

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ Кафедра «Высшая математика»

Учебно-методическое пособие

«Неопределенный интеграл» по дисциплине

«Математика»

Авторы Золотых И. А., Коровина К. С., Рудова И. Ш.

Ростов-на-Дону, 2020

Аннотация

Учебно-методическое пособие предназначено для студентов всех форм обучения по всем направлениям.

Авторы

- ст. преподаватель кафедры «Высшая математика» Золотых И.А.,
- ст. преподаватель кафедры «Высшая математика» Коровина К.С.,
- ст. преподаватель кафедры «Высшая математика» Рудова И.Ш.

Оглавление

1 .	Первообразная и неопределенный интеграл	4
2.	Таблица основных интегралов Непосредственное интегрирование	
3.	Задачи для самостоятельного решения Метод подстановки. Подведение под	
ди	фференциала	10
4.	Задачи для самостоятельного решения	12
5.	Задачи для самостоятельного решения Интегрирование функций, содержащих квадр	
тре	ехчлен	
	Задачи для самостоятельного решения	19
6. I		21 22 34
6. I	Задачи для самостоятельного решения Интегрирование рациональных дробей Задачи для самостоятельного решения	19213436
6. I	Задачи для самостоятельного решения	3

1. ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Определение. Функция F(x) называется первообразной функции f(x) на некотором множестве X, если для $\forall x \in X$ выполняется условие F'(x) = f(x). Например, функция f(x) = 2x имеет первообразные:

$$F(x)=x^2$$

$$F(x)=x^2-1$$

$$F(x)=x^2+5$$

$$F(x)=x^2+C$$

где
$$C$$
 - произвольная константа, так как $(x^2+C)'=2x$.

То есть всякая непрерывная на множестве X функция f(x) имеет на этом множестве бесконечное множество первообразных F(x)+C , где C -произвольная постоянная: (F(x)+C)'=F'(x)=f(x)

Определение. Совокупность F(x)+C всех первообразных заданной функции f(x) обозначается $\int f(x) dx$ и называется неопределённым интегралом:

$$\int f(x)dx = F(x) + C$$

Где f(x) - подынтегральная функция, f(x)dx - подынтегральное выражение, x - переменная интегрирования, dx - дифференциал независимой переменной.

Процесс отыскания всех первообразных функции f(x) называют интегрированием. Операции дифференцирования и интегрирования - это обратные друг другу действия:

$$\int f(x)dx = F(x) + C \Leftrightarrow F'(x) = f(x)$$

Поэтому правильность результата интегрирования проверяем его дифференцированием, приводящим к подынтегральной функции.

Например,
$$\int \cos x dx = \sin x + C$$
 , поскольку $(\sin x)' = \cos x$. Неопределённый интеграл обладает следующими свойствами:

Свойство 1.
$$\int (f(x)dx)' = f(x)$$
. Свойство 2.
$$\int dF(x) = F(x) + C$$
.

Свойство 3.
$$d(\int f(x)dx) = f(x)dx$$

Свойство 4.
$$\int k \cdot f(x) dx = k \int f(x) dx$$
 , где k - постоянный множитель.

Свойство 5.
$$\int (f(x)+\varphi(x))dx = \int f(x)dx + \int \varphi(x)dx$$

$$\int f(x)dx = F(x) + C$$
 , то
$$\int f(u)du = F(u) + C$$
 , где $u = \varphi(x)$ - непрерывно дифференцируемая функция.

Таблица основных интегралов

1.
$$\int 0du = C$$
.
2. $\int du = u + C$.
3. $\int u^{p} du = \frac{u^{p+1}}{p+1} + C$, где $p \in R, p \neq -1$.
4. $\int \frac{du}{\sqrt{u}} = 2\sqrt{u} + C$.
5. $\int a^{u} du = \frac{a^{u}}{\ln a}$, где $a > 0, a \neq 1$.

6.
$$\int e^{u} du = e^{u} + C.$$
7.
$$\int \frac{du}{u} = \ln|u| + C.$$
7.
$$\int \sin u du = -\cos u + C.$$
8.
$$\int \sin u du = -\sin u + C.$$
9.
$$\int \cos u du = \sin u + C.$$
10.
$$\int \frac{du}{\cos^{2} u} = tgu + C.$$
11.
$$\int \frac{du}{\sin^{2} u} = -ctgu + C.$$
12.
$$\int \frac{du}{a^{2} + u^{2}} = \frac{1}{a} \arctan \frac{u}{a} + C.$$
13.
$$\int \frac{du}{\sqrt{a^{2} - u^{2}}} = \arcsin \frac{u}{a} + C.$$
14.
$$\int \frac{du}{\sqrt{u^{2} + a^{2}}} = \ln\left|u + \sqrt{u^{2} + a^{2}}\right| + C.$$
15.
$$\int \frac{du}{\sin u} = \ln\left|tg\frac{u}{2}\right| + C.$$
16.
$$\int \frac{du}{\sin u} = \ln\left|tg\left(\frac{u}{2} + \frac{\pi}{4}\right)\right| + C.$$
17.
$$\int tgudu = -\ln\left|\cos u\right| + C.$$
18.
$$\int tgudu = -\ln\left|\cos u\right| + C.$$
19.
$$\int ctgudu = \ln\left|\sin u\right| + C.$$

2. НЕПОСРЕДСТВЕННОЕ ИНТЕГРИРОВАНИЕ

Под непосредственным интегрированием понимают интегрирование с помощью тождественных преобразований подынтегральной функции, свойств неопределённого интеграла и таблицы основных интегралов.

Примеры с решениями

Найти неопределённые интегралы:

Пример 1.
$$\int (\sqrt{x} + 2x^3)^2 dx$$
 Решение. Преобразуем подынтегральную

функцию:

$$(\sqrt{x} + 2x^3)^2 =$$

$$= x + 4x^{3}\sqrt{x} + 4x^{6} = x + 4x^{\frac{7}{2}} + 4x^{6}.$$

Воспользовавшись свойствами неопределённого интеграла, получим:

$$\int (\sqrt{x} + 2x^3)^2 dx = \int (x + 4x^{\frac{7}{2}} + 4x^6) dx = \int x dx + 4x^{\frac{7}{2}} \int dx + 4 \int x^6 dx =$$

$$= \frac{x^2}{2} + \frac{8x^{\frac{9}{2}}}{9} + \frac{4x^7}{7} + C = \frac{x^2}{2} + \frac{8}{9}x^4 \sqrt{x} + \frac{4}{7}x^7 + C.$$

Результат можно проверить, взяв производную от полученной функции:

$$\left(\frac{x^2}{2} + \frac{8\sqrt{x^9}}{9} + \frac{4x^7}{7} + C\right)' = \frac{1}{2} \cdot 2x + \frac{8}{9} \cdot \frac{9}{2} \cdot x^{\frac{7}{2}} + \frac{4}{7} \cdot 7x^6 = x + 4x^{\frac{7}{2}} + 4x^6 = (\sqrt{x} + 2x^3)^2.$$

Пример 2.
$$\int \frac{(x-2)^3}{\sqrt{x}} dx$$

Решение. На основании формулы

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$
 получим:

$$\frac{(x-2)^3}{\sqrt{x}} = \frac{x^3 - 6x^2 + 12x - 8}{x^{1/2}} = x^{\frac{5}{2}} - 6x^{\frac{3}{2}} + 12x^{\frac{1}{2}} - \frac{8}{\sqrt{x}}$$

$$\int \frac{(x-2)^3}{\sqrt{x}} dx = \int x^{5/2} dx - 6 \int x^{3/2} + 12 \int x^{1/2} dx - 8 \int \frac{dx}{\sqrt{x}}.$$

$$\int x^{3/2} dx$$

$$\int \frac{(x-2)^3}{\sqrt{x}} dx = \frac{2x^{7/2}}{7} - 6 \cdot \frac{2x^{5/2}}{5} + 12 \cdot \frac{2x^{3/2}}{3} - 8 \cdot 2\sqrt{x} + C =$$

$$= \frac{2}{7} x^3 \sqrt{x} - \frac{12}{5} x^2 \cdot \sqrt{x} + 8x\sqrt{x} - 16\sqrt{x} + C.$$

Пример 3.
$$\int \frac{x^2}{x^2 + 9} dx$$

Решение. Прибавляя и вычитая в числителе число 9, произведём затем почленное деление числителя на знаменатель и перейдём к сумме интегралов:

$$\int \frac{(x^2+9)-9}{x^2+9} dx = \int (1-\frac{9}{x^2+9}) dx = \int dx - 9 \int \frac{dx}{x^2+9}.$$

$$\int \frac{x^2}{x^2+9} dx = x - \frac{9}{3} \arctan \frac{x}{3} + C = x - 3 \arctan \frac{x}{3} + C$$

Задачи для самостоятельного решения

Вычислить интегралы, применяя непосредственно таблицу интегралов и правила интегрирования:

1.
$$\int \sqrt[3]{x^2} \, dx$$

2.
$$\int 3x^4 dx$$

3.
$$\int \left(4x^3 + 2x - \frac{3}{x}\right) dx$$

4.
$$\int \frac{x+3}{x^2} dx$$

5.
$$\int \frac{x^4}{x^2+1} dx$$

6.
$$\int e^{x}(3 + 2xe^{-x}) dx$$

7.
$$\int (\sin x - 3\cos x) \, dx$$

8.
$$\int (2^x - e^x) dx$$

9.
$$\int \frac{x^2}{x^2-1} dx$$

10.
$$\int \left(\frac{3}{1+x^2} + \frac{2}{\sqrt{x^2+1}} \right) dx$$

11.
$$\int \left(x + \frac{1}{x} + \frac{1}{x^2} \right) dx$$

12.
$$\int \frac{2x^4 + 2x^2 + 1}{x^2 + 1} dx$$

13.
$$\int \frac{x^2 + 1}{x^2 - 1} dx$$

14.
$$\int \frac{2^x}{e^x} dx$$

$$15. \int \frac{2^{x}+3^{x}}{4^{x}} dx$$

16.
$$\int 10^x e^x dx$$

17.
$$\int \frac{1+3x^2}{2x^2(1+x^2)} dx$$

18.
$$\int \frac{dx}{\cos^2 x \sin^2 x}$$

$$19. \int \frac{dx}{5-x^2}$$

$$20. \int \frac{dx}{\sqrt{7-x^2}}$$

$$21. \int \frac{dx}{\sqrt{x^2 - 7}}$$

22.
$$\int e^{x} \left(3 - \frac{e^{-x}}{\cos^{2} x} \right) dx$$

23.
$$\int \frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{\sqrt{1-x^4}} \, dx$$

$$24. \int \left(\frac{1}{\sqrt{x}} + \frac{1}{5\sqrt{x^4}}\right) dx$$

25.
$$\int \frac{dx}{x\sqrt{x}}$$

$$26. \int \frac{\mathrm{dx}}{\sqrt{1-\frac{x^2}{9}}}$$

3. МЕТОД ПОДСТАНОВКИ. ПОДВЕДЕНИЕ ПОД ЗНАК ДИФФЕРЕНЦИАЛА.

Замена переменной в неопределенном интеграле производится с помощью подстановок двух видов:

1) $x = \varphi(t)$, где t - новая переменная, $\varphi(t)$ - монотонная непрерывно дифференцируемая функция. Тогда $dx = \varphi'(t) dt$ и переход к новой переменной выглядит так:

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt;$$
 (2)

2) $u=\psi(x)$, где u - новая переменная, $\psi(x)$ - монотонная непрерывно дифференцируемая функция. В этом случае формула замены переменной имеет вид:

$$\int f(\psi(x))\psi'(x)dx = \int f(u)du.$$
(3)

Замечания

- 1. Назначение любого метода интегрирования, в том числе и подстановки, состоит в том, чтобы заданный интеграл либо свести к табличному, либо упростить. Поэтому интегралы в правых частях (2) и (3) должны быть значительно проще интегралов, стоящих в левых частях.
- 2. При любом способе замены переменной в неопределённом интеграле после завершения интегрирования нужно обязательно вернуться к заданной в условии переменной интегрирования.
- 3. Общее правило по выбору подстановки сформулировать не представляется возможным.

Примеры с решениями

Пример 1.
$$\int \frac{dx}{2x+3}$$

Решение. Положим 2x + 3 = t.

Тогда d(2x+3) = dt, (2x+3)'dx = dt,

$$2dx = dt \Longrightarrow dx = \frac{1}{2}dt,$$

$$\int \frac{dx}{2x+3} = \frac{1}{2} \int \frac{dt}{t} = \frac{1}{2} \ln|t| + C = \frac{1}{2} \ln|2x+3| + C.$$

Замечание. Рассмотренный интеграл можно найти с помощью подведения под знак дифференциала, что, в сущности, и означает устную подстановку в простейших случаях:

$$\int \frac{dx}{2x+3} = \frac{1}{2} \int \frac{d(2x+3)}{2x+3} = \frac{1}{2} \ln|2x+3| + C.$$

$$\int \frac{2x - \sin x}{(x^2 + \cos x)^2} dx$$

Решение. *Первый способ.* Пусть $x^2 + \cos x = t$, тогда $(2x - \sin x)dx = dt$. Переходя в заданном неопределённом интеграле к новой переменной, получим:

$$\int \frac{dt}{t^2} = \int t^{-2} dt = \frac{t^{-1}}{-1} + C = -\frac{1}{t} + C = -\frac{1}{x^2 + \cos x} + C.$$

Второй способ:

$$\int \frac{2x - \sin x}{(x^2 + \cos x)^2} dx = \int (x^2 + \cos x)^{-2} d(x^2 + \cos x)$$
$$= \frac{(x^2 + \cos x)^{-1}}{-1} + C = \frac{1}{x^2 + \cos x} + C.$$

Пример 3.
$$\int \frac{\sqrt{x}}{x-5} dx$$
.

Решение. Введём подстановку, которая позволит избавиться от радикала. Положим $\sqrt{x} = t$ и найдём $x = t^2$, dx = 2tdt. Тогда:

$$\int \frac{\sqrt{x}}{x-5} dx = 2\int \frac{t^2}{t^2 - 5} dt = 2\int \frac{(t^2 - 5) + 5}{t^2 - 5} dt = 2\int (1 + \frac{5}{t^2 - 5}) dt =$$

$$= 2\left(t + \frac{5}{2\sqrt{5}} \ln\left|\frac{t-5}{t+5}\right|\right) + C = 2\left(t + \frac{\sqrt{5}}{2} \ln\left|\frac{t-5}{t+5}\right|\right) + C.$$

Возвращаясь к заданной переменной, получим:

$$\int \frac{\sqrt{x}}{x-5} dx = 2\left(\sqrt{x} + \frac{\sqrt{5}}{2} \ln \left| \frac{\sqrt{x}-5}{\sqrt{x}+5} \right| \right) + C.$$

Пример 4.
$$\int \frac{(\sqrt{x}+1)^2 dx}{\sqrt{x}}$$

Решение. *Первый способ.* Предположим, $\sqrt{x} + 1 = t$.

Отсюда
$$dt=rac{dx}{2\sqrt{x}}, \quad rac{dx}{\sqrt{x}}=2 \,\, dt$$
. Следовательно,

$$\int \frac{(\sqrt{x+1})^3 dx}{\sqrt{x}} = \int 2t^3 dt = \frac{2t^4}{4} + c = \frac{t^4}{2} + c = \frac{(\sqrt{x+1})^4}{2} + c$$

c.

Второй способ.
$$\int \frac{(\sqrt{x}+1)^3 dx}{\sqrt{x}} = \int (\sqrt{x}+1)^3 \cdot 2d(\sqrt{x}+1) = \frac{2(\sqrt{x}+1)^4}{4} + c = \frac{(\sqrt{x}+1)^4}{2} + c.$$

Задачи для самостоятельного решения

1.
$$\int \sqrt{2x+3} \, dx$$

2.
$$\int \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)^2 dx$$

3.
$$\int \cos^2 \frac{x}{2} dx$$

4.
$$\int \sin^2 \frac{x}{2} dx$$

5.
$$\int (\cos\frac{x}{3} - \sin 2x) dx$$

6.
$$\int \sqrt{2x+5} \, dx$$

7.
$$\int \cos\left(3x + \frac{\pi}{3}\right) dx \int \sqrt[3]{4x + 3} dx$$

8.
$$\int \sin\left(\frac{x}{2} + \frac{\pi}{6}\right) dx$$

9.
$$\int \frac{dx}{4x^2-1}$$

10.
$$\int \frac{dx}{\sqrt{9x^2+1}}$$

11.
$$\int e^{3x+2} dx$$

$$12. \int \frac{\mathrm{dx}}{\sqrt[3]{2x-1}}$$

13.
$$\int \frac{dx}{\cos^2 3x}$$

$$14. \int \frac{dx}{\sin^2\left(2x-\frac{\pi}{4}\right)}$$

15.
$$\int \frac{dx}{1-2x}$$

$$16. \int \frac{\mathrm{dx}}{1-2x^2}$$

17.
$$\int \frac{e^x}{\sqrt{e^x-1}} dx$$

18.
$$\int \frac{x}{x^2+3} dx$$

19.
$$\int \frac{\ln x}{x} dx$$

$$20. \int \frac{x}{1+x^4} dx$$

$$21. \ \frac{(\sqrt{x}+1)^3 \ dx}{\sqrt{x}}$$

22.
$$\int \frac{2x \, dx}{(x+1)^2}$$

23.
$$\int \frac{\cos\sqrt{x} \ dx}{\sqrt{x}}$$

24.
$$\int \frac{\sqrt{x} dx}{\sqrt[3]{x+1}}$$
25.
$$\int \frac{x^2 dx}{\sqrt{x^6-3}}$$
26.
$$\int \frac{\arctan x dx}{1+x^2}$$
27.
$$\int \frac{\arctan x dx}{\sqrt{1-x^2}}$$
28.
$$\int \frac{\sqrt{\ln x} dx}{x}$$
29.
$$\int \frac{\sqrt{x} dx}{\sqrt{x+1}}$$
30.
$$\int \frac{x+1}{\sqrt{2x^2+4x}} dx$$
31.
$$\int \frac{x^3 dx}{1+x^8}$$
32.
$$\int \frac{e^x dx}{3+e^x}$$
33.
$$\int \frac{e^x dx}{3+e^{2x}}$$
34.
$$\int \frac{\ln x dx}{x\sqrt{1+\ln x}}$$
35.
$$\int \frac{\cos x dx}{\sqrt{1+\sin x}}$$
36.
$$\int \frac{\cos x dx}{\sqrt{1+\sin^2 x}}$$
37.
$$\int \frac{dx}{x \ln x}$$
38.
$$\int \frac{\sin 3x dx}{\sqrt{\cos^2 x}}$$
39.
$$\int 2x(x^2+1)^4 dx$$
40.
$$\int e^{\sin x} \cos x dx$$
41.
$$\int 3^x e^x dx$$
42.
$$\int \frac{\ln(x+3)}{x+3} dx$$
43.
$$\int \frac{x+1}{x^2+2x+2} dx$$

44.
$$\int x\sqrt{x^{2} + 1} dx$$
45.
$$\int x^{2}\sqrt{4 - x^{2}} dx$$
46.
$$\int \frac{x + arctg x}{1 + x^{2}} dx$$
47.
$$\int \frac{x^{2} dx}{x^{6} - 7} dx$$

4. ИНТЕГРИРОВАНИЕ ПО ЧАСТЯМ

Формула интегрирования по частям имеет вид:

$$\int u dv = uv - \int v du$$

где u(x), v(x) - непрерывно дифференцируемые функции. Чтобы применить эту формулу нужно:

- 1) подынтегральное выражение представить в виде произведения функции u(x) на дифференциал dv другой функции v(x) ;
- 2) найти дифференциал du функции u(x): du = u'dx;
- 3) найти функцию v(x), проинтегрировав её дифференциал dv ;
- 4) все полученные выражения подставить в формулу интегрирования по частям.

Примеры с решениями

Пример 1.
$$\int (x+10)e^{\frac{x}{2}}dx = J$$
. Решение.

$$u = x + 10, \quad dv = e^{\frac{x}{2}} dx$$

$$du = (x+10)'dx = dx, \quad v = \int e^{\frac{x}{2}} dx = 2\int e^{\frac{x}{2}} d(\frac{x}{2}) = 2e^{\frac{x}{2}}$$

Вообще говоря, полученное выражение для ν должно содержать постоянную интегрирования C. Однако при применении формулы интегрирования по частям эта постоянная из окончательного выражения выпадает. Поэтому в выражении для уудобно полагать C=0.

Применим формулу интегрирования по частям:

$$J = 2(x+10)e^{\frac{x}{2}} - 2\int e^{\frac{x}{2}} dx = 2(x+10)e^{\frac{x}{2}} - 4e^{\frac{x}{2}} + C.$$

Пример 2. $\int (3x-7)\cos 5x dx = J$ Решение.

$$u = 3x - 7, dv = \cos 5x dx, du = 3dx, v = \int \cos 5 dx = \frac{1}{5} \int \cos 5x d(5x) = \frac{1}{5} \sin 5x.$$

$$J = \frac{1}{5}(3x - 7)\sin 5x$$

$$-\frac{3}{5}\int \sin 5x dx = \frac{1}{5}(3x-7)\sin 5x + \frac{3}{25}\cos 5x + C.$$

Пример 3.
$$\int x \sin \frac{x}{4} dx = J$$
. Решение.

$$u = x, dv = \sin\frac{x}{4}dx$$

$$du = dx, v = \int \sin \frac{x}{4} dx =$$

$$= 4 \int \sin \frac{x}{4} d(\frac{x}{4}) = -4 \cos \frac{x}{4}.$$

$$J = -4x\cos\frac{x}{4} + 4\int\cos\frac{x}{4}dx =$$

$$-4x\cos\frac{x}{4} + 16\sin\frac{x}{4} + C$$

$$Ipumep 4. \int \ln(x+1)dx = J$$
Pewehue.
$$u = \ln(x+1), \ dv = dx.$$

$$du = (\ln(x+1))'dx = \frac{1}{x+1}dx, \ v = \int dx = x$$

$$J = x\ln(x+1) - \int \frac{x}{x+1}dx = x\ln(x+1) - \int \frac{(x+1)-1}{x+1}dx =$$

$$= x\ln(x+1) - \int (1 - \frac{1}{x+1})dx = x\ln(x+1) - \int dx + \int \frac{d(x+1)}{x+1} = x\ln(x+1)$$

$$-x + \ln(x+1) + C = (x+1)\ln(x+1) - x + C.$$

Задачи для самостоятельного решения

1.
$$\int x \sin x dx$$
2.
$$\int x \cos 2x dx$$
3.
$$\int xe^{3x} dx$$
4.
$$\int (x-4) \sin 2x dx$$
5.
$$\int xe^{-x} dx$$
6.
$$\int x \sin \frac{x}{2} dx$$
7.
$$\int x \cos(3x-1) dx$$
8.
$$\int x^2 \sin 5x dx$$

9.
$$\int x^{2}e^{-2x}dx$$
10.
$$\int \ln x dx$$
11.
$$\int x \ln(x-1)dx$$
12.
$$\int (x+3)\sin x dx$$
13.
$$\int (x-2)\cos x dx$$
14.
$$\int x^{2}\sin(2-5x)dx$$
15.
$$\int (x-1)\cos x dx$$
17.
$$\int (2x+3)\sin x dx$$
18.
$$\int xe^{x}dx$$
19.
$$\int xe^{2x}dx$$
20.
$$\int x \ln x dx$$
21.
$$\int arctg x dx$$
22.
$$\int x \ln (2x+3)dx$$
23.
$$\int (3x-2)\cos 2x dx$$
24.
$$\int arc\cos x dx$$
25.
$$\int x^{2}\cos x dx$$
26.
$$\int x^{2}e^{-x}dx$$
27.
$$\int x^{3}\ln(2x+3)dx$$
28.
$$\int xarctg x dx$$
29.
$$\int (x^{2}-x+1)\ln x dx$$
30.
$$\int e^{x}\cos 2x dx$$
31.
$$\int e^{x}\sin x dx$$
32.
$$\int x^{2}e^{5x}dx$$
33.
$$\int x^{3}-x dx$$
34.
$$\int \ln^{2}x dx$$
35.
$$\int x \sqrt{e^{x}}dx$$
36.
$$\int \frac{arc\sin x dx}{\sqrt{x}}$$

$$37. \int \frac{x \, dx}{\cos^2 x}$$

$$38. \int x^{-3} \ln x \, dx$$

$$39. \int x \ln \frac{1+x}{1-x} \, dx$$

$$40. \int \frac{x \cos x}{\sin^2 x} \, dx$$

$$41. \int x^{-\frac{1}{2}} \ln x \, dx$$

$$42. \int \frac{x \sin x}{\cos^2 x} \, dx$$

$$43. \int \ln(x^2 + 2) \, dx$$

5. ИНТЕГРИРОВАНИЕ ФУНКЦИЙ, СОДЕРЖАЩИХ КВАДРАТНЫЙ ТРЕХЧЛЕН

I. Интеграл
$$\int \frac{dx}{ax^2 + bx + c}$$
 находится следующим образом: $\underline{\frac{1}{}}$

- 1) множитель a выносится за знак интеграла;
- 2) из квадратного трёхчлена, стоящего в знаменателе, выделяется полный квадрат;
- 3) выражение, стоящее под знаком квадрата, либо подводится под знак дифференциала (непосредственное интегрирование), либо обозначается новой переменной (метод подстановки).

II. Интеграл
$$\int \frac{dx}{\sqrt{ax^2+bx+c}}$$
 берётся аналогично предыдуще-

му, но за знак интеграла выносится множитель $\sqrt{|a|}$ mx+n

III. С интегралами
$$\int \frac{mx+n}{ax^2+bx+c} dx \int \frac{mx+n}{\sqrt{ax^2+bx+c}} dx$$
 сначала поступаем так же, как и с предыдущими, но после перехода к новой переменной представляем их в виде суммы интегралов.

Примеры с решениями

$$\prod_{\textbf{Пример 1.}} \int \frac{dx}{x^2 - 2x + 10} = J$$

$$x^{2}-2x+10=(x^{2}-2x+1)-1+10=(x-1)^{2}+9.$$

$$J=\int \frac{dx}{(x-1)^{2}+9}=\int \frac{d(x-1)}{(x-1)^{2}+9}=\frac{1}{3}arctg\frac{x-1}{3}+C.$$
Trumep 2.

$$\int \frac{dx}{2x^2 - 8x - 24} = \frac{1}{2} \int \frac{dx}{x^2 - 4x - 12} = \frac{1}{2} \int \frac{dx}{(x - 2)^2 - 16} =$$

$$= \frac{1}{2} \int \frac{d(x - 2)}{(x - 2)^2 - 4^2} = \frac{1}{2} \cdot \frac{1}{2 \cdot 4} \ln \left| \frac{x - 2 - 4}{x - 2 + 4} \right| + C =$$

$$\frac{1}{16} \ln \left| \frac{x - 6}{x + 2} \right| + C$$

Пример 3.
$$\int \frac{2x+1}{3-x^2-2x} dx = J$$

Решение. Преобразуем
$$J = -\int \frac{2x+1}{x^2+2x-3} dx$$
 и выде-

$$J = -\int \frac{2x+1}{(x+1)^2 - 4} dx$$

лим в знаменателе полный квадрат:

Введём подстановку $x+1=t \Longrightarrow x=t-1$, dx=dt. Тогда:

$$J = -\int \frac{2(t-1)+1}{t^2-4} dt = -\int \frac{2t-1}{t^2-4} dt = -\int \frac{2tdt}{t^2-4} + \int \frac{dt}{t^2-4} = -\int \frac{d(t^2-4)}{t^2-4} + \frac{1}{4} \ln \left| \frac{t-2}{t+2} \right| =$$

$$= -\ln \left| t^2 - 4 \right| + \frac{1}{4} \ln \left| \frac{t-2}{t+2} \right| + C = \frac{1}{4} \ln \left| \frac{x+1-2}{x+1+2} \right| - \ln \left| (x+1)^2 - 4 \right| + C =$$

$$= \frac{1}{4} \ln \left| \frac{x-1}{x+3} \right| - \ln \left| x^2 + 2x - 3 \right| + C.$$

Задачи для самостоятельного решения

$$1. \int \frac{dx}{x^2 + 4x + 5}$$

2.
$$\int \frac{ax}{x^2 - 10x + 24}$$

2.
$$\int \frac{dx}{x^2 - 10x + 24}$$

3.
$$\int \frac{dx}{\sqrt{x^2 + 4x + 5}}$$

$$4. \int \frac{dx}{\sqrt{x^2 + 6x + 10}}$$

$$5. \int \frac{dx}{\sqrt{8+6x-9x^2}}$$

5.
$$\int \frac{dx}{\sqrt{8+6x-9x^2}}$$
6.
$$\int \frac{dx}{\sqrt{2-6x-9x^2}}$$

7.
$$\int \frac{dx}{4x^2 + 4x + 5}$$
8.
$$\int \frac{dx}{2x^2 - 8x + 6}$$

$$8. \int \frac{dx}{2x^2 - 8x + 6}$$

$$9. \quad \int \frac{dx}{\sqrt{5+2x+x^2}}$$

10.
$$\int \frac{ax}{x^2 + 3x - 10}$$

10.
$$\int \frac{dx}{x^2 + 3x - 10}$$
11.
$$\int \frac{dx}{\sqrt{3x^2 - 2x - 1}}$$

$$12. \int \frac{dx}{\sqrt{5-4x-x^2}}$$

13.
$$\int \frac{dx}{\sqrt{3-2x-x^2}}$$
14.
$$\int \frac{dx}{16x^2+8x+5}$$

14.
$$\int \frac{dx}{16x^2 + 8x + 5}$$

$$15. \int \frac{dx}{\sqrt{4x^2 + 4x + 5}}$$

16.
$$\int \frac{8x - 11}{\sqrt{5 + 2x - x^2}} dx$$

17.
$$\int \frac{3x-1}{\sqrt{x^2+2x+2}} \, dx$$

18.
$$\int \frac{3x-1}{\sqrt{2x^2-4x+7}} dx$$
19.
$$\int \frac{x-2}{x^2-7x+12} dx$$
20.
$$\int \frac{dx}{x^2-6x+1}$$
21.
$$\int \frac{dx}{\sqrt{5+2x-x^2}}$$
22.
$$\int \frac{dx}{\sqrt{x^2-4x-3}}$$
23.
$$\int \frac{dx}{\sqrt{2+2x-x^2}}$$
24.
$$\int \frac{dx}{\sqrt{x^2-8x+12}}$$
25.
$$\int \frac{(3x-2)dx}{x^2+6x+9}$$
26.
$$\int \frac{(x-1)dx}{x^2-4x-5}$$
27.
$$\int \frac{(3x-1)dx}{4x^2-4x+17}$$
28.
$$\int \frac{(5x-1)dx}{\sqrt{3-2x-x^2}}$$
29.
$$\int \frac{(7-8x)dx}{2x^2-3x+1}$$
30.
$$\int \frac{(3x-5)}{\sqrt{9+6x-3x^2}} dx$$

6. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ

Определение. Дробно-рациональной функцией (или рациональной дробью) называется функция, равная отношению

$$f(x) = \frac{P_m(x)}{Q_n(x)},$$
 где $P_m(x)$ - мно-

гочлен степени m, а $Q_n(x)$ - многочлен степени n.

Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя, то есть $^{m < n;}$ в противном случае (если $m \ge n$) рациональная дробь называется неправильной.

Всякую неправильную рациональную дробь $\frac{P(x)}{Q(x)}$ можно, путем деления числителя на знаменатель, представить в виде суммы многочлена (целой части) и правильной рациональной дроби.

Простейшими рациональными дробями называют дроби вида:

$$\frac{A}{x-a}, \frac{B}{(x-a)^k}, \frac{Cx+D}{x^2+px+q}, \frac{Mx+N}{(x^2+px+q)^s},$$
_{rde}

 $A,\,B,\,C,\,D,\,M,\,N,\,a,\,p,\,q$ -действительные числа;

$$rac{p^2}{4} - q < 0; \; k, \; s - \$$
 натуральные числа; $k > 1, \; s > 1.$ Чтобы проинтегрировать правильную раци

Чтобы проинтегрировать правильную рациональную дробь, нужно:

дроби разложить на 1) знаменатель множители вида $(x-a), (x-a)^k$

$$(x^2+px+q), (x^2+px+q)^s,$$
 где $a, p, q-$ действительные числа; $k, s-$ натуральные числа, $k>1, s>1$ и

$$\frac{p^2}{4} - q < 0;$$

2) правильную рациональную дробь представить в виде суммы простейших дробей. При этом множителю знаменателя вида:

а)
$$x-a$$
 соответствует одна дробь $\frac{A}{x-a}$;

б) $(x-a)^k$ ставится в соответствие сумма «k» простейших

$$rac{A_{\mathrm{l}}}{(x-a)^{k}}+rac{A_{2}}{(x-a)^{k-1}}+...+rac{A_{k}}{x-a};$$
в) $x^{2}+px+q$ соответствует одна дробь $rac{Bx+C}{x^{2}+px+q};$

г) $(x^2 + px + q)^s$ соответствует сумма s простейших дробей:

$$\frac{B_1x+C_1}{(x^2+px+q)^s}+\frac{B_2x+C_2}{(x^2+px+q)^{s-1}}+...+\frac{B_s+C_s}{x^2+px+q};$$
 3) найти неизвестные числа
$$A,\ A_i,\ B,\ B_j,\ C_j,\ 1\leq i\leq k,\ 1\leq j\leq s,$$

4) проинтегрировать простейшие рациональные дроби.

Неопределенный интеграл от любой рациональной дроби на всяком промежутке, на котором ее знаменатель не равен нулю, существует и выражается через элементарные функции, а именно рациональные дроби, логарифмы и арктангенсы.

Рассмотрим на примерах интегралы от простейших рациональных дробей.

Примеры с решениями

Пример 1.
$$\int \frac{xdx}{x^2 + 3x + 2}$$

Решение. Прежде чем находить интеграл от рациональной дроби необходимо проверить является ли она правильной.

Следующим действием нужно разложить знаменатель дроби на множители. В знаменателе нашей дроби находится квадратный трехчлен, разложение которого на множители имеет вид: $ax^2 + bx + c = a(x - x_1)(x - x_2)$.

Выпишем знаменатель и приравняем его к нулю.

$$x^2 + 3x + 2 = 0$$

Найдем дискриминант и корни квадратного уравнения:

$$D=b^2-4ac$$

$$D = 9 - 4 \cdot 2 = 1$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} \qquad x_1 = \frac{-3 - 1}{2} = \frac{-4}{2} = -2$$
$$x_2 = \frac{-3 + 1}{2} = \frac{-2}{2} = -1$$

$$x^2 + 3x + 2 = (x+2)(x+1)$$

На следующем этапе решения нужно методом неопределенных коэффициентов разложить подынтегральную функцию в сумму простых (элементарных) дробей:

$$\frac{A}{x+2} + \frac{B}{x+1} = \frac{x}{(x+2)(x+1)}$$
. Такое разложение суще-

ствует и единственно!

А и В – это неопределенные коэффициенты.

Вначале приведем левую часть к общему знаменателю:

$$\frac{A(x+1)+B(x+2)}{(x+2)(x+1)} = \frac{x}{(x+2)(x+1)}$$

Знаменатели дробей можно опустить, потому что они одинаковы.

$$A(x+1) + B(x+2) = x$$

Раскроем скобки и проведем группировку.

$$Ax + A + Bx + 2B = x$$

$$x(A+B)+A+2B=x$$

Сравниваем коэффициенты при степенях $\,x\,$

$$\begin{cases} x^1 & 1 = A + B \\ x^0 & 0 = A + 2B \end{cases}$$

Решаем полученную систему:

$$\begin{cases} A+B=1 \\ A+2B=0 \end{cases} \Rightarrow \begin{cases} A=1-B \\ 1-B+2B=0 \end{cases} \Rightarrow \begin{cases} A=1-B \\ B=-1 \end{cases} \Rightarrow \begin{cases} A=2 \\ B=-1 \end{cases}$$

Коэффициенты А и В найдены, поэтому:

$$\frac{x}{(x+2)(x+1)} = \frac{2}{x+2} + \frac{-1}{x+1}$$

Возвращаемся, к решению нашего интеграла:

$$\int \frac{xdx}{(x+2)(x+1)} = \int \left(\frac{2}{x+2} - \frac{1}{x+1}\right) dx = 2\int \frac{dx}{x+2} - \int \frac{dx}{x-1} = 2\int \frac{d(x+2)}{x+2} - \int \frac{d(x-1)}{x-1} = 2\int \frac{dx}{x+2} - \int \frac{dx}{x+2} - \int \frac{dx}{x+2} - \int \frac{dx}{x+2} = 2\int \frac{dx}{x+2} - \int \frac{dx}{x+2} +$$

$$= 2\ln|x+2| - \ln|x-1| + C$$

Пример 2.
$$\int \frac{x^2 dx}{\left(x+2\right)^2 \left(x+1\right)}$$

Решение.

- 1. Дробь является правильной 2 < 3
- 2. Знаменатель уже разложен на множители, кроме того один из множителей $\left(x+2\right)^2$ кратный
- 3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

$$\frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{x+1} = \frac{x^2}{(x+2)^2(x+1)}$$

$$\frac{A(x+2)(x+1) + B(x+1) + C(x+2)^2}{(x+2)^2(x+1)} = \frac{x^2}{(x+2)^2(x+1)}$$

$$A(x^2+3x+2)+B(x+1)+C(x^2+4x+4)=x^2$$

$$Ax^{2} + 3Ax + 2A + Bx + B + Cx^{2} + 4Cx + 4C = x^{2}$$

$$x^{2}(A+C) + x(3A+B+4C) + 2A+B+4C = x^{2}$$

$$\begin{cases} x^{2} \\ x^{1} \\ 0 = 3A + B + 4C \\ x^{0} \\ 0 = 2A + B + 4C \end{cases}$$

Найдем решение полученной системы:

$$\begin{cases} A+C=1 \\ 3A+B+4C=0 \Rightarrow \begin{cases} C=1-A \\ 3A+B+4-4A=0 \Rightarrow \begin{cases} C=1-A \\ -A+B=-4 \Rightarrow \end{cases} \begin{cases} A=0 \\ B=-4 \\ C=1 \end{cases}$$

$$\frac{x^2}{(x+2)^2(x+1)} = \frac{-4}{(x+2)^2} + \frac{1}{x+1}$$

$$\int \frac{x^2 dx}{(x+2)^2 (x+1)} = \int \left(\frac{-4}{(x+2)^2} + \frac{1}{x+1} \right) dx = -4 \int \frac{dx}{(x+2)^2} + \int \frac{dx}{x+1} = -4 \int \frac{dx}{(x+2)^2} dx$$

$$-4\int (x+2)^{-2} d(x+2) + \int \frac{d(x+1)}{x+1} = -4\frac{(x+2)^{-1}}{-1} + \ln|x+1| + C = \frac{4}{x+2} + \ln|x+1| + C$$

Пример 3.
$$\int \frac{xdx}{x^3+8}$$

Решение.

- 1. Дробь является правильной 1 < 3
- 2. Разложим знаменатель дроби на множители. $x^3+8=x^3+2^3\text{- сумма кубов. Используем формулу:}\\ a^3+b^3=\big(a+b\big)\Big(a^2-ab+b^2\Big)\Longrightarrow\\ x^3+8=x^3+2^3=\big(x+2\big)\Big(x^2-2x+4\Big),\text{ один из множителей квадратный трехчлен, попробуем разложить}$

и его.

$$x^2 - 2x + 4 = 0$$

 $D = 4 - 4 \cdot 4 = -12 < 0 \Longrightarrow$ нет действительных корней. В знаменателе находится неразложимый многочлен второй степени.

3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

$$\frac{A}{x+2} + \frac{Bx+C}{x^2 - 2x + 4} = \frac{x}{(x+2) \cdot (x^2 - 2x + 4)}$$

$$\frac{A(x^2 - 2x + 4) + (Bx + C)(x + 2)}{(x + 2)(x^2 - 2x + 4)} = \frac{x}{(x + 2) \cdot (x^2 - 2x + 4)}$$

$$Ax^{2} - 2Ax + 4A + Bx^{2} + 2Bx + Cx + 2C = x$$
$$x^{2}(A+B) + x(-2A+2B+C) + 4A + 2C = x$$

$$\begin{cases} x^{2} \\ x^{1} \\ 1 = -2A + 2B + C \\ x^{0} \\ 0 = 4A + 2C \end{cases}$$

Найдем решение полученной системы:

$$\begin{cases}
A+B=0 \\
-2A+2B+C=1 \Rightarrow \begin{cases}
B=-A \\
-2A-2A-2A=1 \Rightarrow \begin{cases}
B=-A \\
-6A=1 \Rightarrow \\
C=-2A
\end{cases}$$

$$A=-\frac{1}{6}$$

$$C=\frac{1}{3}$$

$$\frac{x}{x^3 + 8} = \frac{-\frac{1}{6}}{x + 2} + \frac{\frac{x}{6} + \frac{1}{3}}{x^2 - 2x + 4}$$

$$\int \frac{xdx}{x^3 + 8} = -\frac{1}{6} \int \frac{dx}{x + 2} + \int \frac{\left(\frac{x}{6} + \frac{1}{3}\right)dx}{x^2 - 2x + 4} = -\frac{1}{6} \int \frac{d(x + 2)}{x + 2} + \int \frac{\left(\frac{x}{6} + \frac{1}{3}\right)dx}{x^2 - 2x + 4} =$$

$$= -\frac{1}{6} \int \frac{d(x + 2)}{x + 2} + \frac{1}{6} \int \frac{xdx}{\left(x - 1\right)^2 + 3} + \frac{1}{3} \int \frac{d(x - 1)}{\left(x - 1\right)^2 + 3} = \dots$$

Рассмотрим интеграл:
$$\int \frac{xdx}{\left(x-1\right)^2+3}$$
, решим его мето-

дом замены переменной.

$$\int \frac{xdx}{\left(x-1\right)^2+3} = \begin{vmatrix} t=x-1\\ x=t+1\\ dx=dt \end{vmatrix} = \int \frac{(t+1)dt}{t^2+3} = \int \frac{tdt}{t^2+3} + \int \frac{dt}{t^2+3} = \frac{1}{2} \int \frac{d\left(t^2+3\right)}{t^2+3} + \int \frac{dt}{t^2+3} + \int \frac$$

$$= \frac{1}{2} \ln \left| t^2 + 3 \right| + \frac{1}{\sqrt{3}} \arctan \left| \frac{t}{\sqrt{3}} + C \right| = \frac{1}{2} \ln \left| \left(x - 1 \right)^2 + 3 \right| + \frac{1}{\sqrt{3}} \arctan \left| \frac{x - 1}{\sqrt{3}} + C \right|$$

Тогда:

$$-\frac{1}{6}\int \frac{d(x+2)}{x+2} + \frac{1}{6}\int \frac{xdx}{(x-1)^2 + 3} + \frac{1}{3}\int \frac{d(x-1)}{(x-1)^2 + 3} =$$

$$= -\frac{1}{6}\ln|x+2| + \frac{1}{12}\ln|(x-1)^2 + 3| + \frac{1}{6\sqrt{3}}\arctan\frac{x-1}{\sqrt{3}} + \frac{1}{3\sqrt{3}}\arctan\frac{x-1}{\sqrt{3}} + C$$

$$= -\frac{1}{6}\ln|x+2| + \frac{1}{12}\ln|(x-1)^2 + 3| + \frac{1}{2\sqrt{3}}\arctan\frac{x-1}{\sqrt{3}} + C.$$

дробно-рациональной Интегрирование неправильной функции

Пример 4.
$$\int \frac{xdx}{x-5}$$

Решение.

В данном примере старшая степень x числителя равна старшей степени x знаменателя, поэтому необходимо применить метод искусственного преобразования числителя:

$$\int \frac{xdx}{x-5} = \int \frac{(x-5+5)dx}{x-5} = \int \frac{(x-5)dx}{x-5} + 5\int \frac{dx}{x-5} = \int dx + 5\int \frac{d(x-5)}{x-5} = x + \ln|x-5| + C$$

Пример 5.
$$\int \frac{\left(4x^4 + 8x^3 - 3x - 3\right)dx}{x^3 + 2x^2 + x}$$

Решение.

1. Данная дробь является неправильной, т.к. 4 > 3, чтобы представить неправильную дробь в виде суммы целой ча-

сти (многочлена) и правильной рациональной дроби, необходимо поделить числитель на знаменатель.

Тогда:

$$\int \frac{\left(4x^4 + 8x^3 - 3x - 3\right)dx}{x^3 + 2x^2 + x} = \int \left(4x + \frac{-4x^2 - 3x - 3}{x\left(x^2 + 2x + 1\right)}\right)dx =$$

$$4\int xdx + \int \frac{-4x^2 - 3x - 3}{x\left(x^2 + 2x + 1\right)}dx =$$

$$=4\int x dx - \int \frac{4x^2 + 3x + 3}{x(x+1)^2} dx = \dots$$

Рассмотрим
$$\int \frac{4x^2 + 3x + 3}{x(x+1)^2} dx$$

- 1. Дробь является правильной 2 < 3
- 2. Один из множителей в знаменателе кратный!
- 3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

$$\frac{A}{x} + \frac{B}{(x+1)} + \frac{C}{(x+1)^2} = \frac{4x^2 + 3x + 3}{x(x+1)^2}$$

$$\frac{A(x+1)^2}{x} + \frac{B(x^2+x)}{(x+1)} + \frac{Cx}{(x+1)^2} = \frac{4x^2 + 3x + 3}{x(x+1)^2}$$

$$Ax^2 + 2Ax + A + Bx^2 + Bx + Cx = 4x^2 + 3x + 3$$

$$x^2(A+B) + x(2A+B+C) + A = 4x^2 + 3x + 3$$

$$\begin{cases} x^2 \\ x^1 \\ 3 = 2A + B + C \\ x^0 \\ 3 = A \end{cases}$$

Найдем решение полученной системы:

$$\begin{cases} A+B=4 \\ 2A+B+C=3 \Rightarrow \begin{cases} B=4-A \\ 2A+4-A+C=3 \Rightarrow \begin{cases} B=1 \\ A=3 \end{cases} \end{cases} \begin{cases} A=3 \\ B=1 \\ C=-4 \end{cases}$$

$$\frac{4x^2+3x+3}{x(x+1)^2} = \frac{3}{x} + \frac{1}{x+1} + \frac{-4}{(x+1)^2}$$

$$\int \frac{4x^2 + 3x + 3}{x(x+1)^2} dx = 3\int \frac{dx}{x} + \int \frac{dx}{x+1} - 4\int \frac{dx}{(x+1)^2} = 3\int \frac{dx}{x} + \int \frac{d(x+1)}{x+1} - 4\int (x+1)^{-2} d(x+1) =$$

$$= 3\ln|x| + \ln|x+1| + \frac{4}{x+1} + C$$

Тогда, конечное решение имеет следующий вид:

$$4\int x dx - \int \frac{4x^2 + 3x + 3}{x(x+1)^2} dx = 4\frac{x^2}{2} - 3\ln|x| - \ln|x+1| - \frac{4}{x+1} + C$$

Задачи для самостоятельного решения

1.
$$\int \frac{x^2-6x+10}{x^2-6x+7} dx$$

2.
$$\int \frac{3x^2 + 2x - 3}{x(x - 1)(x + 1)} dx$$

3.
$$\int \frac{2x^2 + 41x - 91}{(x - 1)(x + 3)(x - 4)} dx$$

$$4. \int \frac{dx}{(x-2)(x-3)}$$

5.
$$\int \frac{7x-6}{2x^2-6x+4} dx$$

6.
$$\int \frac{x^2 - x + 1}{x^2 - 5x^2 + 6x} dx$$

$$7. \quad \int \frac{(x+2)}{x^2-9} dx$$

8.
$$\int \frac{3 - x^2}{x(x^2 - 64)} dx$$

9.
$$\int \frac{x-3}{x^2-16} dx$$

10.
$$\int \frac{dx}{(x+1)^2(x-1)}$$

11.
$$\int \frac{x^2 - 3x + 2}{x(x^2 + 2x + 1)} dx$$

12.
$$\int \frac{3x^2 + 2x - 3}{x^3 - x} dx$$

13.
$$\int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx$$

$$14. \int \frac{dx}{x(x+1)^2}$$

15.
$$\int \frac{x^2 + 2x - 6}{(x^2 - 9)(x + 1)^2} dx$$
16.
$$\int \frac{x^3 + 2}{x^3 - 4x} dx$$
17.
$$\int \frac{x^2 dx}{(x + 2)^2 (x + 1)}$$
18.
$$\int \frac{x^2 + 4x + 4}{x(x - 1)^2} dx$$
19.
$$\int \frac{dx}{x(x^2 + 2)}$$
20.
$$\int \frac{x^2 - 3x + 2}{x^3 + 2x^2 + x} dx$$
21.
$$\int \frac{dx}{x^4 - x^2}$$
22.
$$\int \frac{5x - 13}{(x^2 - 5x + 6)^2} dx$$
23.
$$\int \frac{x^2 + 3x - 1}{x^3 - 1} dx$$
24.
$$\int \frac{dx}{x^4 + x^2}$$
25.
$$\int \frac{x^2 + 2x + 2}{x(x^2 + 2)} dx$$
26.
$$\int \frac{x^2 + 3x + 2}{x^3 - 8} dx$$
27.
$$\int \frac{dx}{x^3 - 8}$$
28.
$$\int \frac{x^2 + x + 3}{(x + 1)(x^2 - x + 1)} dx$$
29.
$$\int \frac{(x^4 + 1)}{x^3 - x^2 + x - 1} dx$$
30.
$$\int \frac{x^3 - 3x + 4}{x - 2} dx$$
31.
$$\int \frac{x^4 - 3x^3 + 5x - 1}{x^2 + 2x - 1} dx$$

7. ИНТЕГРИРОВАНИЕ ИРРАЦИОНАЛЬНЫХ ФУНКЦИЙ

Класс иррациональных функций очень широк, поэтому универсального способа их интегрирования просто не существует. Рассмотрим наиболее характерные виды

Интегралы типа

$$\int R \left(x, \left(\frac{ax+b}{cx+d}\right)^{lpha/eta}, ..., \left(\frac{ax+b}{cx+d}\right)^{\eta/\mu} \right) dx \ a,b,c,d$$
 - дей-

ствительные числа, $\alpha, \beta, ..., \eta, \mu$ - натуральные числа, сводятся к интегралам от рациональной функции путем подстановки $\dfrac{ax+b}{cx+d}=t^k$, где k - наименьшее общее кратное знаменателей

дробей
$$\dfrac{lpha}{eta},...,\dfrac{\eta}{\mu}$$
 .

Примеры с решениями

Найти неопределённый интеграл:

Пример 1.
$$\int \frac{dx}{x + \sqrt{x}}$$
 Решение. Наименьш

Решение. Наименьшее общее кратное знаменателей

дробей $\frac{1}{2}$ и $\frac{2}{2}$ есть 2. Поэтому введем замену $x=t^2$, тогда

$$dx = 2tdt$$
 , а $\sqrt{x} = t$. Получим:

$$\int \frac{dx}{x + \sqrt{x}} = \int \frac{2tdt}{t + t^2} = 2\int \frac{tdt}{t(t+1)} = 2\int \frac{dt}{t+1} = 2\int \frac{d(t+1)}{t+1} = 2\ln|t+1| + C = 2\ln|\sqrt{x} + 1| + C$$

Пример 2.
$$\int \frac{dx}{(\sqrt[3]{x}+4)\sqrt{x}}$$
 Решение. Пусть $\sqrt[6]{x}=t, \ x=t^6$. Тогда

$$dx = 6t^5 dt, \ \sqrt[3]{x} = \sqrt[3]{t^6} = t^2, \ \sqrt{x} = \sqrt{t^6} = t^3.$$

$$6\int \frac{t^5 dt}{(t^2 + 4) \cdot t^3} = 6\int \frac{t^2 dt}{t^2 + 4} = 6\int \frac{(t^2 + 4) - 4}{t^2 + 4} dt =$$

$$= 6\int (1 - \frac{4}{t^2 + 4}) dt = 6(\int dt - 4\int \frac{dt}{t^2 + 4}) = 6(t - 4 \cdot \frac{1}{2} \arctan \frac{t}{2}) + C =$$

$$= 6(\sqrt[6]{x} - 2\arctan \frac{6\sqrt{x}}{2}) + C.$$

Пример 3.
$$\int \frac{\sqrt{x+2}+4}{\sqrt{x+2}-2} dx$$

Решение. Введём замену $\sqrt{x+2} = t$. Тогда

 $x + 2 = t^2$, dx = 2tdt. Перейдём к новой переменной и найдём:

$$\int \frac{t+4}{t-2} \cdot 2t dt = 2 \int \frac{t^2+4t}{t-2} dt$$

Выполним деление числителя на знаменатель:

$$-\frac{t^{2}+4t}{t^{2}-2t}\begin{vmatrix} t-2\\ t+6 \end{vmatrix}$$

$$-\frac{6t-12}{12}$$

Получаем, что
$$\frac{t^2+4t}{t-2}=t+6+\frac{12}{t-2}$$
 и

$$\int (t+6+\frac{12}{t-2})dt = \int tdt + 6\int dt + 12\int \frac{d(t-2)}{t-2} = \frac{t^2}{2} + 6t + 12\ln|t-2| + C =$$

$$= \frac{x+2}{2} + 6\sqrt{x+2} + 12\ln|\sqrt{x+2} - 2| + C.$$

Пример 4.
$$\int \frac{\sqrt[3]{x+1}}{1+\sqrt{x+1}} dx$$
Решение. Пусть $\sqrt[6]{x+1} = t$. Тогда $\sqrt[3]{x+1} = t^2$, $\sqrt{x+1} = t^3$, $x+1=t^6$, $dx = 6t^5 dt$. Получим:
$$\int \frac{\sqrt{x+1}}{1+\sqrt[3]{x+1}} dx = 6 \int \frac{t^3 \cdot t^5}{1+t^2} dt = 6 \int \frac{t^8}{1+t^2} dt = \frac{t^8}{t^8+t^6}$$

$$\frac{t^2+1}{t^6-t^4+t^2-1}$$

$$\frac{-t^6}{-t^6-t^4}$$

$$\frac{t^4}{t^4+t^2}$$

$$\frac{-t^2}{-t^2-1}$$

В итоге получим:

$$6\int (t^{6} - t^{4} + t^{2} - 1 + \frac{1}{1 + t^{2}})dt =$$

$$= 6\left(\frac{t^{7}}{7} - \frac{t^{5}}{5} + \frac{t^{3}}{3} - t + arctgt\right) + C = \frac{6}{7}(1 + x)^{7/6} - \frac{6}{5}(1 + x)^{5/6} + 2(1 + x)^{1/2} - (1 + x)^{1/6} + arctg(x + 1)^{1/6} + C.$$

Задачи для самостоятельного решения

1.
$$\int \frac{dx}{1+\sqrt{x}}$$
2.
$$\int \frac{\sqrt{x} dx}{\sqrt{x+1}}$$

$$3. \int \frac{dx}{\sqrt{x}(x+3)}$$

4.
$$\int \frac{dx}{\sqrt{x}+3}$$

5.
$$\int \frac{dx}{\sqrt{x} - \sqrt[3]{x}}$$

$$6. \int \frac{\sqrt{x+1}}{2+\sqrt{x+1}} dx$$

$$7. \int \frac{dx}{(5+x)\sqrt{1+x}}$$

8.
$$\int \frac{(1+\sqrt[4]{x})dx}{1+\sqrt{x}}$$

$$9. \quad \int \frac{1}{x} \sqrt{\frac{x-1}{x+1}} \, dx$$

10.
$$\int \frac{\sqrt{x+1}+1}{\sqrt{x+1}-1} \, dx$$

11.
$$\int \frac{\sqrt{x} \, dx}{\sqrt[3]{x} + 1}$$

$$12. \int \frac{1}{x+1} \sqrt{\frac{1-x}{x+1}} \, dx$$

13.
$$\int \frac{\sqrt{x+4}}{x} dx$$

$$14. \int \frac{\sqrt[\infty]{x}}{\sqrt[4]{x^2}+1} dx$$

$$15. \int \frac{1}{x^2} \sqrt{\frac{1-x}{1+x}} dx$$

16.
$$\int \frac{dx}{\sqrt{x} + \sqrt[3]{x}}$$

17.
$$\int \frac{dx}{\sqrt{x} + \sqrt[4]{x}}$$

$$18. \int \frac{\sqrt{x} \, dx}{\sqrt[4]{x^2} - \sqrt{x}}$$

$$19. \int \frac{\sqrt{x}}{3-\sqrt[4]{x}} dx$$

20.
$$\int \frac{dx}{(x-1)^{3}\sqrt{x}}$$
21.
$$\int \frac{dx}{(3-x)\sqrt{1-x^{2}}}$$
22.
$$\int \frac{\sqrt{x+2}dx}{x-3}$$
23.
$$\int \frac{x}{\sqrt{x+1}+\sqrt[3]{x+1}} dx$$
24.
$$\int \sqrt{\frac{5x+1}{x-1}} dx$$
25.
$$\int \frac{dx}{\sqrt[4]{(x+1)^{3}}+\sqrt[3]{(x+1)^{2}}}$$
26.
$$\int \frac{dx}{\sqrt{x}(x+5)}$$
27.
$$\int \frac{\sqrt[3]{x}+\sqrt[4]{x}}{(1+\sqrt[6]{x})x} dx$$
28.
$$\int \frac{(x+\sqrt{x}+\sqrt[3]{x})}{x(1+\sqrt[3]{x})}$$
29.
$$\int \frac{x^{3}dx}{\sqrt{x^{2}+4}}$$
30.
$$\int \frac{\sqrt{x^{2}+4}dx}{x^{2}}$$

8. ИНТЕГРИРОВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Рассмотрим некоторые случаи нахождения интеграла от тригонометрических функций. Функцию с переменными sinx и cosx над которыми выполняются рациональные действия (сложение, вычитание, умножение и деление) принято обозначать R(sinx, cosx) где R - знак рациональной функции.

Вычисление неопределенных интегралов типа $\int R(sinx,cosx)dx$ сводится к вычислению интегралов от рациональной функции подстановкой $tg\frac{x}{2}=t$, которая называет-

ся универсальной.

Действительно,

$$sinx = \frac{2tg\frac{x}{2}}{1+tg^2\frac{x}{2}} = \frac{2t}{1+t^2}, \qquad cosx = \frac{1-tg^2\frac{x}{2}}{1+tg^2\frac{x}{2}} = \frac{1-t^2}{1+t^2},$$

$$x = 2arctgt, dx = \frac{2}{1+t^2}dt$$

Поэтому

$$\int R(\sin x, \cos x) dx = \int \left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2}{1+t^2} dt = \int R_1(t) dt$$

, где $R_1(t)$ рациональная функция от t. Обычно этот способ весьма громоздкий, зато он всегда приводит к результату.

На практике применяют и другие, более простые подстановки, в зависимости от свойств (и вида) подынтегральной функции. В частности, удобны следующие правила:

- 1) если функция R(sinx, cosx) нечетна относительно sinx, то есть R(-sinx, cosx) = -R(sinx, cosx), то подстановка cosx = t рационализирует интеграл;
- 2) если функция R(sinx, cosx) нечетна относительно cosx, то есть R(sinx, -cosx) = -R(sinx, cosx), то делается подстановка sinx = t.
- 3) если функция R(sinx, cosx) четна относительно sinx и cosx, R(-sinx, -cosx) = R(sinx, cosx) то интеграл рационализируется подстановкой

$$tgx = t$$
, $\sin x = \frac{tgx}{\sqrt{1 + tg^2x}} = \frac{t}{\sqrt{1 + t^2}}$, $\cos x = \frac{1}{\sqrt{1 + tg^2x}} = \frac{1}{\sqrt{1 + t^2}}$,

$$x = arctg t$$
, $dx = \frac{dt}{1+t^2}$.

Для нахождения интегралов типа $\int sin^m x \cdot cos^n x dx$ используются следующие приемы:

1) подстановка $sin^{\chi} = t$ если n - целое положительное нечетное число;

- 2) подстановка ${\it COSX} = t$ если m целое положительное нечетное число;
 - 3) формулы понижения порядка:

$$\cos^{2} x = \frac{1}{2} (1 + \cos 2x),$$

$$\sin^{2} x = \frac{1}{2} (1 - \cos 2x),$$

$$\sin x \cos x = \frac{1}{2} \sin 2x,$$

если т и п - целые неотрицательные четные числа;

4) подстановка tgx = t если m+n - есть четное отрицательное целое число.

Интегралы типа $\int sinax \cdot cosbx dx$, $\int cosax \cdot cosbx dx$,

 $\int sinax \cdot sinbxdx$ вычисляются с помощью известных формул тригонометрии:

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta)),$$

$$\cos \alpha \cdot \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta)),$$

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta)).$$

Примеры с решениями

Пример 1. Найти интеграл
$$\int \frac{dx}{3+5\sin x+3\cos x}$$
. Решение. Воспользуемся универсальной подстановкой $tg\frac{x}{2}=t$. Тогда $dx=\frac{2}{1+t^2}dt$, $sinx=\frac{2t}{1+t^2}$, $cosx=\frac{1-t^2}{1+t^2}$

Следовательно,

$$\int \frac{dx}{3+5\sin x + 3\cos x} = \int \frac{\frac{2dt}{1+t^2}}{3+\frac{10t}{1+t^2} + \frac{3-3t^2}{1+t^2}} = \int \frac{\frac{2dt}{1+t^2}}{\frac{3+3t^2+10t+3-3t^2}{1+t^2}} = \int \frac{2dt \cdot (1+t^2)}{(1+t^2) \cdot (10t+6)} = \int \frac{2dt}{2(5t+3)} = \int \frac{dt}{5t+3} = \frac{1}{5} \ln|5t+3| + C.$$

Возвращаясь к переменной интегрирования x, получим

$$\int \frac{dx}{3 + 5\sin x + 3\cos x} = \frac{1}{5} \ln \left| 5tg \frac{x}{2} + 3 \right| + C.$$

Пример 2. Найти интеграл $\int \sin^5 x dx$.

Решение. Так как

$$R(-\sin x;\cos x) = (-\sin x)^5 =$$

$$-\sin^5 x = -R(\sin x; \cos x),$$

то полагаем

 $\cos x = t$

$$\sin^5 x = \sin^4 x \cdot \sin x = \left(\sin^2 x\right)^2 \cdot \sin x = \left(1 - \cos^2 x\right)^2 \sin x,$$

$$dt = -\sin x dx.$$

Тогда sinxdx = -dt.

Данный интеграл примет вид:

$$\int \sin^5 x dx = \int (1 - \cos^2 x)^2 \cdot \sin x dx = \int (1 - t^2)^2 \cdot (-dt) =$$

$$= -\int (1 - 2t^2 + t^4) dt = -\int dt + 2\int t^2 dt - \int t^4 dt =$$

$$= -t + 2 \cdot \frac{t^3}{3} - \frac{t^5}{5} + C = \frac{2}{3}t^3 - t - \frac{t^5}{5} + C.$$

Возвращаясь к данной переменной интегрирования x_i получим:

$$\int \sin^5 x dx = \frac{2}{3} \cos^3 x - \cos x - \frac{\cos^5 x}{5} + C.$$

$$\int \sin^2 x \cdot \cos^3 x dx.$$

Пример 3. Найти интеграл

Решение. Так как

$$R(\sin x; -\cos x) = \sin^2 x (-\cos x)^3 =$$

$$= \sin^2 x (-\cos^3 x) = -\sin^2 x \cos^3 x = -R(\sin x; \cos x),$$

то воспользуемся подстановкой $\sin x = t$, $dt = \cos x dx$.

$$\sin^2 x \cdot \cos^3 x dx = \sin^2 x \cdot \cos^2 x \cdot \cos x dx = \sin^2 x \left(1 - \sin^2 x\right) \cos x dx =$$

$$= t^2 \left(1 - t^2\right) dt = \left(t^2 - t^4\right) dt.$$

Тогда получим интеграл

$$\int \sin^2 x \cos^3 x dx = \int (t^2 - t^4) dt = \int t^2 dt - \int t^4 dt = \frac{t^3}{3} - \frac{t^5}{5} + C.$$

Вернемся к исходной переменной

$$\int \sin^2 x \cos^3 x dx = \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C.$$

Пример **4.** Найти интеграл
$$\int \frac{1}{\cos^6 x} dx$$
.

Решение. Подынтегральная функция

$$\frac{1}{\cos^6 x} = R(\sin x; \cos).$$
R(\sin x, \cosx)

$$R(-\sin x; -\cos x) = \frac{1}{(-\cos x)^6} = \frac{1}{\cos^6 x} = R(\sin x; \cos x).$$

Воспользуемся подстановкой tgx=t тогда

$$\cos^6 x = \left(\frac{1}{\sqrt{1+t^2}}\right)^6 = \frac{1}{\left(1+t^2\right)^3},$$
 $\frac{1}{\cos^6 x} = \left(1+t^2\right)^3, \quad dx = \frac{dt}{1+t^2}.$
Получим интеграл

$$\int \frac{1}{\cos^6 x} = \int (1+t^2)^3 \cdot \frac{dt}{1+t^2} =$$

$$\int (1+t^2)^2 dt = \int (1+2t^2+t^4) dt =$$

$$= \int dt + 2 \int t^2 dt + \int t^4 dt = t + \frac{2}{3}t^3 + \frac{t^5}{5} + C.$$

Переходя к данной переменной интегрирования x, получим

$$\int \frac{1}{\cos^6 x} dx = tgx + \frac{2}{3}tg^3x + \frac{tg^5x}{5} + C.$$

 $\int \sin 4x \cos 7x dx.$

Пример 5. Найти интеграл **У Решение.** Применяя формулу

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta)),$$

получим

$$\int \sin 4x \cos 7x dx =$$

$$= \int \frac{1}{2} (\sin(4x - 7x) + \sin(4x + 7x)) dx = \frac{1}{2} \int (\sin(-3x) + \sin 11x) dx =$$

$$= \frac{1}{2} \int \sin(-3x) dx + \frac{1}{2} \int \sin 11x dx = -\frac{1}{2} \int \sin 3x \cdot \frac{1}{3} d(3x) +$$

$$+ \frac{1}{2} \int \sin 11x \cdot \frac{1}{11} d(11x) = -\frac{1}{6} \int \sin 3x d3x + \frac{1}{22} \int \sin 11x d(11x) =$$

$$= \frac{1}{6} \cos 3x - \frac{1}{22} \cos 11x + C.$$

Задачи для самостоятельного решения

- 1. $\int \sin^2 3x dx$.
- 2. $\int \cos^4 x dx$.
- 3. $\int \sin^3 x dx$.
- 4. $\int \sin^3 x \cos^5 x dx$.
- $5. \int \sin^2 x \cdot \cos^2 x dx.$
- 6. $\int \sin^3 x \cdot \cos^2 x dx$.
- $7. \int \frac{\cos^3 x}{\sin^4 x} dx.$
- 8. $\int tg^3 x dx$.
- 9. $\int \frac{1}{\cos^8 x} dx.$
- 10. $\int \sin x \cdot \sin 3x dx$.
- 11. $\int \cos 4x \cdot \cos 7x dx$.
- $12. \int \sin \frac{x}{4} \cos \frac{3x}{4} dx.$

$$13. \int \frac{dx}{4 - 5\sin x}.$$

$$14. \int \frac{dx}{5 - 3\cos x}.$$

$$15. \int \frac{dx}{\left(1+\cos x\right)^2}.$$

$$16. \int \frac{\sin 2x}{1+\cos^2 x} dx$$

17.
$$\int ctg^3 3xdx$$

18.
$$\int ctg^5 x dx$$

$$19. \int \frac{\sin^4 3x}{\cos^6 3x} dx$$

20.
$$\int \sin 3x \sin 6x dx$$

21.
$$\int tg^5 2x dx$$

$$22. \int \frac{\sin^4 2x}{\cos^6 2x} dx$$

23.
$$\int \cos^3 x \cdot \sin 2x dx$$

$$24. \int \frac{\sin^2 x}{\cos^4 x} dx$$

$$25. \int \cos 2x \sin 7x dx$$

$$26. \int \cos 2x \cos 3x dx$$

$$27. \int \frac{dx}{1+\sin x}$$

$$28. \int \frac{dx}{\sin x + \cos x}$$

$$29. \int \frac{dx}{3\sin x + 4\cos x}$$

$$30. \int \frac{dx}{3 + 5\cos x}$$