоров n_1 , со второго n_2 , с третьего n_3 ?

5.
$$m_1 = 10\%$$
, $m_2 = 5\%$, $m_3 = 6\%$, $n_1 = 3$, $n_2 = 3$, $n_3 = 4$.
6. $m_1 = 15\%$, $m_2 = 10\%$, $m_3 = 15\%$, $n_1 = 5$, $n_2 = 3$, $n_3 = 2$.

6.
$$m_1 = 15\%$$
, $m_2 = 10\%$, $m_3 = 15\%$, $n_1 = 5$, $n_2 = 3$, $n_3 = 2$

<u>Варианты № 7,8</u>

В ящике n теннисных мячей. Из них игранных m. Для первой игры наудачу взяли два мяча и после игры их положили обратно. Для второй игры также наудачу взяли два мяча. Какова вероятность того, что вторая игра будет проводиться новыми мячами?

7.	<i>n</i> =10,	<i>m</i> =2.		
Q	<i>n</i> −12	m-4		

Варианты № 9,10

Три стрелка произвели по выстрелу в одну и ту же мишень. Вероятность попадания у них соответственно p1, p2, p3. В мишени оказались две пробоины. Определите вероятность промаха n-го стрелка.

Задача №6 Дискретные случайные величины.

Составить закон распределения дискретной случайной величины X. Записать функцию распределения, построить её график. Вычислить числовые характеристики M(X), D(X), $\sigma(X)$).

Варианты №1,2,3,4

X-число отказавших элементов в одном опыте с устройством, состоящим из n независимо работающих элементов. Вероятность отказа каждого элемента p.

- 1. n=3, p=0.1.
- 2. n=4, p=0.15.
- 3. n=3, p=0.15.
- 4. n=4, p=0.2.

Варианты №5,6,7

В партии k% бракованных изделий. Наудачу отобрано n изделий. X- число бракованных изделий среди отобранных. Дискретная случайная величина X распределена по биномиальному закону:

- 5. k=15%, n=4
- 6. k=10%, n=5.
- 7. k=20%, n=3.

Варианты №8,9,10

В партии из n деталей имеется m стандартных. Наудачу отобрали k деталей. X-число стандартных деталей среди отобранных.

Задача № 7 (Выборка, выборочные характеристики)

Из изучаемой налоговыми органами обширной группы населения случайным образом отобраны 10 человек и собраны сведения об их доходах за истекший год в тысячах рублей: *х1, х2,..., х10*. Найти выборочное среднее, исправленную выборочную дисперсию. Считая распределение доходов в группе нормальным и принимая в качестве его параметров выборочные характеристики, определить, какой процент населения имеет годовой доход, превышающий 70 тыс. рублей.

Νō	x1	x2	х3	x4	<i>x5</i>	х6	<i>x7</i>	х8	х9	x10
вар										
1	50	40	60	80	40	50	60	120	70	50
2	45	65	85	45	55	65	95	75	65	55
3	80	70	60	50	70	90	50	60	70	100
4	65	55	45	65	85	55	45	65	100	80
5	50	60	70	100	80	70	60	50	70	90
6	100	40	80	90	50	60	80	70	70	50
7	100	50	80	90	100	130	55	60	100	80
8	70	40	45	90	110	60	50	40	110	90
9	80	110	90	80	70	60	60	50	65	50
10	90	40	60	40	80	65	90	70	50	60

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ И ОБРАЗЦЫ РЕШЕНИЙ ЗАДАЧ

ЭЛЕМЕНТЫ ТЕОРИИ РЯДОВ

1. Понятие числового ряда. Необходимый признак сходимости.

Определение. Бесконечная сумма членов числовой последовательности { *un*} называется **числовым рядом**:

$$u_1 + u_2 + \dots + u_n + \dots = \sum_{n=1}^{\infty} u_n$$

Здесь *un* (n=1, 2, 3, ...) – n-ый член ряда.

Сумма конечного числа п первых членов ряда $S_n = \sum_{k=1}^n u_k$ называется n-ой **ча-стичной** суммой ряда.

Если существует конечный предел последовательности $\{Sn\}$ частичных сумм $S = \lim_{n \to \infty} S_n$,

то этот предел называется **суммой ряда**, а сам ряд называется **сходящимся**. Если конечный предел частичных сумм не существует, то ряд называется **расходящимся**.

Необходимый признак сходимости ряда: если ряд $\sum_{n=1}^{\infty}u_n$ сходится, то общий член ряда стремится к нулю: $\lim_{n\to\infty}u_n=0$.

Ряд может сходиться лишь в том случае, когда его общий член un при $n\to\infty$ является бесконечно малой величиной.

Если необходимое условие сходимости ряда не выполнено: $lim\ un \neq 0$, либо предел не

 $n \rightarrow \infty$

существует, то ряд расходится (достаточный признак расходимости рядов).

$$\frac{1}{5} - \frac{1*3}{25} + \frac{1*3*5}{125} - \frac{1*3*5*7}{625} + \dots$$

Пример 1. Найти общий член ряда

Доказать ,что этот ряд расходится.

Решение. Последовательно рассмотрим члены ряда:

$$\begin{split} u_1 &= \frac{1}{5} = (-1)^{1-1} \frac{1}{5^1}; \\ u_2 &= -\frac{1*3}{25} = (-1)^{2-1} \frac{1*(2*2-1)}{5^2}; \\ u_3 &= \frac{1*3*5}{125} = (-1)^{3-1} \frac{1*3*(2*3-1)}{5^3}; \\ u_4 &= -\frac{1*3*5*7}{625} = (-1)^{4-1} \frac{1*3*5*(2*4-1)}{5^4}. \end{split}$$

Подмечая закономерность, можно видеть, что общий член ряда выражается фор-

$$u_n = (-1)^{n-1} \frac{1*3*5*...*(2*n-1)}{5^n}.$$

мулой

Представим общий член ряда в виде

Ясно, что при $n \ge 4$ $|u\mathbf{n}| > 3/25$, поскольку все сомножители-дроби, кроме первых

$$u_n = (-1)^{n-1} \frac{1}{5} * \frac{3}{5} * \frac{5}{5} * \dots * \frac{2 * n - 1}{5}.$$

трех, больше 1.

Отсюда следует $\lim_{n\to\infty}u_n\neq 0$, необходимое условие сходимости не выполнено, ряд расходится.

2. Положительные ряды.

Для исследования сходимости **положительных** рядов (т.е. рядов с неотрицательными членами: $un \ge 0$) применяют достаточные признаки сходимости рядов. Среди них наиболее часто используют признаки сравнения, Даламбера, радикальный и интегральный признаки Коши

(Табл. 1).

$$\sum_{n=1}^{\infty} tg \, \frac{\pi}{\sqrt[5]{n^4}}$$

Пример 2. Исследовать сходимость ряда

Решение. Применим первый признак сравнения. В качестве «эталонного» ряда возьмем обобщенный гармонический ряд

$$\sum_{n=1}^{\infty} \frac{\pi}{\sqrt[5]{n^4}} = \sum v_n$$

Показатель степени гармонического ряда p=4/5<1, поэтому «эталонный» ряд расходящийся. Члены исходного ряда для всех $n\ge 3$ превосходят соответствующие

$$tg\,\frac{\pi}{\sqrt[5]{n^4}} > \frac{\pi}{\sqrt[5]{n^4}}$$

члены «эталонного» ряда:

Применяя первый признак сравнения, получаем, поскольку расходится «меньший» эталонный ряд, то расходится и «больший» исходный ряд.

Пример 3. Исследовать сходимость ряда

$$\sum_{n=1}^{\infty} [\ln(3^n + 2^n) - n \ln 3]$$

Решение. Преобразуем общий член исходного ряда

$$u_n = \ln(3^n + 2^n) - n \ln 3 = \ln \frac{3^n + 2^n}{3^n} = \ln[1 + \left(\frac{2}{3}\right)^n]$$

Исходный ряд сравним с "эталонным" рядом

$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$

Это "геометрический ряд, он сходится, т.к. знаменатель прогрессии q=2/3<1. Поскольку

$$\lim_{n \to \infty} \frac{\ln\left[1 + \left(\frac{2}{3}\right)^n\right]}{\left(\frac{2}{3}\right)^n} = 1$$

конечное число, отличное от 0, то в силу второго признака сравнения заключаем, что исходный ряд сходится.

Пример 4. Исследовать сходимость ряда

$$\sum_{n=1}^{\infty} \frac{n^3 3^n}{(2n-1)!}$$

Решение. Применим признак Даламбера. Записываем *п-*ый член ря-

да:
$$u_n = \frac{n^3 \cdot 3^n}{(2n-1)!}$$
.

(n+1)-ый член получим, если в выражении un везде n заменим на (n+1):

$$u_{n+1} = \frac{(n+1)^3 3^{n+1}}{(2(n+1)-1)!} = \frac{(n+1)^3 3^{n+1}}{(2n+1)!}$$

Найдем предел отношения:

$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{\frac{(n+1)^3 3^{n+1}}{(2n+1)!}}{\frac{n^3 3^n}{(2n-1)!}} = \lim_{n\to\infty} \frac{(2n+1)^3 3^{n+1} (2n-1)!}{n^3 3^n (2n+1)!} = 3 \lim_{n\to\infty} \frac{(n+1)^3}{n^3 2n (2n+1)} = 0 < 1 \Rightarrow psd - cxodumcs$$

Пример 5. Исследовать сходимость ряда

$$\sum_{n=1}^{\infty} \left(\frac{2n^2 + 1}{2n^2} \right)^{-n^3}.$$

$$K = \lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{2n^2 + 1}{2n^2}\right)^{-n^3}} = \lim_{n \to \infty} \left(1 + \frac{1}{2n^2}\right)^{-n^2} = \lim_{n \to \infty} \left[1 + \frac{1}{2n^2}\right]^{\frac{1}{2n^2}} = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}} < 1$$

Решение. Здесь удобно применить радикальный признак Коши:

Следовательно, ряд сходится. Подчеркнем, здесь использовали известный « второй замечательный» предел

$$\lim_{n\to\infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln^3 n}}$$

Пример 6. Исследовать сходимость ряда

Решение. Рассмотрим функцию

Она при $x \ge 2$ положительная, непрерывная и монотонно убывает. (Заметим, что эта функция получается из выражения общего члена ряда при замене n на x). Мож-

$$f(x) = \frac{1}{x\sqrt{\ln^3 x}}$$

но применять интегральный признак. Исследуем сходимость несобственного интеграла:

$$\int_{2}^{\infty} \frac{dx}{x\sqrt{\ln^{3} x}} = \int_{2}^{\infty} (\ln x)^{-3/2} d(\ln x) = \lim_{A \to \infty} \int_{2}^{A} (\ln x)^{-3/2} d(\ln x) = \lim_{A \to \infty} \frac{(\ln x)^{-3/2+1}}{-3/2+1} \bigg|_{2}^{A} = \frac{2}{\sqrt{\ln 2}} - \lim_{A \to \infty} \frac{2}{\sqrt{\ln A}} = \frac{2}{\sqrt{\ln 2}} - 0 < \infty \Rightarrow \qquad \text{интеграл} \qquad \text{сходится.}$$

Из интегрального признака заключаем, поскольку несобственный интеграл сходится, то сходится и исследуемый ряд.

3. Знакочередующиеся ряды.

Ряд, составленный из положительных и отрицательных членов (знакопеременный ряд) называется **абсолютно сходящимся**, если сходится ряд, составленный из абсолютных величин его членов. Если же знакопеременный ряд сходится, а ряд, составленный из модулей его членов, расходится, тогда знакопеременный ряд называется **условно** (неабсолютно) **сходящимся**.

Рассмотрим далее числовые ряды, любые два соседние члены которых имеют противоположные знаки (**знакочередующиеся ряды**):

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n = u_1 - u_2 + \dots + (-1)^{n-1} u_n + \dots, \qquad \text{ide} \qquad \text{sce} \qquad u_n > 0$$

Исследование сходимости знакочередующихся рядов можно начинать с проверки абсолютной сходимости. Если ряд, составленный из абсолютных величин, сходится, то и сам знакопеременный ряд сходится. Если же окажется, что данный знакочередующийся ряд не обладает абсолютной сходимостью, то исследование продолжают с помощью признака Лейбница:

Теорема Лейбница. Если члены знакочередующегося ряда монотонно убывают по абсолютной величине и стремятся к нулю при $n \to \infty$, то ряд сходится. Его сумма имеет знак первого члена, абсолютное значение этой суммы не превышает абсолютное значение первого из членов.

Важное значение имеет **следствие** из теоремы Лейбница: для сходящегося знакочередующегося ряда абсолютная ошибка приближенного равенства $S \cong Sn$

$$\left| \sum_{k=n+1}^{\infty} (-1)^{k-1} u_k \right| < u_{n+1}$$

(абсолютная величина остатка ряда) не превосходит модуль **первого** из **отбро- шенных** членов:

Пример 7. Исследовать сходимость ряда

$$\sum_{n=1}^{\infty} \sin[\pi(n-1/2)] \ tg \frac{\pi}{\sqrt{5n^2-1}}.$$

$$\sin[\pi(n-1/2)] = \sin(\pi n - \frac{\pi}{2}) = -\cos \pi n = (-1)^{n+1}.$$

Решение. Данный ряд знакочередующийся, т.к.

Исходный ряд можно переписать в виде

Рассмотрим сначала ряд, составленный из абсолютных величин исходного ряда:

$$\sum_{n=1}^{\infty} (-1)^{n+1} tg \frac{\pi}{\sqrt{5n^2 - 1}}.$$

$$\sum_{n=1}^{\infty} tg \frac{\pi}{\sqrt{5n^2 - 1}} \qquad (npu \quad n = 1, 2, \dots \quad ece \quad tg \frac{\pi}{\sqrt{5n^2 - 1}} > 0).$$

Сравним его с гармоническим рядом 1+1/2+1/3+...+1/n+..., о котором известно, что он расходится. Так как

то по второму признаку сравнения заключаем, что ряд из модулей расходится и, следовательно, исходный ряд абсолютно не сходится. Продолжим исследование с

$$\lim_{n\to\infty}\frac{u_n}{v_n}=\lim_{n\to\infty}\frac{tg\sqrt{\frac{\pi}{\sqrt{5n^2-1}}}}{1}=\lim_{n\to\infty}\frac{\pi n}{\sqrt{5n^2-1}}=\frac{\pi}{\sqrt{5}},$$

помощью признака Лейбница: члены исходного ряда удовлетворяют условиям 1) монотонного убывания абсолютных величин членов ряда; 2) общий член ряда стремится к нулю. В самом деле, в промежутке $[0, \pi/2]$ функция $y = \operatorname{tg} x$ монотонно возрастает, а при n = 1, 2, ... выполняются неравенства

$$\frac{\pi}{\sqrt{5n^2 - 1}} > \frac{\pi}{\sqrt{5(n+1)^2 - 1}}; \qquad \lim_{n \to \infty} u_n = \lim_{n \to \infty} tg \frac{\pi}{\sqrt{5n^2 - 1}} = tg0 = 0.$$

Окончательно заключаем, исходный ряд сходится условно.

4.Степенные ряды.

$$a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots \equiv \sum_{n=0}^{\infty} a_n(x - x_0)^n,$$

Степенным рядом называется функциональный ряд вида:

где множители при степенях (x– x_0) — **коэффициенты** ряда, число x_0 — центр интервала сходимости. При частном значении переменной x степенной ряд становится числовым. Сходимость степенного ряда зависит от величины x. Из теоремы Абеля для степенных рядов следует, что область сходимости всякого степенного ряда — некоторый интервал (x_0 –R, x_0 +R), называемый **интервалом сходимости**. Во всех точках этого интервала степенной ряд сходится и притом абсолютно, вне интервала — ряд расходится. На границе интервала различные степенные ряды ведут себя по-разному. Число R — половина длины интервала сходимости — **радиус сходимости**. Если степенной ряд сходится лишь в одной точке, то радиус R = 0. Если ряд сходится при любом x, то R = ∞ . Радиус сходимости степенного ряда можно найти по формуле:

$$R = \frac{1}{L},$$
 $\operatorname{cde} L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|,$ $\operatorname{unu} L = \lim_{n \to \infty} \sqrt[n]{|a_n|},$

если соответствующие пределы существуют — конечные или бесконечные. При этом R=0, если L=0 и $R=\infty$, если L=0.

Пример 8. Найти область сходимости степенного ряда

$$\sum_{n=0}^{\infty} \frac{3^n}{2n+1} x^n$$

Решение. В развернутом виде ряд выглядит следующим образом

$$1 + \frac{3}{3}x + \frac{3^2}{5}x^2 + \dots + \frac{3^n}{2n+1}x^n + \dots$$

Коэффициенты ряда:

$$a_n = \frac{3^n}{2n+1}, \qquad a_{n+1} = \frac{3^{n+1}}{2n+3}$$

Найдем радиус сходимости

$$R = \frac{1}{L} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{3^n (2n+3)}{(2n+1)3^n} = 1/3$$

Заключаем, что интервал сходимости (-1/3, 1/3).

Исследуем далее сходимость степенного ряда в граничных точках интервала:

$$\sum_{n=0}^{\infty} \frac{3^n}{2n+1} \left(\frac{1}{3}\right)^n \equiv \sum_{n=0}^{\infty} \frac{1}{2n+1}.$$

а) при x=1/3 получим числовой положительный ряд:

Этот ряд расходится, что видно из сравнения его с гармоническим рядом.

$$\sum_{n=0}^{\infty} \frac{3^n}{2n+1} \left(-\frac{1}{3}\right)^n \equiv \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1}.$$

б) при x = -1/3 получим знакочередующийся ряд:

Члены этого ряда удовлетворяют условиям теоремы Лейбница:

1).
$$u_n = \frac{1}{2n+1} > \frac{1}{2n+3} = u_{n+1}$$
,

$$\lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{1}{2n+1}=0.$$

Знакочередующийся ряд сходится, т.е. при X = -1/3 степенной ряд сходится и окончательно область сходимости степенного ряда определяется неравенствами — $1/3 \le X < 1/3$.

При решении примеров на применение степенных разложений к приближенным вычислениям (задача5) следует использовать известные формулы разложения элементарных функций в ряды Маклорена. Они помещены в таблице 2. Заметим, что важную роль здесь выполняет следствие из теоремы Лейбница: для сходящегося знакочередующегося ряда остаток по абсолютной величине не превосходит первого из отброшенных членов. Опираясь на это следствие легко установить, сколько членов ряда нужно просуммировать, чтобы получить результат с заданной точностью. Разумеется, все расчеты надо проводить в рамках этой точности.

Пример 9. С точностью до $\varepsilon = 0.0001$ вычислить exp(-0.1).

Решение. Используем разложение (табл. 2)

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots, \quad -\infty < x < \infty$$

Полагая x = -0.1, имеем

$$e^{-0.1} = 1 - 0.1 + \frac{0.01}{2!} - \frac{0.001}{3!} + \frac{0.0001}{4!} - \dots = 1 - 0.1 + 0.005 - 0.00017 + 0.0000042 - \dots$$

Получили знакочередующийся ряд. Величина его остатка по абсолютной величине не превосходит первого из отброшенных членов. Возьмем 4 члена ряда, тогда погрешность не превышает величины 0.0000042, т.е.

$$|R_4| < \frac{1}{24000} < 0.0001 \equiv \varepsilon.$$

Каждое из оставленных четырех слагаемых учитываем, удерживая 5 цифр после запятой. При этом, округляя, в ответе будем иметь 4 верных десятичных знака: exp(-0.1) = 0.9048.

Пример 10. С точностью до $\varepsilon = 0.0001$ вычислить интеграл

$$\int_{0}^{1} \frac{\sin x^{3}}{x} dx.$$

Решение. Интеграл вычислим, разлагая подынтегральную функцию в степенной ряд. При этом воспользуемся формулой (табл. 2):

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots, \qquad x - \pi n o o e.$$

Имеем

$$\int_{0}^{1} \frac{\sin x^{3}}{x} dx = \int_{0}^{1} \frac{1}{x} \left(x^{3} - \frac{\left(x^{3} \right)^{3}}{3!} + \frac{\left(x^{3} \right)^{5}}{5!} - \frac{\left(x^{3} \right)^{7}}{7!} + \dots \right) dx =$$

$$\int_{0}^{1} \left(x^{2} - \frac{x^{8}}{3!} + \frac{x^{14}}{5!} - \frac{x^{20}}{7!} + \dots \right) dx$$

Степенной ряд можно почленно интегрировать и почленно дифференцировать любое число раз, при этом радиус сходимости не меняется (основное свойство степенных рядов). Выполняя почленно интегрирование, имеем

$$\left(\frac{x^3}{3} - \frac{x^9}{9 \cdot 3!} + \frac{x^5}{15 \cdot 5!} - \frac{x^{21}}{21 \cdot 7!} + \dots\right) \Big|_{0}^{1} = 1/3 - 1/54 + 1/1800 - 1/15120 + \dots$$

Получился знакочередующийся ряд, причем $|R3| < 1/15120 \cong 0.00007 < \varepsilon$. Поэтому с заданной точностью имеем

$$\int_{0}^{1} \frac{\sin x^{3}}{x} dx = 0.33333 - 0.01852 + 0.00056 = 0.3154$$

5. Ряды Фурье.

Функциональный ряд вида

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi nx}{l} + b_n \sin \frac{\pi nx}{l} \right),$$

где l > 0, an, bn - постоянные, называется тригонометрическим рядом. Все члены тригонометрического ряда и его сумма, если она существует, являются периодическими функциями от x с периодом T=2l.

Рядом Фурье для функции f(x) в интервале (-l, l) называется тригонометрический ряд, у которого коэффициенты *an, bn* вычисляются **по формулам Эйлера-Фурье**:

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi nx}{l} dx, \qquad \text{ide } n = 0, 1, 2, \dots$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi nx}{l} dx, \qquad \text{ide } n = 1, 2, 3, \dots$$

Обозначают

$$f(x) \rightarrow \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi nx}{l} + b_n \sin \frac{\pi nx}{l} \right).$$

Достаточные условия, при выполнении которых данную функцию f(x) можно разложить в ряд Фурье, сформулированы в следующей теореме. Теорема Дирихле: если в интервале (-l, l) функция f(x), для которой существуют предельные значения f(-l+0) и f(l-0), непрерывна всюду, кроме, быть может, конечного числа точек разрыва первого рода, и имеет конечное число точек экстремума (либо не имеет их совсем), то соответствующий ей ряд Фурье сходится. Сумма этого ряда равна 1) f(x) в тех точках x интервала, в которых функция непрерывна; 2) полусумме односторонних пределов функции слева и справа $\frac{1}{2}[f(xk-0)+f(xk+0)]$ во всех точках разрыва xk; 3) $\frac{1}{2}[f(-l+0)+f(l-0)]$ на концах интервала.

Для **четной** функции все коэффициенты bn = 0 и соответствующий ряд Фурье не содержит синусов:

$$f(x) \rightarrow \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{\pi nx}{l}, \qquad \varepsilon \partial \varepsilon \qquad a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{\pi nx}{l} dx, \quad n = 0, 1, \dots$$

Для **нечетной** функции f(x) все коэффициенты an = 0 и соответствующий ряд Фурье содержит только синусы:

$$f(x) \to \sum_{n=1}^{\infty} f(x) \sin \frac{\pi nx}{l}, \qquad \varepsilon \partial e \qquad b_n = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{\pi nx}{l} dx, \quad n = 1 , 2, \dots$$

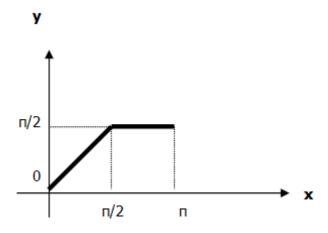
Функцию f(x), заданную в промежутке (0, l) можно произвольно продолжить в интервал (-l, 0) и поэтому она представима различными рядами Фурье. Так, при четном доопределении f(x) в интервале (-l, 0), получаем ряд по косинусам, при нечетном — ряд по синусам. Однако, все эти ряды на основном интервале (0, l) сходятся именно к f(x) (разумеется, при выполнении условий представления функции ее рядом Фурье). Если в интервале задания (0, l) функция f(x) непрерывна, то при четном ее продолжении кривая, представляющая 2l периодическую функцию, не имеет разрывов.

При разложении в ряд Фурье функция f(x) может быть задана на произвольном (не обязательно симметричном) интервале (a, a+2l). В этом случае коэффициенты an, bn вычисляются по формулам с другими пределами интегрирования:

$$a_n = \frac{1}{l} \int_{a}^{a+2l} f(x) \cos \frac{\pi nx}{l} dx, \qquad b_n = \int_{a}^{a+2l} f(x) \sin \frac{\pi nx}{l} dx.$$

Если функция f(x) определена несколькими различными формулами на разных участках интервала, то при вычислении коэффициентов ряда Фурье учитывается свойство аддитивности определенного интеграла.

Пример 11. Функция f(x) определена в интервале (0, n) графиком



Найти выражение заданной функции в виде ряда Фурье по косинусам.

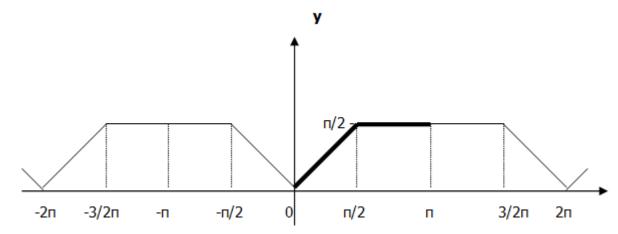
Решение. 1) Составим аналитическое выражение функции f(x) на отрезке (0, п):

$$f(x) = \begin{cases} x, & ec\pi u & 0 < x \le \pi/2 \\ \pi/2, & ec\pi u & \pi/2 < x < \pi \end{cases}$$

1) Так как требуется разложить f(x) в ряд по косинусам, то в соседний интервал (- π , 0) ее продолжим **четным** образом. Полупериод в данном случае определяется величиной / = π . Ряд Фурье приобретает вид:

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx,$$
 $\partial e = a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx, \quad n = 0, 1, 2, \dots$

График функции f(x) с ее четным продолжением в интервал (- π , 0) последующим 2π – периодическим продолжением выглядит следующим образом:



2) Вычислим коэффициенты ряда Фурье:

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi/2} x dx + \frac{2}{\pi} \int_{\pi/2}^{\pi} \frac{\pi}{2} dx = \frac{3}{4} \pi.$$

Остальные коэффициенты найдем, интегрируя по частям первый из интегралов:

Мэтемэтикэ

$$a_n = \frac{2}{\pi} \int_0^{\pi/2} x \cos nx dx + \frac{2}{\pi} \int_{\pi/2}^{\pi} \frac{\pi}{2} \cos nx dx = \begin{vmatrix} u = x, & du = dx \\ dv = \cos nx dx, & v = \frac{\sin nx}{n} \end{vmatrix} =$$

$$= \frac{2}{\pi} \left(\frac{x \sin x}{n} \bigg|_{0}^{\pi/2} - \int_{0}^{\pi/2} \frac{\sin nx}{n} dx \right) + \frac{\sin nx}{n} \bigg|_{\pi/2}^{\pi} = \frac{2}{\pi n^{2}} \left(\cos \frac{\pi n}{2} - 1 \right).$$

4) Поскольку функция f(x) удовлетворяет всем трем условиям теоремы Дирихле, то она **представима** рядом Фурье. В силу непрерывности периодического продолжения f(x) ряд Фурье сходится к самой функции f(x) в каждой точке x. Используя найденные значения коэффициентов ряда, получим искомое разложение:

$$f(x) = \frac{3\pi}{8} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\cos \frac{\pi n}{2} - 1 \right) \cos nx.$$

5) Поскольку функция, получившаяся при четном продолжении f(x) в точке x=0 непрерывна, то сумма ряда Фурье принимает значение 0.

Ниже в таблицах 1 и 2 помещены некоторые справочные сведения, необходимые при решении задач контрольной работы №9.

Примечание. Из трех признаков (Даламбера, радикальный и интегральный) наиболее сильным является интегральный признак. Возможности радикального признака и признака Даламбера примерно равны.

Таблица 1. Достаточные признаки сходимости положительных рядов

Название признака	Формулировка признака	Примечание
1. Первый признак срав- нения	Пусть сравниваются два положительных ряда Σun и Σvn . Если для всех n , начиная с некоторого N , выполняются неравенства $un \leq vn$, то из сходимости «большего» ряда Σvn следует сходимость «меньшего» ряда Σun ; если расходится «меньший» ряд Σun , то расходится также «больший» ряд Σvn .	При сравнении могут полезными оказаться известные неравенства: $\sin \alpha < \alpha < tg \alpha$, если $0 < \alpha < \pi/2$ In $n < n$, если $n \ge 2$
2.Второй при- знак сравне- ния	Если существует конечный отличный от нуля предел $\lim_{n\to\infty}\frac{u_n}{v_n},$ то ряды $\Sigma \ \textit{un} \ , \ \Sigma \ \textit{vn}$ одновременно сходятся, либо расходятся.	В качестве эталонного ряда часто используют обобщенный гармонический ряд $\Sigma(1/n^p)$ который сходится при $p>1$, а расходится при $p<1$, а также "геометрический" ряд Σq^p , который сходится при $q>1$.
3. Признак Да- ламбера	Если для положительного ряда Σ <i>un</i> существует конечный предел $D = \lim_{n \to \infty} \frac{u_{n+1}}{u_n},$ тогда при $D\!\!<\!1$ ряд сходится, а при $D\!\!>\!1$ - расходится.	В случае $D=1$ признак «не работает»; нужен другой, более сильный признак.
4. Радикаль- ный признак Коши	Если для положительного ряда Σ un существует конечный предел $K=\lim_{n\to\infty}\sqrt[n]{u_n};$ то при $k\!\!<\!\!1$ ряд сходится, а при $k\!\!>\!\!1$ – расходится.	Если $K = 1$, нужен другой признак
5. Интеграль- ный признак Коши	Пусть при $x \ge 1$ $f(x)$ - непрерывная монотонно убывающая положительная функция, а члены ряда $\sum_{n=1}^{\infty} u_n$ являются значениями этой функции натурального аргумента: $un = f(n)$. Тогда ряд сходится, если сходится несобственный интеграл $\int\limits_{1}^{\infty} f(x) dx;$ Если интеграл расходится, то и ряд расходится.	Интегральный признак удобно применять к исследованию положительных рядов, для которых признаки Даламбера или радикальный не приводят к цели, а несобственный интеграл легко исследовать на сходимость

Таблица 2. Разложения элементарных функций в степенные ряды

Функция	Ряд Маклорена функции	Область сходимо- сти
e^x	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$	$-\infty < x < \infty$
sin x	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$	$-\infty < x < \infty$
cos x	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$	$-\infty < x < \infty$
$(1+x)^{\mu}$	$1 + \mu x + \frac{\mu(\mu - 1)}{2!} x^{2} + \frac{\mu(\mu - 1)(\mu - 2)}{3!} + \dots + \frac{\mu(\mu - 1) \cdot \dots \cdot (\mu - n + 1)}{n!} x^{n} + \dots$	-1 < <i>x</i> < 1
ln(1+x)	$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$	-1 < <i>x</i> ≤ 1
arctgx	$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$	-1≤ <i>x</i> ≤1
arcsin x	$x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \dots + \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot \dots \cdot 2n} \frac{x^{2n+1}}{2n+1} + \dots$	$-1 \le x \le 1$

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

1. Элементы комбинаторики Размещениями m из n элементов называются m - элементные подмножества множества $E=\{a1,a2,...,an\}$, различающиеся либо набором элементов, либо порядком их следования. Общее число таких различных комбинаций обозначается символом A_n^m .

<u>Перестановками</u> называются размещения из n по n элементов. Общее число перестановок обозначают символом P_n .

<u>Сочетаниями</u> из n по m элементов называются m- элементные подмножества множества $E=\{a1,a2,...,an\}$, имеющие различный состав элементов. Два сочетания считаются различными, если хотя бы один элемент входит в одну комбинацию, но не входит в другую. Общее число различных сочетаний обозначают символом C_n^m .

Число размещений, перестановок и сочетаний определяются формулами:

$$A_n^m = \frac{n!}{(n-m)!}, \qquad P_n = n!, \qquad C_n^m = \frac{n!}{m!(n-m)!}$$

2. Классическое определение вероятности

 $P(A) = \frac{m}{n}$, где n – общее число элементарных событий (исходов, которые в данном опыте образуют конечную полную группу равновозможных попарно несовместных событий), m – число элементарных событий, благоприятствующих наступлению события A.

3. Геометрическое определение вероятности

$$P(A) = \frac{mepa(A)}{mepa(\Omega)}$$
. Вероятность попадания точки в какую либо часть A области Ω про-

порциональна мере (длине, площади, объему и т.д.) этой части и не зависит от ее расположения и формы.

4. Основные свойства вероятности

Вероятность любого события A - число, заключенное между 0 и 1. Вероятность невозможного события равна 0. Вероятность достоверного события равна 1.

Сумма вероятностей противоположных событий равна 1:

$$P(A) + P(\bar{A}) = 1$$

Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:

$$P(A+B) = P(A) + P(B)$$

Для любых двух событий A и B имеет место формула (теорема сложения для произвольных событий):

$$P(A+B) = P(A) + P(B) - P(AB).$$

Для полной группы несовместных событий $A_1, A_2, ..., A_n$

$$P(A_1) + P(A_2) + ... + P(A_n) = 1$$

Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

$$P(AB) = P(A) \cdot P(B/A)$$
 - теорема умножения.

Если события A и B – независимые, то

$$P(AB) = P(A) \cdot P(B)$$
 - теорема умножения.

5. Формула полной вероятности. Формулы Байеса

Если известно, что событие A может произойти с одним из событий $H_1, \quad H_2, \quad ..., \quad H_n$ (гипотез), образующих полную группу попарно несовместных событий, то вероятность события A определяется по формуле полной вероятности:

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(A/H_i)$$

Вероятности гипотез после того как имело место событие A переоценивают по формулам Байеса:

$$P(H_i/A) = \frac{P(H_i) \cdot P(A/H_i)}{\sum_{i=1}^{n} P(H_i) \cdot P(A/H_i)}, \quad i = 1, 2, ..., n.$$

6. Если производится n независимых испытаний, в каждом из которых вероятность появления события A одна и та же и равна p (вероятность «успеха»), то вероятность того, что в этих n испытаниях событие A наступит ровно k раз, выражается формулой Бернулли:

$$P_n(k) = C_n^k p^k (1-p)^{n-k}$$

Число k0 называется наивероятнейшим числом наступления события A

в n испытаниях по схеме Бернулли, если значение $P_n(k)$ при $k=k_0$

не меньше остальных значений. Число $\,k_{\scriptscriptstyle 0}\,$ можно найти из двойного неравенства:

$$np + p - 1 \le k_0 \le np + p.$$

7. Предельные теоремы в схеме Бернулли

Теорема 1 (Локальная теорема Лапласа). При больших *п*

$$P_n(k) \approx \frac{1}{\sqrt{npq}} \varphi(x), \quad \text{rde} \quad \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad x = \frac{k - np}{\sqrt{npq}}$$

Теорема 2 (Интегральная теорема Лапласа). При больших n вероятность того , что в серии испытаний событие A появится от k_1 до k_2 раз, выражается приближенной формулой:

$$P_{\scriptscriptstyle n}\big(k_{\scriptscriptstyle 1} \leq k \leq k_{\scriptscriptstyle 2}\big) \approx \Phi\big(x_{\scriptscriptstyle 2}\big) - \Phi\big(x_{\scriptscriptstyle 1}\big), \qquad \text{ide} \quad x_{\scriptscriptstyle i} = \frac{k_{\scriptscriptstyle i} - np}{\sqrt{npq}}, \quad q = 1 - p \; ,$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-t^2/2} dt$$
 - функция Лапласа.

Теорема 3 (Закон «редких» явлений Пуассона). При n? 1 и малых p, если среднее число успехов $\lambda = np$, $\lambda - const$, имеет место приближенная формула

$$P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$$
.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО РАЗДЕЛУ «ТЕОРИЯ ВЕРОЯТНОСТЕЙ»

Пример 1. В ящике находится 10 деталей. Из них 3 дефектные. Наудачу отобраны 3 детали. Какова вероятность того, что:

- а) все детали дефектные (событие А);
- б) только одна деталь дефектная (событие В);
- в) все три детали годные (событие С);
- г) хотя бы одна деталь дефектная (событие D).

Решение. Используем классическое определение вероятности.

а) Событие $A = \{$ выбранные три детали дефектные $\};$

$$P(A) = \frac{M}{N}$$

Элементарное событие в данной задаче - комбинация (сочетание) из трех деталей. $N = C_{10}^3$ - общее число способов выбрать 3 детали из имеющихся 10 деталей. M = 1 (имеется всего один вариант выбора 3 дефектных деталей)

$$P(A) = \frac{1}{C_{10}^3} = \frac{1}{10!} = \frac{7! \cdot 3!}{10!} = \frac{1}{10!} = \frac{1}{120}.$$

б) Событие $B = \{$ из трех выбранных деталей 1 деталь дефектная, две детали без дефекта $\};$

$$P(B) = \frac{M}{N},$$

где $M=C_3^1\cdot C_7^2$ - количество вариантов, благоприятствующих появлению события В, при которых 1 дефектная деталь выбирается из группы 3 дефектных и 2 бездефектные детали выбираются из группы 7 бездефектных деталей $N=C_{10}^3$

Следовательно,
$$P(B) = \frac{C_3^1 \cdot C_7^2}{C_{10}^3} = \frac{\frac{3!}{2! \cdot 1!} \cdot \frac{7!}{5! \cdot 2!}}{\frac{10!}{7! \cdot 3!}} = \frac{7}{45}.$$

в) Событие $C = \{$ выбранные три детали бездефектные $\}$

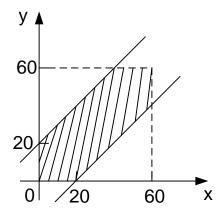
$$P(C) = \frac{C_7^3}{C_{10}^3} = \frac{\frac{7!}{4! \cdot 3!}}{\frac{10!}{7! \cdot 3!}} = \frac{7}{24}.$$

г) Событие $D=\{$ хотя бы одна из трех выбранных деталей бездефектная $\}$. Рассмотрим противоположное событие \overline{D} .

 $\overline{D}=C=$ { среди трех выбранных деталей нет дефектных}. Так как $P(D)=1-P(\overline{D})$, то $P(D)=1-P(C)-1-\frac{7}{24}=\frac{17}{24}$.

Пример 2. Два студента (Петров и Иванов) договорились о встрече в определенном месте между 12.00 и 13.00 часами. Пришедший первым до истечения часа ждет второго в течение 20 минут, после чего уходит. Построить множество элементарных исходов Ω по описанию эксперимента и подмножество, соответствующее событию $A = \{$ встреча состоится $\}$. Найти вероятность этого события.

Решение. Используем геометрическое определение вероятности. Наблюдаемый результат- пара координат (x, y), где x - время прихода Петрова, а y - время прихода Иванова. Время исчисляется в минутах, начиная с 12.00 часов



 $\Omega = \{(x,y): 0 \le x \le 60, 0 \le x \le 60\}$. Точки (x,y) заполняют квадрат стороной 60. Встреча состоится, если |y-x| < 20 (пришедший первым ждет не более 20 минут). Неравенство с модулем заменим двойным неравенством

$$-20 \le y - x \le 20 \iff \begin{cases} y \le x + 20 \\ y \ge x - 20, \ x - 20 \le y \le x + 20. \end{cases}$$

Решения неравенства $y \le x + 20$ - это точки нижней полуплоскости, ограниченной прямой y = x + 20 .

Совокупность решений неравенства $y \ge x + 20$ образует верхнюю полуплоскость с границей y = x - 20.

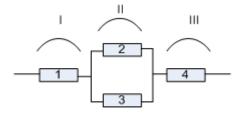
Решения системы неравенств — это точки области, полученной пересечением полуплоскостей. Т.к. $0 \le x \le 60$, $0 \le y \le 60$, то точки, когда состоится встреча, заполняют фигуру А (показана штриховкой). Используем геометрическое определение вероятности:

$$P(A) = \frac{n\pi . A}{n\pi . \Omega}$$
.

Площадь фигуры $A=nn.\Omega-2S_{\Delta}=60^2-2\cdot\frac{(60-20)^2}{2}=3600-1600=2000$. Здесь S_{Δ} - площадь не заштрихованных треугольников.

$$P(A) = \frac{2000}{3600} = \frac{5}{9}.$$

Пример 3. Электрическая цепь прибора составлена по схеме, приведенной на рисунке. Отказы элементов являются независимыми и совоку4пными событиями. Известна надежность p_k k- го элемента $p_1 = p_2 = 0.7$; $p_3 = 0.8$; $p_4 = 0.9$. Найти вероятность надежности схемы P(A).



Решение. Разобьем схему на блоки, состоящие из последовательных соединений. Блок I состоит из элемента 1 .

Блок II состоит из параллельного соединения элементов 2 и 3.

Блок III – из элемента 4.

Вероятность того, что схема работает, равна $P(A) = P_I \cdot P_{II} \cdot P_{III}$.

 P_{I} – вероятность того, что I блок исправен.

 P_{II} - вероятность того, что II блок исправен.

 P_{III} - вероятность того, что III блок исправен.

$$P_I = p_1$$

Вероятность того, что II блок исправен: $P_{II} = 1 - q_2 q_3$

Вероятность того, что III блок исправен: $P_{III}=p_4$

Искомая вероятность что цепь сработает:

$$P(A) = p_1(1-q_2q_3)p_4 = 0.7 \cdot (1-0.3 \cdot 0.2) \cdot 0.9 = 0.5922$$

Пример 4. В ящике лежат 20 теннисных мячей, в том числе 15 новых и 5 игранных. Для игры наудачу выбираются два мяча и после игры возвращаются обратно. Затем для второй игры также наудачу извлекается ещё 2 мяча. Какова вероятность того, что вторая игра будет проводиться новыми мячами?

Решение. Рассмотрим предположения (гипотезы):

 $H_1 = \{$ на первую игру выбирают два новых мяча $\}$.

 $H_2=\{$ на первую игру выбирают один новый мяч, и один игранный $\}$.

 $H_3 = \{$ на первую игру выбирают два игранных мяча $\}$.

Вероятности гипотез соответственно равны:

$$P(H_1) = \frac{C_{15}^2}{C_{20}^2} = \frac{\frac{15!}{13! \cdot 2!}}{\frac{20!}{18! \cdot 2!}} = \frac{21}{38}, \ P(H_2) = \frac{C_{15}^1 \cdot C_5^1}{C_{20}^2} = \frac{15}{38}, \ P(H_3) = \frac{C_5^1}{C_{20}^2} = \frac{\frac{5!}{3! \cdot 2!}}{\frac{20!}{18! \cdot 2!}} = \frac{2}{38}.$$

Проверка: $\sum p(H_i) = 1$ - выполняется: $\frac{21}{38} + \frac{15}{38} + \frac{2}{38} = 1$.

Пусть, событие A = {вторая игра проводится двумя новыми мячами}. Тогда условные вероятности следующие:

$$P(A|H_1) = \frac{C_{13}^2}{C_{20}^2} = \frac{\frac{13!}{11! \cdot 2!}}{\frac{20!}{18! \cdot 2!}} = \frac{39}{95}, \ P(A|H_2) = \frac{C_{14}^2}{C_{20}^2} = \frac{\frac{14!}{12! \cdot 2!}}{\frac{20!}{18! \cdot 2!}} = \frac{91}{190}, \ P(A|H_3) = \frac{C_{15}^2}{C_{20}^2} = \frac{21}{38}.$$

Вероятность события А найдем по формуле полной вероятности:

$$P(A) = \frac{21}{38} \cdot \frac{39}{95} + \frac{15}{38} \cdot \frac{91}{190} + \frac{1}{19} \cdot \frac{21}{38} = 0,4450138.$$

Пример 5. а) На грядке высажено 8 луковиц определенного сорта тюльпанов. Всхожесть луковиц 80%. Какова вероятность, что взойдет не менее 5, но не более 7 растений.

Решение. Событие A = {взойдет отдельный тюльпан}.

Событие $B = \{$ взойдет от 5 до 7 растений $\}$.

Пусть событие B_5 ={взойдет ровно 5 тюльпанов}, событие B_6 = {взойдет ровно 6 тюльпанов}, событие B_7 ={взойдет ровно 7 тюльпанов}.

Вероятность события B_k , состоящего в том, что событие А произойдет ровно k раз при n независимых испытаниях, рассчитывается по формуле Бернулли:

$$P(B_k) = P_n(k) = C_n^k \cdot p^k \cdot q^{n-k}$$
, где $q = 1 - p$.

В частности,

$$P(B_5) = P_8(5) = C_8^5 \left(\frac{4}{5}\right)^5 \left(\frac{1}{5}\right)^3 = 0.147$$
,

$$P(B_6) = P_8(6) = C_8^6 \left(\frac{4}{5}\right)^6 \left(\frac{1}{5}\right)^2 = 0,294$$
,

$$P(B_7) = P_8(7) = C_8^7 \left(\frac{4}{5}\right)^7 \left(\frac{1}{5}\right)^1 = 0,335.$$

В данном случае имеем $B = B_5 + B_6 + B_7$. По теореме сложения для несовместных событий получаем

$$P(B) = P(B_5) + P(B_6) + P(B_7) = 0.147 + 0.294 + 0.335 = 0.776$$
.

в) Посажено 100 луковиц. Вероятность всхода 80%. Какова вероятность, что взойдут не менее 75, но не более 90.

Решение. Испытания проводятся по схеме Бернулли. Если число испытаний n велико, то используют интегральную теорему Лапласа:

 $P_{_{\!n}}(k_{_{\!1}}\!\leq\! k\!\leq\! k_{_{\!2}})\!=\!\Phi(x_{_{\!2}})\!-\!\Phi(x_{_{\!1}})$, где $\Phi(x)$ - функция Лапласа, значение которой берем из таблицы.

$$x_i = \frac{k_i - np}{\sqrt{npq}}, \ (i = 1,2).$$

По условию n=100, p=0.8, q=0.2, $k_1=75$, $k_2=90$. Следовательно,

$$x_2 = \frac{k_2 - np}{\sqrt{npq}} = \frac{90 - 100 \cdot 0.8}{\sqrt{100 \cdot 0.8 \cdot 0.2}} = \frac{10}{4} = 2.5.$$

$$x_1 = \frac{k_1 - np}{\sqrt{npq}} = \frac{75 - 100 \cdot 0.8}{\sqrt{100 \cdot 0.8 \cdot 0.2}} = -\frac{5}{4} = -1.25.$$

Имеем:

 $P_{100}(75 \le k \le 90) = \Phi(2,5) - \Phi(-1,25) = 0,4938 - (-0,3944) = 0,8882.$ (Здесь учтено, что функция Лапласа нечетная $\Phi(-x) = -\Phi(x)$).

Пример 6. Составить закон распределения дискретной случайной величины (ДСВ) X - оценки, полученной на экзамене наугад выбранным студентом. Известно, что в группе из 20 человек 2 студента получили оценку — «2», 6 студентов — «3», 10

студентов — «4» и 2 студента — «5». Построить график функции распределения. Вычислить числовые характеристики $M(X), D(X), \sigma(X)$.

Решение: ДСВ X -отметка студента, которая может принять значения 2; 3; 4 или 5. Вероятность события $\{X=2\}$ равна $P(X=2)=p_1=2/20$, (число двоек - 2, а общее число студентов 20). Вероятности других возможных значений равны:

$$P(X=3) = p_2 = \frac{6}{20}$$
, $P(X=4) = p_3 = \frac{10}{20}$, $P(X=5) = p_4 = \frac{2}{20}$.

Следовательно, закон распределения ДСВ имеет вид:

X	2	3	4	5
P	0,1	0,3	0,5	0,1

Контроль: 0,1+0,3+0,5+0,1=1

Найдем числовые характеристики данной случайной величины. Математическое ожидание:

$$M(X) = \sum_{i=1}^{n} x_i p_i = 2 \cdot 0.1 + 3 \cdot 0.3 + 4 \cdot 0.5 + 5 \cdot 0.1 = 0.2 + 0.9 + 2 + 0.5 = 3.6$$
.

Дисперсия:

$$D(X) = \sum_{i=1}^{n} (x_i - M(X))^2 \cdot p_i = (2 - 3, 6)^2 \cdot 0, 1 + (3 - 3, 6)^2 \cdot 0, 3 + (4 - 3, 6)^2 \cdot 0, 5 + (5 - 3, 6)^2 \cdot 0, 1 =$$

$$= 2,56 \cdot 0, 1 + 0,36 \cdot 0, 3 + 0,16 \cdot 0, 5 + 1,96 \cdot 0, 1 = 0,64$$

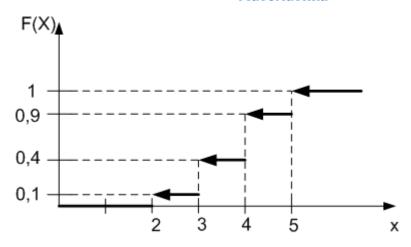
Среднее квадратическое отклонение:

$$\sigma(X) = \sqrt{D(X)} = \sqrt{0.64} = 0.8.$$

Функция распределения F(X) имеет вид:

$$F(x) = \begin{cases} 0, ecnu \ x \le 2 \\ 0, 1, ecnu \ 2 < x \le 3 \\ 0, 1 + 0, 3, ecnu \ 3 < x \le 4 \\ 0, 1 + 0, 3 + 0, 5, ecnu \ 4 < x \le 5 \\ 1, ecnu \ x > 5 \end{cases}$$

График функции распределения имеет вид:



Пример 7. Длительность времени безотказной работы элемента имеет показательное распределение, определяемое плотностью $f(x) = \lambda \cdot e^{-\lambda \cdot x}$ при $x \ge 0$, f(x) = 0 при x < 0. Найти вероятность того, что за время t = 25 часов элемент не откажет, если известно что $\lambda = 0.04$.

Решение. X - непрерывная случайная величина-время безотказной работы устройства, которое работает с момента x=0, а в момент x происходит отказ. Длительность времени безотказной работы имеет показательное распределение с функцией распределения $F(x)=P(X< x)=\int\limits_0^x \lambda\cdot e^{-\lambda\cdot t}dt=-e^{-\lambda\cdot t}\mid_0^x=1-e^{-\lambda\cdot x}$.

F(x) - это вероятность отказа элемента за время длительностью x .

Вероятность безотказной работы за время длительностью x- это вероятность противоположного события. Эта функция называется функцией надежности: $R(t)=1-P(X< x)=1-F(x)=e^{-\lambda\cdot x}$. Вероятность безотказной работы за x=t=25 часов равна $R(25)=e^{-0.0425}=e^{-1}\approx 0.358$.

Пример 8. Из группы населения случайным образом отобрано 10 человек и собраны их доходы за истекший год в тысячах рублей x_1 , x_2 , x_3 ... x_{10} . Найти выборочное среднее исправленную выборочную дисперсию. Считая распределение доходов в группе нормальным и, применяя в качестве его параметров выборочные характеристики, определить, какой процент населения имеет годовой доход, превышающий 100 тыс. рублей.

X ₁	X ₂	X 3	X 4	X ₅	x ₆	X ₇	X 8	X 9	X ₁₀
80	110	130	100	70	90	150	60	90	70

Решение.

Найдем выборочную среднюю:

$$\overline{X} = \frac{110 + 130 + 100 + 70 + 90 + 150 + 60 + 80 + 130}{10} = \frac{950}{10} = 95$$

Вычислим выборочную дисперсию D_{s} .

$$D_{e} = \frac{1}{n} \sum_{i=1}^{10} (x_{i} - M_{e})^{2}, \quad n=10.$$

$$D_{e} = \frac{1}{10} [(80 - 95)^{2} + (110 - 95)^{2} + (130 - 95)^{2} + (100 - 95)^{2} + (70 - 95)^{2} + (150 - 95)^{2} + (60 - 95)^{2} + (90 - 95)^{2} + (70 - 95)^{2}] = \frac{1}{10} [225 + 225 + 1225 + 25 + 625 + 25 + 3025 + 1225 + 25 + 625] = \frac{7250}{10} = 725$$

Исправленная выборочная дисперсия:

$$S^{2} = \frac{n}{n-1}D_{6} = \frac{10}{9} \cdot 725 = 805,56.$$

$$\sigma = \sqrt{S^{2}} = 28,4.$$

Чтобы найти процент группы населения, которая имеет доход, превышающий 100 тыс. руб. используем формулу попадания значений нормально распределенной случайной величины в заданный промежуток:

$$P(\alpha < X < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right)$$
, где Φ — функция Лапласа.

В данном случае принимаем следующие значения параметров:

$$\alpha = 100$$
 тыс.руб., $a = x = 95$ тыс.руб., $\sigma = \sqrt{S^2} = S = 28,4$ тыс. руб.,

 β ? 100 тыс. руб. (нет ограничений сверху). Имеем:

$$P(X > 100) = P(100 < X < \infty) = \Phi\left(\frac{\infty - 95}{28, 4}\right) - \Phi\left(\frac{100 - 95}{28, 4}\right) = \Phi(\infty) - \Phi\left(\frac{5}{28, 4}\right) = 0, 5 - \Phi(0, 176)$$

По таблице находим: $\Phi(0.176) = 0.07$, следовательно, $P(X > 100) \approx 0.43$.

ЛИТЕРАТУРА

Основная

- 1. Н.С. Пискунов, Дифференциальное и интегральное исчисление. Том 1,2. 1972-2000.
- 2. А.Ф. Бермант, И.Г. Араманович. Краткий курс математического анализа для втузов. Москва: "Наука". Главная редакция физико-математической литературы, 1973.
- 3. Г.М. Берман, Сборник задач по курсу математического анализа (для втузов). Москва: "Наука". 1985.
- 4. П. Е. Данко, и др. Высшая математика в упражнениях и задачах: Учебное пособие для втузов. В 2-х ч. 1980 ч.1, 1984 ч.2.
- 5. Гмурман В. Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1998.
- 6. Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике. М: Высшая школа, 1999.

Дополнительная

- 1. Кремер Н. Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ, 2000.
- 2. Вентцель Е. С. Теория вероятностей М.: Высшая школа, 1998.
- 3. Учебные задания для типовых расчетов по теории вероятностей /ДГТУ. Ростов н/Д, 1996.
- 4. Сборник задач по математике для вузов Ч. 3. Теория вероятностей и математическая статистика: Учебное пособие для втузов / Под редакцией А. В. Ефимова. М.: Наука, 1990.