

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Кафедра «Техника и технологии пищевых производств»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к проведению практических занятий по дисциплине

«Технология послеуборочной обработки и хранения зерна»

Авторы

Хозяев И.А.,

Гучева Н.В.

Ростов-на-Дону, 2015

Аннотация

В методических указаниях для выполнения практический заданий по дисциплине «Технология послеуборочной обработки и хранения зерна» предложен порядок расчета вместимость зернохранилищ для размещения зерна. Методические указания должны помочь обучающимся закрепить и углубить теоретические знания, полученные при изучении дисциплины.

Авторы

д.т.н., профессор Хозяев И.А. ст.преподаватель Гучева Н.В.

Оглавление

ВВЕДЕНИЕ					4
Практическое	занятие	N º 1	Расчет	паспортной	
вместимости ск	падов				5
Практическое	занятие	№ 2	Расчет	паспортной	
вместимости си.	лоса				8
поперечного се	чения эсчет вме чения	 Стимости	силоса	квадратного 9	
вместимости зв	ездочки				12
список испол	ьзованн	ых ист	очникоі	B	14

ВВЕДЕНИЕ

промышленность выполняет Элеваторная роль в народном хозяйстве страны. Она находится на стыке сельского хозяйства и зерноперерабатывающих предприятий и обеспечивает передачу зерна от производителей потребителям (зерноперерабатывающим предприятиям, предприятиям пищевой промышленности и др.). На предприятиях элеваторной промышленности зерно обрабатывают для улучшения его качества и относительно длительного хранения, поскольку зерно заготавливают в течение двух-трех месяцев, а потребляют в течение всего года. Около 80% заготовляемого зерна перерабатывают в муку и крупу на зерноперерабатывающих предприятиях мукомольной крупяной промышленности. Кроме того, большое количество зерна использует комбикормовая промышленность. Доля зерна и его побочных продуктов занимает в рецептуре комбикормов более 60%. Некоторые отрасли пищевой промышленности также используют зерно в качестве сырья. К крупным потребителям зерна относятся масложировая, спиртоводочная, пивоваренная, крахмалопаточная, консервная, кондитерская и другие отрасли пищевой промышленности. Элеваторная промышленность проводит также большую работу по подготовке высококачественных сортовых семян для снабжения сельского хозяйства страны. Элеваторная промышленность обрабатывает около 40% объема необходимых для сельского хозяйства семян зерновых культур и 100% гибридных и сортовых семян кукурузы. Это способствует увеличению урожайности зерновых культур и повышению валовых сборов зерна.

Особенности зерновой массы как объекта хранения обусловливают специальные требования, предъявляемые к зернохранилищам. В связи с этим и вместимость зернохранилищ должна быть достаточной, чтобы в нормальных условиях в них можно было разместить все закупаемое государством зерно, а также переходящие остатки от урожая предшествующих лет и государственные ресурсы.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 1 РАСЧЕТ ПАСПОРТНОЙ ВМЕСТИМОСТИ СКЛАДОВ

Различают паспортную и рабочую вместимость складов (рис.1). Паспортной называется вместимость, рассчитанная на

размещение пшеницы объемной массой $\gamma=0.75m/\,\mathrm{M}^2$, с содержанием влаги 14...15,5 %, сорной примеси 2 % при высоте насыпи, допускаемой для данного зерна.

Рабочую вместимость определяют для каждого конкретного случая с учетом культуры, объемной массы и качества зерна.

В типовом складе паспортная вместимость 3200 τ , высота насыпи у стен 2,5 M, в середине 5 M при угле естественного откоса зерна $a=26^{\circ}$.

Паспортная вместимость типовых складов:

Размер в плане, <i>м</i>	Вместимость, <i>т</i>
30 x 15	1000
45 x 20	2000
60 x 20	3000
62,5 x 20,8	3200.

Вместимость нетиповых складов зерна определяют расчетным путем.

Паспортную вместимость нетиповых складов E_{π} (τ), предложенную в указаниях по составлению технических паспортов хлебоприемных предприятий можно рассчитать по формуле:

$$E_n = \left[A \times B \times h + \left(\frac{A+a}{2} \right) \times \left(\frac{B+e}{2} \right) \times \left(H-h \right) \right] \times \gamma \times K,$$

где A и B-длина и ширина склада, M,

h - высота насыпи зерна у стен, M,

а - длина верхнего слоя зерна, м,

в - ширина верхнего слоя зерна, *м*,

H- высота насыпи зерна в средней части склада, M,

K - поправочный коэффициент, который зависит от длины складов (при длине до 15 M – 0,9, от 15 до 30 M – 0,86, от 30 до 45 M – 0,82, от 45 до 60 M – 0,78, от 60 M и более – 0, 75).

Величины а и в могут быть вычислены по формулам:

$$a = A - 2(H - h) \times ctg \alpha$$

 $a = B - 2(H - h) \times ctg \alpha$

где $\,a\,$ - угол естественного откоса зерна; $\,\alpha=26^{o}\,$.

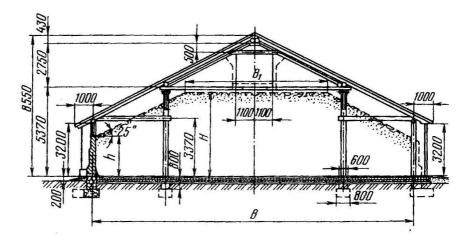


Рис.1. Односекционный склад вместимостью 3200 $\,r$ зерна с кирпичными стенами

Таблица исходных данных для определения паспортной вместимости складов

Вариант (начальная буква фами-	Значение параметров						
лии студента)	Α	В	Н	h	γ	ctgα	
А, Л, Х	21	7	3,5	2,5	0,75	2,0	
Б, М, Ц	24	8	3,5	2,5	0,75	2,0	
В, Н, Ч	30	10	4,0	2,5	0,75	2,0	
Г, О, Ш	36	12	4,0	2,5	0,75	2,0	
Д, П, Щ	42	14	4,5	2,5	0,75	2,0	

E, P, Э	48	16	4,5	2,5	0,75	2,0
Ж, С, Ю	51	17	4,5	2,5	0,75	2,0
3, Т, Я	54	18	4,5	2,5	0,75	2,0
И, У	60	20	5,5	2,5	0,75	2,0
К, Ф	60	24	7,5	4,5	0,75	2,0

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 2 РАСЧЕТ ПАСПОРТНОЙ ВМЕСТИМОСТИ СИЛОСА

Вместимость силоса E_{c} (τ) при подаче и выпуске зерна по центральной оси (рис.2) может быть определена как сумма вместимостей:

 E_1 - верхней конусной части, τ ,

 E_2 - средней цилиндрической части, au_{i}

 E_3 - нижней конусной части, au.

$$E_c = E_1 + E_2 + E_3 =$$

2.1 Расчет вместимости силоса круглого поперечного сечения

Зная диаметр D и общую высоту H_c силоса, можно рассчитать его вместимость.

Вместимость верхней конусной части силоса может быть определена по формуле:

$$E_1 = \gamma \times \frac{\pi \times R^2 \times H_1}{3} =$$

где R - внутренний радиус силоса, M,

 H_1 - высота верхней конусной части силоса, M_2

Высота верхней конусной части силоса H_1 может быть определена по формуле:

$$H_1 = R \times tg \alpha_1 =$$

где α_1 - угол естественного откоса зерна при заполнении силоса;

$$\alpha_1 = 26^0, \quad tg \, \alpha_1 = 0.49$$

Вместимость нижней конусной части силоса быть определена по формуле:

$$E_3 = \gamma \times \frac{\pi R^2 \times H_3}{3} =$$

где H_3 - высота нижней конусной части силоса, M_3

Высота нижней конусной части силоса H_3 может быть определена по формуле:

$$H_3 = R \times tg\alpha_2 =$$

где $~^{lpha_2}~$ - угол наклона днища силоса (для расчета принимаем $~^{lpha_2}=36^{^0}~$ для сухого зерна). $~^{
m Torga}~tg\,\alpha_2=0{,}72.$

Вместимость средней части силоса может быть определена по формуле:

$$E_2 = \gamma \times \pi \times R^2 \times H_2 =$$

где H_2 - высота цилиндрической части силоса, M_2

После этого определяют вместимость одного силоса круглого поперечного сечения.

2.2 Расчет вместимости силоса квадратного поперечного сечения

Вместимость силоса квадратного поперечного сечения со сторонами a определяют в следующем порядке.

Сначала определяют эквивалентные диаметр и радиус из формулы:

$$a^2 = \pi R^2$$

где nR^2 – площадь поперечного сечения силоса.

Откуда
$$R_9 = 0.564a$$
, а $D_9 = 1.128a$.

Высота верхней пирамидальной части силоса $H_1{}''$ может быть определена по формуле:

$$H_1'' = R_2 \times tg \alpha_1 =$$

Высота нижней пирамидальной части силоса H_3 " может быть определена по формуле:

$$H_3'' = R_3 \times tg\alpha_2 =$$

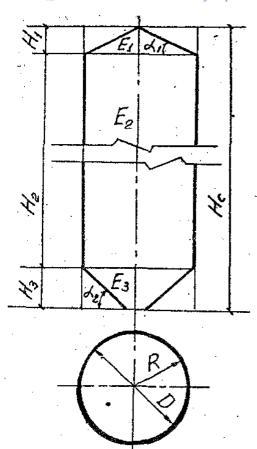
Высота средней части силоса $H_2{}''$ может быть определена по формуле:

$$H_2'' = H_c - R_9 \times (tg\alpha_1 + tg\alpha_2) =$$

Тогда общая вместимость силоса, заполненная зерном может быть определена по формуле:

$$E_{c} = \gamma \times \pi R_{9}^{2} \times \left(\frac{1}{3}H_{1}^{"} + H_{2}^{"} + \frac{1}{3}H_{3}^{"}\right) = \gamma \times a^{2} \times \left(\frac{1}{3}H_{1}^{"} + H_{2}^{"} + \frac{1}{3}H_{3}^{"}\right) = 0$$

Вместимость всех силосов силосного корпуса может быть определена по формуле:


$$E_{c.\kappa.} = n \times E_{c} \quad (7),$$

где n_c - общее число силосов.

Таблица исходных данных для определения паспортной вместимости силоса элеватора

Вариант	Исходные данные								
(начальная буква фамилии студента)	Диаметр силоса <i>D, м</i>	Сторона силоса <i>а, м</i>	Высота силоса Н _а м	Объемная масса ү, т/м²	Число силосов n_c	Ψ	$tg\alpha_1$	$tg\alpha_2$	
А, Л, Х	6	3	25	0,75	12	0,90	0,49	0,72	
Б, М, Ц	6	3	30	0,75	24	0,91	0,49	0,72	
В, Н, Ч	6	3	35	0,75	36	0,92	0,49	0,72	
Г, О, Ш	5	4	30	0,75	78	0,91	0,49	0,72	
Д, П, Щ	5	4	25	0,75	60	0,90	0,49	0,72	
Е, Р, Э	5	4	20	0,75	20	0,90	0,49	0,72	
ж, с, ю	6	3	25	0,75	35	0,92	0,49	0,72	
3, Т, Я	6	3	30	0,75	42	0,93	0,49	0,72	
И, У	6	4	25	0,75	56	0,93	0,49	0,72	
К, Ф,	6	4	30	0,75	70	0,93	0,49	0,72	

P P

Рис. 3. Расположение зерна в силосе -звездочке

Рис. 2. Расположение зерна в круглом силосе

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 3 РАСЧЕТ ПАСПОРТНОЙ ВМЕСТИМОСТИ ЗВЕЗДОЧКИ

При рядовом расположении круглых силосов между каждыми четырьмя силосами расположены звездочки, называемые силосамизвездочками (рис.3).

Вместимость силоса-звездочки определяют в следующем порядке.

Сначала определяют площадь сечения средней части силосазвездочки $F_{_{36}}\!\left(\!{\scriptstyle{M}}^2\right)$ по формуле:

$$F_{36} = D^2 - \frac{\pi D^2}{\Lambda} = D^2 - 0.785D^2 =$$

Для определения параметров верхнего и нижнего конусов силоса - звездочки площадь сечения силоса - звездочки приравнивают к равновеликой площади сечения цилиндра и определяют эквивалентные

диаметр $D_{\mathfrak{p}}$ и радиус $R_{\mathfrak{p}}$:

$$D_{9} = \sqrt{\frac{0.215D^{2}}{0.785}} = 0.524D;$$
 $R_{9} = 0.262D;$

$$R_{23}^2 = 0.0686D^2$$

Высота верхней части силоса-звездочки может быть определена по формуле:

$$H_1^{'}=R_{_9} imes tg\,lpha_1=$$
 нижней части: $H_3^{'}=R_{_9} imes tg\,lpha_2=$ средней части: $H_2^{'}=H_c-R_{_9}ig(tg\,lpha_1+tg\,lpha_2ig)=$

Вместимость верхней, средней и нижней частей силосазвездочки рассчитывают также, как и для силоса круглого сечения:

$$E_{1}^{'} = \frac{\gamma \times \pi R_{2}^{2} \times H_{1}^{'}}{3} =$$

$$E_{2}^{'} = \gamma \times \pi R_{2}^{2} \times H_{2}^{'} =$$

$$E_3' = \frac{\gamma \times \pi R_3^2 \times H_3'}{3} =$$

Таким образом, вместимость силоса-звездочки (au) может быть определена по формуле:

$$E_{36} = \frac{\gamma \times \pi R_{_{9}}^{2} \times H_{_{1}}^{'}}{3} + \gamma \times \pi R_{_{9}}^{2} \times H_{_{2}}^{'} + \frac{\gamma \times \pi R_{_{9}}^{2} \times H_{_{3}}^{'}}{3} = \gamma \times \pi R_{_{9}}^{2} \times \left(\frac{1}{3}H_{_{1}}^{'} + H_{_{2}}^{'} + \frac{1}{3}H_{_{3}}^{'}\right) = 0$$

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Изотова А.И. Технология элеваторной промышленности. Учебно-практическое пособие / А.И. Изотова. – М.: МГУТУ, 2012. – 41с.
- 2. Малин, Н.И. Технология хранения зерна /H.И. Малин. М.: КолосС, 2005. -280c.
- 3. Подкопаев, В.Н. Повышение качества и сокращение потерь зерна \ В.Н. Подкопаев. М.: Хлебпродинформ, 2002. 192с.
- 4. Вобликов, Е.М. Технология элеваторной промышленности / Е.М. Вобликов. Ростов н/Д: «МарТ», 2001. 192с.
- 5. Блиев, С.Г. Проблемы качества зерна / С.Г. Блиев. Изд. центр «Эльфа», 1999. 215с.
- 6. Мельник, Б.Е. Производство зернового сырья на элеваторах \backslash Б.Е. Мельник, В.Б. Лебедев, Н.И. Малин. М.: Колос, 1996. 496с.
- 7. Пунков, С.П. Хранения зерна. Элеваторно-складское хозяйство и зерносушение / С.П. Пунков, А.И. Стародубцева. М.: Агропромиздат, 1980. 368c.