

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

Кафедра «Проектирование и технический сервис транспортно-технологических систем»

Практикум

к задачам № 3,4 «Разработка математических моделей процесса дождевания» по дисциплине

«Теория, конструкция и расчёт машин для возделывания сельскохозяйственных машин»

Авторы Игнатенко И. В.

Ростов-на-Дону, 2019

Аннотация

представляет учебный Практикум материал, необходимый студентам для получения компетенций Приведены задачи разработки «Уметь». математических моделей и тестовые примеры для компьютерного моделирования расчётов конструктивно-технологических параметров в среде «EXCEL» и Simulink MatLab. Дан список необходимой литературы.

Практикум рекомендуется в качестве учебного материала для магистрантов дневного и заочного отделений направления 23.04.02 «Наземные транспортно-технологические комплексы» по программе: «Сельскохозяйственные машины и оборудование».

Авторы

д.т.н., доцент, профессор кафедры «Проектирование и технический сервис транспортно-технологических систем» Игнатенко И.В.

Оглавление

Задача	ı №3				4
Залача		есса орошения до			
	Построение	математической ь	модели	притяжения	двух

ЗАДАЧА №3

Модели процесса орошения дождеванием

Орошение необходимо для обеспечения высоких и устойчивых урожаев сельскохозяйственных культур. Распространённым способом орошения является дождевание - распыление воды в виде дождя над орошаемой площадью при помощи особых аппаратов. Тем самым дождевание следует отнести к физическому моделированию дождя натурального.

Искусственный дождь должен иметь модельные показатели, удовлетворяющие агротехническим требованиям. К ним относятся:

- -слой осадков,
- интенсивность дождя,
- -равномерность распределения осадков,
- -силовое воздействие капель на почву и культуры, характеризуемое диаметром и скоростью падения капель,
 - отсутствие лужеобразования.

<u>Слой осадков</u> измеряют в мм и указывают его среднее значение \check{u}_e , усредненяя по площади

$$h = W/F, (1)$$

где W — объем воды, выпавшей на площадь F.

<u>Средняя интенсивность дождя</u> p_c представляет приращение слоя осадков в единицу времени:

$$\rho_c = h_c/t$$
 (2)

где t — время, за которое выпали осадки слоем h_c .

<u>Действительная или истинная интенсивность</u> характеризуется приращением слоя осадков в данной точке f в данный момент времени:

$$\rho = dh_f/dt$$
 (3)

<u>Равномерность распределения дождя</u> по площади полива оценивают обычно на основе экспериментальных данных по распределению усредненной интенсивности по площади. Оценивают равномерность распределения по значению средней интенсивности и коэффициенту эффективного полива. Коэффициент эффективного полива представляет собой отношение площади, эффективно политой (правильно), ко всей площади:

$$k_{\mathfrak{s}\Phi} \cdot \mathbf{n} = F_{\mathfrak{s}\Phi} \cdot \mathbf{n}/F. \tag{4}$$

<u>Крупность капель</u> рассматривается как оценка дисперсности струи. Крупность определяется объёмом капли, но на практике

Теория, конструкция и расчёт машин для возделывания сельскохозяйственных машин

средний объем капель искусственного дождя ведут по среднеобъемному диаметру капель:

$$d_{\rm c} = \sqrt[3]{\sum i d_{\kappa i}^3 / \sum i}, \tag{5}$$

где i—число капель данного диаметра d_{i} .

Для почвы и растений более благоприятными являются капли малого размера.

Характеристика дождя по его крупности сама по себе еще не определяет воздействие капель дождя на почву и растения. Имеет значение их динамическое воздействие, или сила удара. При моделировании динамического воздействия капель искусственного дождя надо учитывать в качестве факторов размер капли и скорость ее движения. Результат моделирования — сила удара капли о растение S. Её можно получить из уравнения количества движения

$$St = m(v - v_{\kappa}), \tag{6}$$

где t — время, которое длится удар; m — масса капли; ν — скорость капли в начале удара (скорость падения); $V_{\it K}$ — скорость капли в конце удара; $V_{\it K}$ = 0.

Как показали эксперименты, удар капли о почву близок к упругому. В этом случае время удара

$$t = k \frac{2d_k}{v_3} \tag{7}$$

где k — коэффициент пропорциональности, характеризующий степень деформации капли; V_3 — скорость распространения звука в воде.

Тогда сила удара

$$S = k' \rho_1 (\pi v_3/6) v d_K^2, \tag{8}$$

где ρ_1 — плотность воды; k' — коэффициент, зависящий от типа почвы.

В этой ММ присутствует много факторов. Их разделяют на неизменяемые и режимные, которыми можно управлять. Вводя показатель неизменяемых факторов N

$$N = \rho_1 \pi v^3 / 6$$
 (9)

MM силы удара можно представить в более компактном виде:

$$S = k' N v d_v^3 \tag{10}$$

Значения силы удара S различны для различных почв. Свойства почвы ММ учитывает коэффициентом κ' , который очень

Теория, конструкция и расчёт машин для возделывания сельскохозяйственных машин

разнится. Чтобы избежать связанных с этим неудобств, применяют усечённую ММ, называемую критериальной величиной силы удара S_{κ} . Она характеризует долю силы удара независимо от почвенных условий:

$$S_K = Nvd_k^3 \tag{11}$$

Так, если для полагать благоприятным естественный дождь с параметрами $d_K=2.5$ мм ; $\nu=7.3$ м/с, то критериальное значение для искусственного дождя будет $S_K=35.6$ гс .

Режим орошения при дождевании определяется условием предотвращения образования луж и стоков на поверхности почвы. Это условие выполняется, если средняя за время полива скорость впитывания воды почвой равна или больше средней интенсивности дождя.

Связь между интенсивностью дождя и продолжительностью полива до образования луж выражается гиперболической зависимостью, называемой кривой впитывания:

$$t_6 = A_6/\rho_c^n, \tag{12}$$

где t_6 — время дождевания с данной интенсивностью p_c до образования луж; A_6 — коэффициент, характеризующий впитывающую способность почв, называемый постоянной впитывания; n — показатель зависящий от типа почвы.

Обработкой экспериментальных данных получена зависимость для коэффициента A_{δ} в функции критерия силы удара S_{κ} :

$$A_6 = 2.9 A_{61,8} / \sqrt{S_{\kappa}}, \tag{13}$$

где $A_{61,5}$ — постоянная впитывания различных почв, характеризуемых величиной n_r при воздействии на них свободнопадающих капель диаметром $d_K = 1,5$ мм.

Значения A_{61i5} для различных почв (от самых легких, характеризуемых n=1,25 до самых тяжелых с n=3,0) приведится в справочниках.

Если учесть, что произведение р J_6 есть норма полива, т. е. количество воды, вылитой на 1 га данного участка, то допустимая норма полива при дождевании с данной интенсивностью

$$m_{\rm A} = A_6/\rho_{\rm c}^{n-1}$$
. (14)

Используя зависимость (9.4), можно решить обратную задачувыб рать допустимую интенсивность дождя по данной норме полива, т. е. подобрать требуемый тип машины Модельными показателями струй при дождевании является расход воды и дальность полета струи.

Расход воды через насадку

$$Q_{\rm H} = f\mu \sqrt{2gH}, \tag{15}$$

где f — площадь отверстия; p — коэффициент расхода, определяемый формой сопла; g — ускорение свободного падения; H — напор.

Дальность полёта струи моделируется движением частицы (капель), брошенной под углом к горизонту, изучавшейся в механике. Теоретическая дальность полета тела $R_{\mathcal{T}}$, брошенного с начальной скоростью $V_{\mathcal{O}}$ под углом 0_{0} к горизонту определяется формулой

$$R_{\mathrm{T}} = v_0^2 \sin \cdot 2\theta_0 / g. \tag{16}$$

С учетом скоростного напора в сжатом сечении струи $H=V_{o}^{2}/2g$ дальность связана с напором:

$$R_{\rm T} = 2H \sin 2\theta_{\rm 0}. \tag{17}$$

Однако в действительности дальность полета крайних капель струй имеет меньшее значение из-за сопротивления воздуха.

Зависимость для расчета действительной дальности полета струи получена на основе экспериментов. Эта зависимость имеет вид

$$R = 2H \sin 2\theta_0 [1 - 4\lambda (H/D) \sin \theta_0],$$
(18)

где D — диаметр струи в сжатом сечении; λ — экспериментальный коэффициент, учитывающий сопротивление воздуха. Значения коэффициента λ установлены на основе экспериментов и представлены в справочниках.

MM траектории максимально удаленных капель в безразмерной форме имеет вид

$$\xi = \psi \operatorname{tg} \theta_0 - \psi^2 \operatorname{tg} \theta_0 / (k_R - r\psi), \tag{19}$$

где $\xi = y/D$ — относительная ордината траектории струи; $\psi = x/D$ — относительная абсцисса траектории; $k_R = R/D$ — относительная теоретическая дальность полета струи; $r = (R_r - R)/R$ — относительная потеря дальности полета струи.

В соответствии с уравнением траектории максимальная высота подъема струи:

$$\xi_{\text{max}} = k_R \operatorname{tg} \theta_0 \frac{\sqrt{1+r}-1}{r \sqrt{1+r}} \left(1 - \frac{\sqrt{1+r}-1}{r}\right)$$
(20)

и скорость падения максимально удаленных капель:

$$v_{\rm K} = v_0 \frac{(1 - \lambda k_R) \left[(1 - \lambda k_R)^2 + t g^2 \theta_0 \right]}{1 + t g^2 \theta_0}$$
.

(21)

На основе приведенных данных можно построить экспериментальные модели. Средний диаметр капель, образующихся при распаде струи в ее начале, середине и в конце, можно определить по экспериментальной формуле

$$d_{\kappa} = [DA/(10^{-5} \text{Re})^n] + BD$$
,

(22)

где Re — число Рейнольдса; Re = $o_0 D/v$ (здесь v — кинематический коэффициент вязкости воды; A, B и n — экспериментальные коэффициенты и показатель степени.

Для начального участка струи A=0.15, B=0, n=0.73; для середины — A=0.3, B=0, n=0.88; для конечного участка A=0.47, B=0.007, n=1.

Учитывая значения коэффициентов, получим выражение для среднего диаметра капель в конце струи в виде

$$d_{\kappa, \phi} = (47\ 000/v_0) \, v + 0.007D. \tag{23}$$

Приведенные ММ процесса дождевания позволяют рассчитать основные параметры дождевальных машин, исходя из условия обеспечения заданных агротехнических требований.

ЗАДАЧА №4

Построение математической модели притяжения двух шаровидных капель

При орошении дождеванием струи воды дробятся на капли и должны разлетаться на возможно большую площадь. Этому мешает взаимное притяжение водяных капелек. Закон всемирного тяготения (ЗВТ) определяет силу притяжения двух точечных масс формулой Ньютона

$$F = \gamma \frac{m_1 \times m_2}{L^2} \tag{1}$$

где ү- постоянная; $m_1, \, m_2$ — точечные массы; L — расстояние между массами.

Однако реальные тела имеют размеры и точечными не являются, что ЗВТ не учитывает. Особенно этот недостаток

проявляется при изучении разлёта струй воды, и при расчётах орбит планет, представляют не точки, а тела конечных размеров.

Построим математическую модель силы притяжения двух шаров на основе ЗВТ.

Вначале определим степень точности ЗВТ, когда точечная масса притягивается к шару.

Модель взаимодействия частицы с шаром. Рассмотрим схему взаимодействия точечной массы m_1 расположенной в точке A, и шара радиусом R (рис. 1).

Выделим текущую точку в шаре с координатами L, r и φ . В окрестности текущей точки выделим элементарную массу dm , задав приращения этим координатам dL, dr, $d\varphi$.

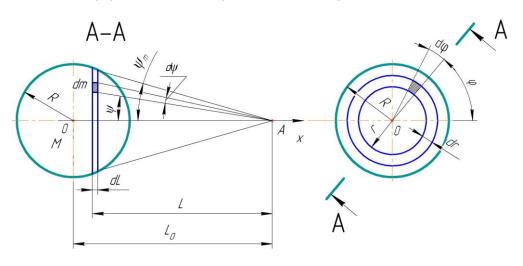


Рис. 1. Расчётная схема взаимодействия точечной массы m_1 и шара радиусом R

Получаем элемент с размерами $d\ell$, dr, $d\ell$, rде ℓ - dлина дуги, связанная соотношением c координатами ϕ и r

l=rφ

(3)

(2)

Объём элемента dV выражается через его размеры dL, dr, $d\ell$:

dV=dL*dr*dℓ

Элементарная масса будет с учётом соотношения (1) выражаться через приращения координат

 $dm = \rho dV = \rho \ r \ dL dr d\phi$ (4)

где ρ – плотность материала шара.

Элементарная сила тяготения между элементарной и точечной массой согласно закону всемирного тяготения (ЗВТ) Ньютона будет:

$$dF = \gamma \frac{dm \times m_1}{L_1^2} = \gamma \rho \frac{dL dr dl}{L_1^2} m_1 \tag{5}$$

где L₁ - расстояние между точечной и элементарной массой

$$L_{1} = \sqrt{L^{2} + r^{2}} \tag{6}$$

Сила составляет угол ψ с осью X, проходящей через центры масс. Горизонтальная составляющая элементарной силы тяготения по оси X будет:

$$dF_{x} = dF\cos\psi = \gamma\rho \frac{dLdrdl}{L^{2} + r^{2}}\cos\psi \tag{7}$$

где

$$\cos \psi = \frac{L}{\sqrt{L^2 + r^2}} \tag{8}$$

Полная сила притяжения точечной массы m ко всему шару выразится кратным интегралом по объёму шара, означающем интегрирование по трём переменным L, r, ϕ в нужных диапазонах их изменений

$$F_{x} = \iiint_{V} dF_{x} = \iiint \gamma \rho \frac{Lr}{(\sqrt{L^{2} + r^{2}})^{3}} dL dr d\varphi$$
 (9)

С учётом пределов модель задачи сводится к трём определённым интегралам вида:

$$F_{x} = \int_{L_{\min}}^{L_{\max}} dL \int_{0}^{R} dr \int_{0}^{2\pi} \gamma \rho \frac{Lr}{(\sqrt{L^{2} + r^{2}})^{3}} d\varphi$$
 (10)

Интегрирование проводится поочерёдно, начиная с третьего. Проводя преобразования с применением табличных интегралов получим выражение

$$F_{\text{IIIx}} = 2\pi \gamma m_1 \rho \left[\frac{R^3 + R^3}{3 * L_0^2} \right] = \pi \gamma m_1 \rho \frac{4R^3}{3 * L_0^2}$$
 (11)

Здесь оказывается $\frac{4}{3}\pi R^3$ - объём шара, а $\rho \frac{4}{3}\pi R^3 = M$ - масса

шара. Тогда сила притяжения точечной массы и шара оказывается точно соответствует ЗВТ Ньютона!

$$F_{\text{IIIx}} = \gamma \frac{m_1 M}{L_0^2} \tag{12}$$

Как будто масса шара тоже точечная!

Таким образом, сила притяжения точечной массы к шару подчиняется классической формуле Ньютона. Учтём это обстоятельство при решении задачи притяжения двух шаров.

Задача притяжения двух шаров. Расчётную схему получаем из рис. 1, размещая на месте точечной массы второй шар массой M_2 . (рис. 2). Чтобы упростить выкладки, элементарные массы второго шара размещаем на сферических дисках (рис. 3), рассекающих шар. Элементарные сферические диски пересекаться не будут .

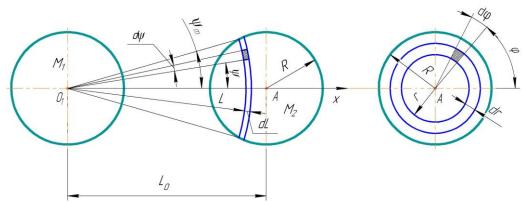


Рис 2. Расчётная схема притяжения шаров

Объём элемента dV снова выражается через его размеры dL, dr, $d\ell$:

$$dV=dL*dr*d\ell$$
 (13)
Но для сферических координат

 $dr = Ld\psi$ и $\ell = r\phi$. (14) Тогда объём элемента может выражаться через координаты dL, $d\psi$, $d\phi$

Элементарная масса будет $dm = pdV = p \ LdLd\psi rd\phi$ (16) где ρ – плотность материала шара.

Силу притяжения этой элементарной массы Элементарная сила тяготения между элементарной и точечной массой согласно закону всемирного тяготения (ЗВТ) Ньютона будет:

$$\textit{dF=} \gamma \frac{dm \times m_1}{L^2} = \textit{YPL} \, \frac{dL d\psi dl}{L^2} \, m_1$$

(17)

Сила составляет угол ψ с осью X, проходящей через центры масс. Горизонтальная составляющая элементарной силы тяготения по оси X будет:

$$dF_{x} = dF\cos\psi = \gamma\rho \frac{dLd\psi dl}{L}\cos\psi$$

(18)

Полная сила притяжения точечной массы m ко всему шару выразится кратным интегралом по объёму, что означает интегрирование по трём переменным L, ψ , ϕ

$$F_{x} = \iiint_{V} dF_{x} = \iiint_{L,\psi,\varphi} \gamma \rho \frac{\cos \psi}{L} r dL d\psi d\varphi$$
(19)

С учётом пределов модель задачи сводится к трём определённым интегралам вида:

$$F_{x} = \int_{L_{\min}}^{L_{kax}} dL \int_{-\psi_{m}}^{\psi_{m}} d\psi \int_{0}^{2\pi} \gamma \rho \frac{r}{L} \cos\psi d\varphi$$

(20)

Пределы интегрирования по L : $L_{max}=L_0+R$, $L_{min}=L_0-R$.

Предел интегрирования ψ_m получаем из треугольника ООА по теореме косинусов

$$R^2 = L^2 + L_0^2 - 2LL_0 \cos \psi_m \tag{21}$$

Откуда

$$\cos \psi_m = (L^2 + L_0^2 - R^2)/2LL_0$$
. (22)

Выражение для угла ψ_m текущего сферического диска в шаре:

$$\psi_m = \arccos(L). \tag{23}$$

$$L^2 + L^2 - R^2$$

где
$$\xi(L) = \frac{L_0^2 + L^2 - R^2}{2LL_0}$$
. (24)

Интегрирование проводим поочерёдно, начиная с третьего.

По таблицам интегралов получим выражение для силы

притяжения через определённый интеграл по dL функций от ψ в виде:

$$F_{\text{IIIx}} = \int_{L_{\text{min}}}^{L_{\text{max}}} 2\pi \gamma m_1 \rho [\cos \psi_m - 1 + \psi_m \sin \psi_m] dL$$

(25)

Здесь ψ_m — угловая величина, трудная для точных замеров. Заменяя ψ_m его выражением через $\xi(L)$, получим выражение для силы притяжения через определённый интеграл по dL от функции $\xi(L)$, не требующей измерения малых углов :

$$F_{\text{IIIx}} = 2\pi \gamma m_1 \rho \int_{L_0 - R}^{L_0 + R} [\xi(L) - 1 + \arccos \xi(L) \sin \arccos \xi(L)] dL$$
(26)

Формула сильно отличается от ЗВТ наличием тригонометрических функций и инвариантностью. Полученный интеграл $L_0\mathit{fR}$

$$_2\int\limits_{L_0R}^\infty \arccos \xi(L)\sin rccos \xi(L)dL$$
 не табличный и относится к

классу не берущихся в известных человечеству элементарных функциях. Интеграл можно вычислять только численным интегрированием.

Применим метод численного интегрирования для определения силы притяжения по формуле (22).

ЗАДАЧА. Оценить относительную погрешность ЗВТ, образовав соотношение

$$\Delta = [$$
сила притяжения по выражению (22) $] / [$ сила притяжения по 3BT (1) $]$ (27)

Для случая притяжения двух шаровидных капель равной массы и радиусов, расположенных на расстоянии десяти радиусов. Результаты сводим в таблицу:

Ī	Νō	Относительное	Сила при-	Сила при-	Погрешность
	точки	расстояние	тяжения	тяжения	Δ
		L/R	точек по	шаров по	
			3BT	3BT	
Γ	1	100			

Теория, конструкция и расчёт машин для возделывания сельскохозяйственных машин

2	20	
3	10	
4	9	
5	8	
6	7	
7	6	
8	5	
9	4	
10	3	
11	2,5	
12	2	бесконечна

Выбрать метод численного интегрирования (см. интернет) и построить график зависимости добавки к ЗВТ от соотношения радиуса и расстояния между шарами.

Построить график зависимости $\Delta = f(L/R)$,

где L – расстояние между центрами шаров (расстояние измеряем в долях R).

Сделать вывод, при каких расстояниях поправкой к ЗЛТ можно пренебрегать, и интенсивность роста затем.

Теория, конструкция и расчёт машин для возделывания сельскохозяйственных машин

ЛИТЕРАТУРА

- 1. Игнатенко И.В. Математическое моделирование сельско-хозяйственных процессов / И.В.Игнатенко. Ростов н/Д: Издательский центр ДГТУ, 2016. 213 с.
- 2. Ермольев Ю.И. Теория, конструкция и расчет машин для возделывания сельскохозяйственных культур: Метод, указания. Ростов н/Д; Издательский центр ДГГУ, 2002. 22c
- 3. Долгов И.А. Расчёт рабочих органов уборочных машин: Учеб. пособие. Ростов н/Д: Издательский центр ДГТУ, 2003. 123 с.
- 4. Дьяконов В. Simulink4: Специальный справочник.-СПб: Питер, 2002.-528 с.
- 5. Игнатенко И.В., Ермольев Ю.И. Машины для возделывания сельскохозяйственных культур. Ростов н/Д: Издательский центр ДГТУ, 2008.-374 с.