

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

Кафедра «Проектирование и технический сервис транспортно-технологических систем»

Сборник задач

к лабораторным работам № 14-15 «Настройка высевающих аппаратов сеялок» по дисциплине

«Машины и оборудование для возделывания с\х культур»

Авторы Игнатенко И. В.

Аннотация

Сборник задач предназначен для студентов очной, заочной форм обучения направления 23.05.01 «Наземные транспортно-технологические средства».

Авторы

д.т.н., доцент, профессор кафедры «Проектирование и технический сервис транспортно-технологических систем» Игнатенко И.В.

Оглавление

Лабораторная работа № 14	4
«Настройка привода высевающего аппарата зер сеялки СЗ-3,6»	•
Лабораторная работа № 15	
«Настройка нормы высева зернотуковой сеялки	C3-3,6» 11

ЛАБОРАТОРНАЯ РАБОТА № 14

«Настройка привода высевающего аппарата зернотуковой сеялки C3-3,6»

ЦЕЛЬ РАБОТЫ: обучить студентов навыкам настройки привода катушечного высевающего аппарата зерновой сеялки.

1. Задание. Найти передаточное отношение коробки скоростей сеялки СЗ-3,6, обеспечивающей норму высева 400 кг/га при скорости движения 7,2 км/ч.

2. Содержание работы.

- Определить требуемое передаточное отношение $i_{3 a g}$...
- Выбрать ближайшее реальное передаточное отношение и числа зубьев сменных колёс редуктора.
- Установить сменные колёса привода высевающего аппарата.
- Определить число оборотов катушки высевающего аппарата расчётное.

Определить число оборотов катушки высевающего аппарата фактическое на сеялке.

- Оценить точность проведённой настройки.

3. Основное уравнение катушечного высевающего аппарата со сдвигаемой катушкой.

На зерновых сеялках широко применяется катушечный аппарат со сдвигаемой катушкой (рис. 1).

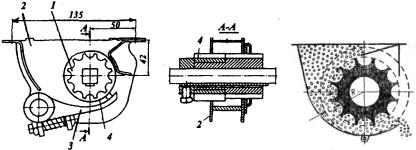


Рисунок 1. Высевающий аппарат со сдвигаемой катушкой: 1 -желобчатая катушка; 2 - улиткообразная коробка; 3 — откидное днище; 4 - муфта перекрытия высевного окна

Основное уравнение аппарата описывает баланс требуемого и фактического количества зерна, высеваемого катушкой за один оборот.

За час работы высевающие аппараты должны высеять массу ${\sf M}$

$$M=10^{-1}Q_{H}BV \text{ Kr,} \tag{1}$$

где $Q_{\!H}$ — нормы высева (кг/га), V - скорость сеялки (км/час),

В - ширина захвата сеялки, м.

При рядковом посеве ширина захвата образуется N рядками с междурядьями а (см); тогда B = N a

$$M = 10^{-3} \,\mathrm{Q_H} \,N \,a \,\mathrm{V} \,.$$
 (2)

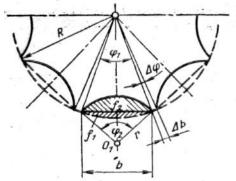
Высеваемая масса в минуту

$$M_1 = 10^{-3} \,\mathrm{QH} \,\,\mathrm{N} \,\,a \,\,\mathrm{V} \,\,/60.$$
 (3)

За минуту катушка сделает n оборотов; требуемая масса за один оборот катушки должна быть:

$$M_{O1} = 10^{-3} \,\mathrm{Q_H} \,\, N \, a \, V \, /60 \, n$$
 (4)

Катушка получает вращение от ходового колеса, которое за ту же минуту сделает n_{κ} оборотов, причём сеялка пройдёт тот же путь


$$n_{\kappa} = V / 60 \pi D \tag{5}$$

С учётом передаточного отношения приводного механизма $i=n/n_k$ (6)

требуемая масса за один оборот катушки будет выражена через параметры колеса сеялки и передаточное отношение привода

$$M_{O1} = 10^{-3} O_H N \, \Pi D / i$$
 (7)

Эту требуемую массу катушка должна выбрасывать своим фактическим рабочим объемом за один оборот. Фактический рабочий объем V_{\circ} складывается из объема V_{\ast} семян, запавших в желобки, и объема V_{σ} семян, в активном слое (рис. 2).

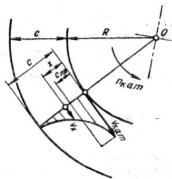


Рисунок 2. Топология рабочего объёма катушки: а – желобки; б – активный слой

Объёмы катушки:

$$V_{\mathcal{H}} = F_{\mathcal{H}} \ L_{\mathcal{K}_{i}}$$

$$V_{\partial} = F_{\partial} \ L_{\mathcal{K}_{i}}$$

$$\tag{8}$$

где $F_{**} = f_{**} Z$; f_{**} — площадь поперечного сечения желобка катушки; Z— число желобков на катушке; $F_{a} = \pi (d + c_{np}) c_{np}$ — площадь активного слоя; C_{np} — приведенная толщина активного слоя; C_{np} — длина катушки; .

С учётом этих соотношений фактический объём катушки через параметры будет:

$$V_o = V_{xx} + V_a = [F_{xx} + \Pi(d + c_{\Pi p})c_{\Pi p}] L_{xx}$$
 (10)

Из-за трудности определения c_{np} пользуются понятием приведённой площади активного слоя F_a ; по опытным данным $F_a \approx 0.7 \, F_{**}$. Тогда формула для фактического объёма упростится:

$$V_0 = 1.7 f_{xx} z L_{xx}$$
 (11)

Масса семян, высеваемая катушкой фактически будет:

$$M_{\mathcal{O}\phi} = 1,7 f_{\mathcal{K}} z L_{\mathcal{K}} \rho.$$
 (12)

где ρ - объемная масса (г/см³) семян.

Приравнивая фактический объём требуемому, получаем основное соотношение катушечного аппарата:

$$\frac{Q_n a \pi D}{1000i} = 1.7 \, \rho f_{\mathbf{x}} z L_k \tag{13}$$

Катушки применяют стандартные для возможности их замены после износа. Форма желобков представляет два круговых сегмента. Их площади следует заранее подсчитать.

Измеряем размеры катушки: число желобков z, диаметр d ; ширину перемычек между желобками Δb (технологически Δb =1...1,5 мм.

Определяем ширину желобков по формуле:

$$b=d \sin(2\pi/Z)-\Delta b = \dots$$
 (14)

Определяем угловые величины ϕ_1 , ϕ_2

$$\varphi_1 = 2\arcsin(b/d) = \tag{15}$$

$$\varphi_2 = 2\arcsin(b/2r) = .. \tag{16}$$

Площади круговых сегментов,

$$f_1 = \frac{R^2}{2} \left(\frac{\pi}{180^\circ} \varphi_1 - \sin \varphi_1 \right) \tag{17}$$

$$f_2 = \frac{r^2}{2} \left(\frac{\pi}{180^{\circ}} \varphi_2 - \sin \varphi_2 \right)$$
 (17)

Площадь желобка будет $f_{**} = f_1 + f_2$.

У стандартной катушки диаметр 51 мм, число желобков z =12, площадь желобка $f_*=0.475$ см 2 .

4. Методика определения передаточного отношения редуктора сеялки

4.1. Расчёт требуемого передаточного отношения

Для настройки на заданную норму высева в широких пределах в зерновых сеялках совмещают грубую настройку ступенями (как переключение диапазонов) с плавной точной настройкой.

Плавная настройка осуществляется передвижением катушек вдоль вала рычажным механизмом, изменяя её рабочую длину L (полная длина катушки L=40 мм).

Грубая настройка ступенями осуществляется перестановкой сменных зубчатых колёс в коробке скоростей сеялки, что изменяет её передаточное отношение i.

Таким образом, при настройке высевающего аппарата на заданную норму высева надо определять два неизвестных: передаточное отношение *i* грубо и затем рабочую длину катушки L_k.

Вначале подбираем передаточное отношение.

Исходим из уравнения баланса катушечного аппарата (13)

$$Q_{H}a \ \Pi D/1000 \ i \ \rho = 1,7 f_{\mathcal{H}} \ Z \ L_{\mathcal{K}}$$
 (18)

где Q_H - нормы высева (кг/га)

а - ширины междурядья (см)

D – диаметр приводного колеса (м);

 ρ - объемная масса семян; ρ =0,8 г/см³

 f_{w} – площадь поперечного сечения желобка катушки;

z – число желобков на катушке;

 L_{κ} – длина катушки;

Вначале задаёмся, что катушка имеет рабочую длину половинную от возможной, т.е. $L_{\mbox{\tiny K}}=20\mbox{ мм=}2\mbox{ см}.$

Тогда из уравнения (18) получим $i_{3ад}$

$$i_{3a\partial} = \frac{Q_{H} a \pi D}{1700 \rho f_{3c} z L_{k}}$$
(19)

Найденное значение $i_{3a\!\mathcal{A}}$ следует сопоставить со значениями реальных значений i_p из РЭ сеялки, которые может реализовать набор сменных шестерён. Принять ближайшее к $i_{3a\!\mathcal{A}}$ значение i_p .

4.2. Установка сменных зубчатых колёс редуктора Выбранное значение i_p устанавливаем заменой зубчатых

колёс коробки скоростей, руководствуясь её кинематической схемой.

На рис. 3 представлена кинематическая схема зубчатоцепной передачи зернотуковой универсальной сеялки СЗ-3,6. Вращение механизм получает от звездочки z_1 . на пневматических опорно-приводных колесах. Втулочно-роликовой цепью вращение передается на звездочки z2, закрепленные на внешних концах валов контрпривода из трех валов — двух боковых и одного среднего, соединенных между собой при помощи обгонных муфт. На среднем валу контрпривода установлена разобщитель и звездочка z₃, которая цепью передает вращение на распределительную звездочку z4. Последняя через шестерни редуктора A, Б, В, Г и звёздочки z₃ z₆ вращает вал 2 зерновысевающих аппаратов. В передаче движения на туковысевающие аппараты участвуют шестерни Д, E, \mathcal{K} , Γ и звездочек z_7 и z_8 (звездочка z_7 установлена на валу 3 туковысевающих аппаратов). Передаточное число механизма сеялок подбирают с учетом минимальной и максимальной норм высева сменными шестернями А, Б, В, Г, Д, Е, Ж, З.

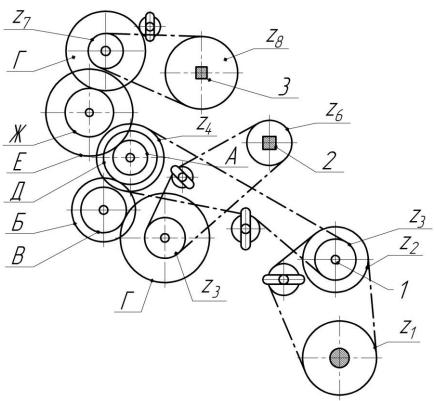


Рис. 3. Схема привода зерновой сеялки СЗ-3,6: вид слева.

5. Определение фактического передаточного отношения редуктора по числу зубьев

Подсчитать числа зубьев на зубчатках привода

$$z_1 = ; z_2 = ; z_3 = ; z_4 = ; z_5 = ; z_6 = .$$

Число зубьев сменных шестерён из паспорта сеялки:

$$z_{A}=$$
 ; $z_{B}=$; $z_{\Gamma}=$

После установки сменных колёс следует определить фактическое передаточное отношение i_{ϕ} привода высевающего аппарата от ходовых колёс по формуле

$$i_{\phi} = \frac{z_1 \cdot z_3 \cdot z_A \cdot z_B \cdot z_5}{z_2 \cdot z_4 \cdot z_F \cdot z_\Gamma \cdot z_6} \tag{20}$$

Здесь z_A , z_5 , z_8 . z_Γ – сменные зубчатые колёса.

Найти точность установки заданного передаточного отношения

$$\Delta i = (i_{3aA} - i_{\phi p})/i_{3aA} \tag{21}$$

6. Расчёт числа оборотов

Рассчитать число оборотов ходового колеса за одну минуту по формуле:

$$n_{K} = \frac{V_{\text{тр}} 1000h}{60\pi D}$$
 (об/мин), (22)

где V - скорость трактора, V = 10 км/ч;

h - коэффициент проскальзывания колес, который можно принять 1;

D - диаметр ходового колеса, м ; D=1,02 м.

Определить число оборотов вала высевающего аппарата по формуле:

$$n_B = n_K i \tag{23}$$

7. Экспериментальное определение передаточного отношения

Поворачиваем колесо сеялки на 10 оборотов вручную и считает количество оборотов катушки.

Фактическое передаточное отношение

$$i_{\phi} = \mathsf{n}_{\scriptscriptstyle B}/10 \tag{24}$$

Определяем точность грубой настройки

$$\Delta i = (i_{3aA} - i_{\phi})/i_{3aA} \qquad *100\% \qquad (25)$$

8. Содержание отчета:

- 1. Кинематическая схема редуктора привода.
- 2. Расчёт заданного передаточного отношения.
- 3. Определение числа зубьев сменных колёс.
- 4. Определение расчётного числа оборотов $n_{\!\scriptscriptstyle B}$.
- 5. Экспериментальное определение передаточного отношения привода i_{ϕ} .
- 6. Оценка точности настройки передаточного отношения привода Δi %.
 - 7. Вывод.

ЛАБОРАТОРНАЯ РАБОТА № 15

«Настройка нормы высева зернотуковой сеялки СЗ-3,6»

ЦЕЛЬ РАБОТЫ: получение навыков настройки дозирующего катушечного аппарата зерновой сеялки.

1. Задание. Найти длину рабочей части катушки высевающего аппарата сеялки СЗ-3,6, обеспечивающей норму высева 400 кг/га при скорости движения 7,2 км/ч.

2. Содержание работы.

- Определить требуемую длину рабочей части катушки высевающего аппарата
- Установить нужную длину катушки высевающего аппарата на сеялке.
 - Экспериментально определить норму высева
 - Оценить точность настройки.

3. Методика определения рабочей длины катушки

Расчёт рабочей длины катушки высевающего аппарата .

Исходим из уравнения баланса катушечного аппарата

$$\frac{Q_{H}a\pi D}{1000i} = 1.7 \rho f_{x}zL_{k}$$

(1)

где Qн - норма высева (кг/га)

а - ширины междурядья (см)

D – диаметр приводного колеса. м;

 ρ - объемная масса семян; ρ =0,8 г/см³

 $f_{\text{ж}}$ – площадь поперечного сечения желобка катушки;

z – число желобков на катушке;

 L_{κ} – длина катушки;

Фактическое передаточное отношение i_{ϕ} устанавливалось в предыдущей работе.

Для стандартной катушки диаметром 51 мм, числе желобков z =12, площадью желобка $f_{\rm w}$ =0.475cм², получено $i=i_{\rm p}$ =0,428.

Тогда из уравнения (1) получим:

$$L_k = \frac{Q_{_H} a \pi D}{1700 i \rho f_{_{\mathcal{H}}} z}$$
(2)

4. Установка на сеялке рабочей длины катушки

Рабочая длина катушки устанавливается перемещением катушек сеялки вдоль вала с помощью рычага кулисного механизма регулировки нормы высева. После установки обязательна проверка точности установленной нормы высева.

4. Расчёт массы семян на оборот колеса

Правилами эксплуатации зерновых сеялок семейства C3-3,6 рекомендуется проводить установку нормы высева по 15 оборотам колеса сеялки, которые вращают вручную.

Число оборотов колеса на 1 га будет:

$$n_{k} = \frac{10000}{B\pi D} \tag{3}$$

Масса семян высеянных за 1 оборот колеса будет:

$$q_1 = \frac{Q}{n_k} = \frac{QB \pi D}{10000} \tag{4}$$

Для 15 оборотов масса семян:

$$q_{15} = 15 \frac{QB \pi D}{10000} \tag{5}$$

На сеялке C3-3,6 диаметр колеса 1,22 м, а окружность nD=3,83 м.

5. Экспериментальная проверка установленной нормы

Сеялку устанавливают так, чтобы колесо не касалось земли. Используется только половина сеялки, поэтому надо высеять половинную норму.

В бункер засыпают семена. Под сошниками расстелить брезент.

Управление цифровых образовательных технологий

Машины и оборудование для возделывания с\х культур

Провернуть колесо несколько раз, чтобы высевающие аппараты заполнились зерном. Зерно с брезента убирают в бункер и расстилают снова.

На колесе ставят мелом отметку и поворачивают его на 15 оборотов, контролируя высыпание семян на брезент.

Затем надо собрать высыпавшиеся семена, взвесить, получить половинную массу q'_{\ni} . Полная доза $q_{\ni} = 2 \; q'_{\ni}$.

6. Определение точности установки нормы.

Точность установки определяется по формуле: $\delta = (q_{15} - q_{9})/q_{15} * 100\%$

(6)

Ошибка не должна превышать 3%.

7. Содержание отчета:

- 1. Функциональная схема сеялки.
- 2. Расчёт массы семян на 15 оборотов колеса.
- 3. Определение массы высеянных семян за 15 оборотов колеса.
 - 4. Определение точности установки нормы высева δ %.
 - Бывод.

Литература

- 1. Игнатенко И.В., Ю.И. Ермольев. Машины для возделывания сельскохозяйственных культур / Ростов н/Д: Издательский центр ДГТУ, 2008. 374 с.
- 2. Хоменко М.С. Механизация посева зерновых культур. Киев: Урожай, 1989-168 с.
- 3. Устинов А.М. Машины для посева сельскохозяйственных культур. М.: Агромашиздат, 1989. 156 с.