

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

ПИ (филиал) ДГТУ в г. Таганроге ЦМК «Технология машиностроения и сварочного производства»

Методические указания по выполнению лабораторных работ по дисциплине

«Техническая механика»

Авторы Т.А. Аникина; Т.В. Новоселова; Л.В. Толмачёва.

Аннотация

Методические указания предназначены для обучающихся по направлению подготовки: 15.02.16. Технология машиностроения и 22.02.06 Сварочное производство.

Авторы

преподаватель ЦМК «Технология машиностроения и сварочного производства» Аникина Т.А.

председатель ЦМК «Технология машиностроения и сварочного производства» Новоселова Т.В.

к.т.н. преподаватель ЦМК «Технология машиностроения и сварочного производства» Толмачёва Л.В.

ВВЕДЕНИЕ

Механика наряду с математикой и физикой имеет большое общеобразовательное значение: способствует развитию логического мышления, приводит к пониманию весьма широкого круга явлений, относящихся к простейшей форме движущейся материи — механическому движению.

Дисциплина «Техническая механика» является базой для создания надежных и экономичных конструкций, как на стадии проектирования, так и при изготовлении и эксплуатации.

К основным задачам этого предмета относится изучение:

- общих законов равновесия материальных тел;
- методов расчета элементов конструкций и машин на прочность, жесткость и устойчивость;
 - законов движения материальных тел;
 - устройства машин и механизмов, их деталей и области их применения.

Изучение методов и приемов технической механики вырабатывает навыки для постановки и решения прикладных задач.

Овладение основами технической механики позволяет специалистам специальности 15.02.16 Технология машиностроения и 22.02.06 Сварочное производство грамотно определять базирование обрабатываемых поверхностей и изучение технологической оснастки.

Для выполнения лабораторных работ необходимо использовать положения и методы векторной алгебры, уметь дифференцировать функции одной переменной, знать основы теории кривых второго порядка, находить интегралы от простейших функций, решать дифференциальные уравнения.

Лабораторная работа №1

Тема: Определение равнодействующей плоской система сходящихся сил

Цель работы: Уметь определять равнодействующую плоской системы сходящихся сил, решать задачи на равновесие геометрическим и аналитическим способом, рационально выбирая координатные оси.

Расчетные формулы:

Равнодействующая системы сил

$$F_{\Sigma} = \sqrt{F_{\Sigma x}^2 + F_{\Sigma y}^2}; \quad F_{\Sigma x} = \sum_{0}^{n} F_{kx}; \quad F_{\Sigma y} = \sum_{0}^{n} F_{ky};$$

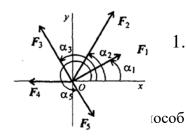
где $F_{\Sigma x}$, $F_{\Sigma y}$ -проекции равнодействующих на оси координат;

 F_{kx} , F_{ky} – проекции векторов-сил системы на оси координат.

$$\cos\alpha_{\Sigma x} = \frac{F_{\Sigma x}}{F_{\Sigma}},$$

где $\alpha_{\Sigma x}$ – угол равнодействующей с осью Ox.

Условия равновесия


$$\begin{cases} \sum_{0}^{n} F_{kx} = 0; \\ \sum_{0}^{n} F_{ky} = 0. \end{cases}$$

Если плоская система сходящихся сил находиться в равновесии, многоугольник сил должен быть замкнут.

Пример. Определение равнодействующей системы сил.

Определить равнодействующую плоской системы сходящихся сил аналитическим способам.

Дано:
$$F_1=10$$
кH; $F_2=15$ кH; $F_3=12$ кH; $F_4=8$ кH; $F_5=8$ кH; $a_1=30^\circ$; $a_2=60^\circ$; $a_3=120^\circ$; $a_4=180^\circ$; $a_5=300^\circ$.

Решение

1. Определить равнодействующую аналитическим способом (рис. 1.1).

$$\begin{cases} F_{1x} = 10 \cdot \cos 30^{\circ} = 8,66 \text{kH}; \\ F_{2x} = 15 \cdot \cos 60^{\circ} = 7,5 \text{kH}; \\ F_{3x} = 12 \cdot \cos 60^{\circ} = -6 \text{kH}; \\ F_{4x} = -8 \text{kH}; \\ F_{5x} = 8 \cdot \cos 60^{\circ} = 4 \text{kH}; \end{cases} F_{\Sigma x} = \sum_{k} F_{kx}; F_{kx} = 6,16 \text{kH}.$$

$$\begin{cases} F_{1y} = 10 \cdot \cos 60^{\circ} = 5\kappa H; \\ F_{2y} = 15 \cdot \cos 30^{\circ} = 12,99\kappa H; \\ F_{3y} = 12 \cdot \cos 30^{\circ} = 10,4\kappa H; \\ F_{4y} = 0; \\ F_{5y} = -8 \cdot \cos 30^{\circ} = -6,99\kappa H; \end{cases} F_{\Sigma y} = \sum_{\lambda} F_{\lambda y}; F_{\lambda y} = \sum_{\lambda} F_{\lambda} = \sum_{\lambda} F_{\lambda y} = \sum_{\lambda} F_{\lambda y$$

$$F_{\Sigma} = \sqrt{F_{\Sigma x}^2 + F_{\Sigma y}^2}; F_{\Sigma} = \sqrt{6,16^2 + 21,49^2} = 22,36 \text{kH};$$

$$\cos \alpha_{\Sigma x} = \frac{F_{\Sigma x}}{F_{\Sigma}}; \quad \cos \alpha_{\Sigma x} = \frac{6,16}{22,36} = 0,2755; \quad \alpha_{\Sigma x} = 74^{\circ}.$$

Задание по вариантам. Используя схему рисунка 1.1, определить равнодействующую системы сил.

Параметры		Вариант											
	1	2	3	4	5	6	7	8	9	<i>10</i>			
F_1 , к H	12	8	20	3	6	12	8	20	3	6			
F_2 , к H	8	12	5	6	12	8	12	5	6	12			
F_3 , к H	6	2	10	12	15	6	2	10	12	15			
F_4 , к H	4	10	15	15	3	4	10	15	15	3			
F_5 , к H	10	6	10	10	18	10	6	10	10	18			
$lpha_1$, град	30	0	0	0	0	30	0	0	0	0			
$lpha_2$, град	45	45	60	60	30	45	45	60	60	30			
$lpha_3$, град	0	135	135	135	45	0	135	135	135	45			
$lpha_4$, град	60	30	150	150	150	60	30	150	150	150			
$lpha_5$, град	300	270	210	270	300	300	270	210	270	300			

Лабораторная работа №2

Тема: Плоская система произвольно расположенных сил

Цель работы: Уметь приводить произвольную плоскую систему сил к точке, определяя величины главного вектора и главного момента системы. Знать уравнения равновесия и уметь ими пользоваться при определении реакций в опорах балочных систем.

Расчетные формулы:

Виды опор балок и из реакции (рис. 2.1)

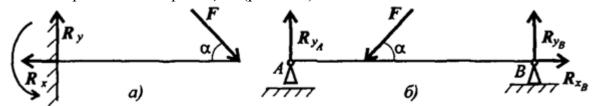


Рисунок 2.1– Виды опор балок и из реакции

Моменты пары сил и силы относительно точки (рис. 2.2)

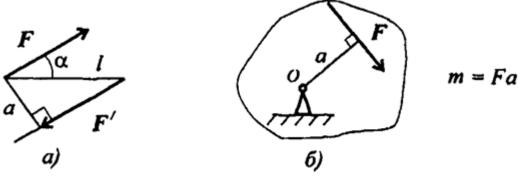


Рисунок 2.2- Моменты пары сил и силы относительно точки

Главный вектор $F_{\Gamma \Pi} = \sqrt{(\sum_{0}^{n} F_{kx})^{2} + (\sum_{0}^{n} F_{ky})^{2}}.$ Главный момент $M_{\Gamma \Pi_{o}} = \sum_{0}^{n} m_{k_{o}}$ Условия равновесия $1. \quad \sum_{0}^{n} F_{kx} = 0; \sum_{0}^{n} F_{ky} = 0; \sum_{0}^{n} m_{kA} = 0.$

Проверка:
$$\sum_{0}^{n}m_{kB}=0$$
.

2. $\sum_{0}^{n}F_{kx}=0$; $\sum_{0}^{n}m_{kA}=0$; $\sum_{0}^{n}m_{kB}=0$.

Проверка: $\sum_{0}^{n}F_{ky}=0$.

Задание. Определить величины реакций для балки с шарнирными опорами. Провести проверку правильности решения.

Параметр		Вариант											
	1	1 2 3 4 5 6 7 8 9 10											
F_1 ,κΗ	10	12	14	16	18	20	22	24	26	28			
F_2 ,к \mathbf{H}	5	5,5	6	6,5	7	7,5	8	8,5	9	9,5			
т, кН∙м	14	13	12	11	10	9	8	7	6	5			
α, м	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2			

	№ варианта		№ варианта
1	т	6	F₂ 45°
	2a a a a a a a a a a a a a a a a a a a		Fi ama 3a amam
2	F_{1} G_{0} F_{2} G_{0} G_{0	7	F_1 60° F_2 a
3	F_1 F_2 F_2 F_2 F_2 F_3 F_4 F_2 F_3 F_4 F_2 F_3 F_4 F_4 F_5 F_6 F_7 F_8 F_8 F_8 F_9	8	F_1 60° F_2 a
4	F_1 m $a \qquad 45^{\circ}$ $2a \qquad F_2 \qquad 2a$	9	F_1 f_2 f_3 f_4 f_4 f_5 f_6 f_6 f_6 f_6 f_6 f_7 f_8 f_8 f_8 f_9
5	F ₁ m F ₂ 60° 4	10	F ₁

Лабораторная работа №3

Тема: Центр тяжести

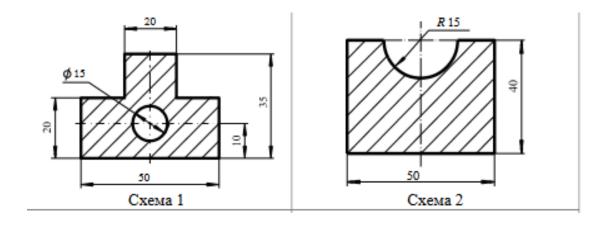
Цель работы: Знать методы определения центра тяжести тела и плоских сечений, формулы для определения положения ЦТ плоских сечений. Уметь определять положение центра тяжести фигур, составленных из стандартных профилей.

Расчетные формулы:

Методы расчета:

- метод симметрии;
- метод разделения на простые части;
- метод отрицательных площадей.

Координаты центров тяжести сложных и составных сечений


$$X_c = \frac{\sum_{i=1}^{n} X_i \cdot S_i}{S}; Y_c = \frac{\sum_{i=1}^{n} Y_i \cdot S_i}{S}$$

где S_i – площади частей сечения; X_i , Y_i – координаты ЦТ частей сечения; S – суммарная площадь сечения.

Геометрические характеристики стандартных прокатных профилей в ГОСТ.

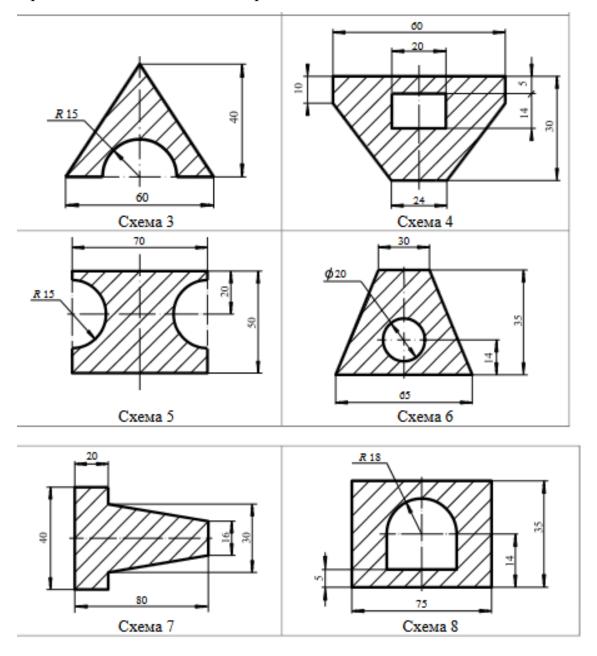
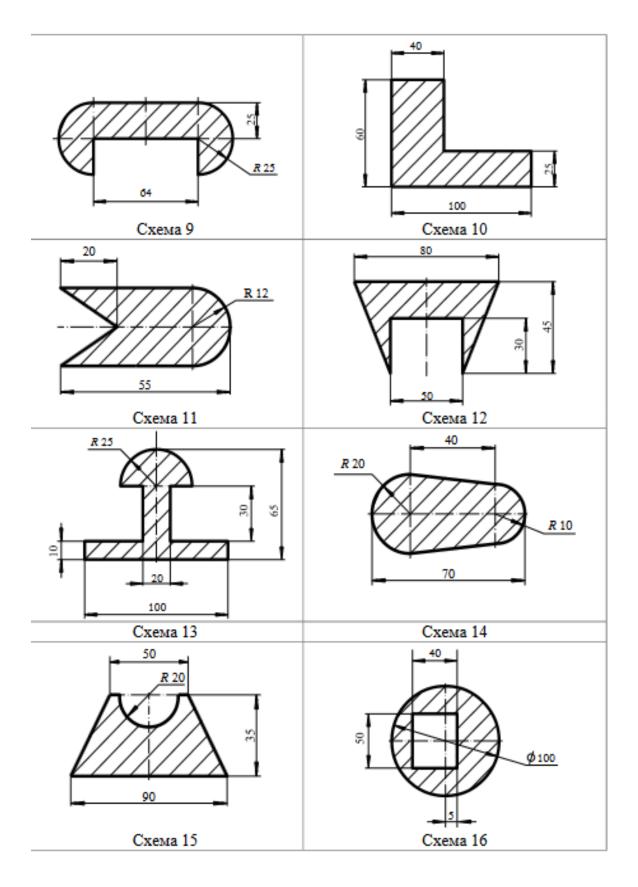

Задание. Дана плоская фигура известных размеров, имеющая неправильную геометрическую форму. Определить координаты центра тяжести фигуры. Варианты заданий приведены в таблице 3.1

Таблица 3.1 – Варианты заданий (схемы фигур)



Продолжение таблицы 3.1-Варианты заданий

Порядок выполнения работы

- 1. Изобразить на рисунке плоскую фигуру. Выбрать систему координат.
- 2. Выделить в заданной фигуре фрагменты правильной геометрической формы: прямоугольники, треугольники, круги, круговые секторы (полукруги).
- 3. Записать выражения для определения координат центров тяжести фрагментов x_i и y_i площадей S. Площади вырезанных частей задать отрицательными.
- 4. Рассчитать координаты центра тяжести плоской фигуры.
- 5. Оформить отчёт о лабораторной работе.

Отчет о лабораторной работе должен содержать:

- 1. Рисунок плоской фигуры с указанием выбранной системы координат, разбиения плоской фигуры на фрагменты правильной геометрической формы.
- 2. Таблицу, содержащую координаты центров тяжести выделенных фрагментов плоской x_i и y_i площадей S
- 3. Результаты расчета координат центра тяжести плоской фигуры.

Контрольные вопросы:

- 1. Какая точка называется центром тяжести тела.
- 2. По каким формулам вычисляются декартовы координаты центра тяжести тела
- 3. Является ли центр тяжести тела центром параллельных сил
- 4. Где находится центр тяжести симметричного тела
- 5. Как найти центры тяжести фигур при помощи метода разбиения тела на части
- 6. В чем заключается идея метода отрицательных площадей.

Лабораторная работа № 4

Тема: Кинематика точки. Простейшие движения твердого тела

Цель работы: Знать формулы для определения параметров поступательного движения и кинематические графики. Уметь определять кинематические параметры тела при поступательном движении, определять параметры любой точки тела.

Расчетные формулы:

Все точки тела движутся одинаково.

Закон равномерного движения $S = S_0 + vt$.

Закон равнопеременного движения: $S = S_0 + v_0 t + \frac{\alpha_t t^2}{2}$.

Здесь S_0 - путь, пройденный до начала отсчета, м;

 v_0 - начальная скорость движения, м/с;

 α_t - постоянное касательное ускорение, м/с²

Скорость: v = S'; $v = v_0 + \alpha_t t$.

Ускорение: $\alpha_t = v'$. Закон неравномерного движения: $S = f(t^3)$.

Кинематические графики поступательного движения представлены на рис. 4.

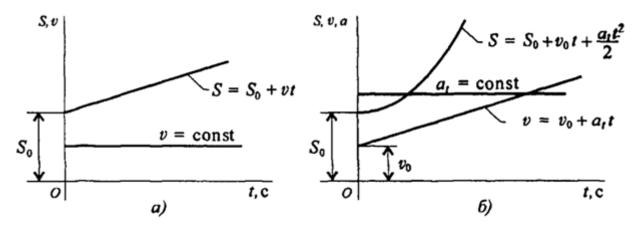


Рисунок 4- Кинематические графики поступательного движения

Задание Движение груза A задано уравнением $S(t) = \alpha t^2 + bt + c$, где [S] = M, [t] = c. Определить скорость и ускорение груза в моменты времени t_1 и t_2 .

Параметр Вариант №	а				
г рариант №	ч	b	С	$\boldsymbol{t_1}$, c	$\boldsymbol{t_2}, c$
1	0	2	5	1	4
2	3	0	6	2	5
3	4	3	0	3	6
4	0	4	7	1	4
5	5	0	8	2	5
6	6	5	0	3	6
7	0	6	9	1	4
8	7	0	2	2	5
9	8	7	0	3	6
10	0	8	3	1	4
11	9	0	4	2	5
12	2	9	0	3	6
13	0	6	5	1	4
14	5	0	8	2	5
15	4	3	0	3	6
16	0	4	7	1	4
17	5	0	8	2	5
18	6	5	0	3	6
19	0	5	8	1	4
20	7	0	2	2	5
21	8	7	0	3	6
22	0	8	3	1	4
23	9	0	4	2	5
24	3	7	0	3	6
25	0	3	7	1	4
26	4	0	7	2	5
27	4	3	0	3	6
28	0	4	7	1	4
29	6	0	8	2	5
30	7	5	0	3	6

Контрольные вопросы

1. Что изучает кинематика

- 2. Какие существуют способы задания движения материальной точки?
- 3. Как по уравнениям движения точки в координатной форме определить ее траекторию?
- 4. Как найти проекции вектора скорости на оси декартовой системы координат?
- 5. Как найти проекции вектора ускорения на оси декартовой системы координат?
- 6. Чему равен вектор скорости точки в данный момент времени и какое направление он имеет?
- 7. В каких случаях касательное ускорение точки равно нулю?
- 8. В каких случаях нормальное ускорение точки равно нулю?
- 9. Как определить проекции ускорения точки на главную нормаль и на касательную ось к траектории?
- 10. Что характеризует собой касательное и нормальное ускорения точки

Лабораторная работа №5

Тема: Работы и мощность. Общие теоремы динамики. Принципы Далам- бера

Цель работы: Знать зависимости для определения мощности при поступательном движении и КПД. Знать основные уравнения динамики при поступательном движении твердого тела. Уметь рассчитывать мощность с учетом потерь на трение и сил инерции. Уметь определять параметры движения с помощью теорем динамики.

Расчетные формулы:

Мощность при поступательном движении

$$P = Fv \cos \alpha$$
,

где F — постоянная сила. H; v — скорость движения, m/c; α —угол между направлениями силы и перемещения.

Мощность при вращении

$$P = M\omega$$
,

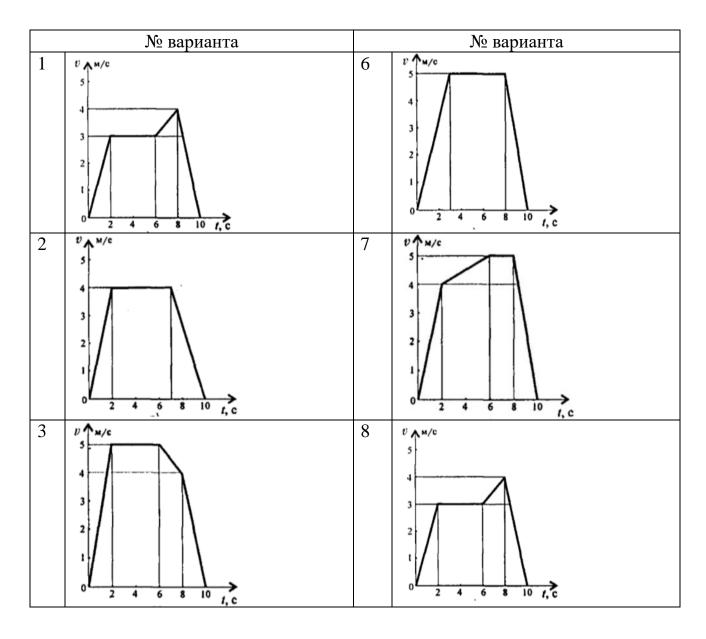
где М-вращающий момент, $H \cdot M$; ω -угловая скорость, рад/с.

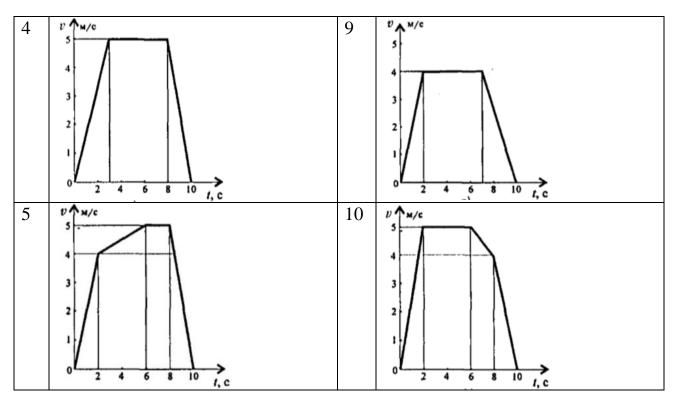
Коэффициент полезного действия

КПД =
$$\frac{P_{\text{пол}}}{P_{\text{затр}}}$$
,

где $P_{\text{пол}}$ — полезная мощность, Вт; $P_{\text{затр}}$ — затраченная мощность, В.

Cила инерџии $F_{\text{ин}} = -ma$, где a- ускорение точки, м/ c^2 ; m- масса, кг.


Основные уравнения динамики


Поступательное движение твердого тела: F = ma.

Задание. Скорость кабины лифта массой *m* изменяется согласно графику. Определить величину натяжения каната, на котором подвешен лифт, при подъеме и опускании. По максимальной величине натяжения каната определить потребную мощность электродвигателя, если КПД известно.

Параметр		Вариант										
	1	1 2 3 4 5 6 7 8 9 10										
Macca m, кг	500	700	750	800	600	800	600	450	900	850		
КПД меха-	0,8	0,75	0,8	0,75	0,8	0,75	0,8	0,75	0,8	0,75		
низма												

Лабораторная работа №6

Тема: Механические испытания материалов

Цель работы: Получить диаграмму растяжения и исследовать процесс вплоть до разрушения. Экспериментально подтвердить закон Гука и определить значение модуля упругости. Определить материал образца.

Порядок выполнения работы:

1. Ознакомиться с испытательной машиной. Схема испытаний имеет вид, показанный на рисунке 6.1.

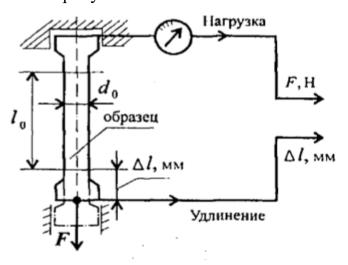
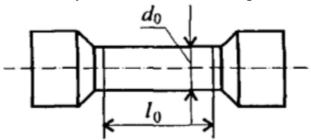



Рисунок 6.1- Схема испытаний

2. Измерить, с помощью штангенциркуля, длину и диаметр рабочей части образца (рисунок 6.2).

Рисунок 6.2 – Схема измерения образца

- 3. Установить образец в испытательную машину и провести эксперимент.
- 4. Получить диаграмму растяжения в координатах нагрузка (F, кН)-

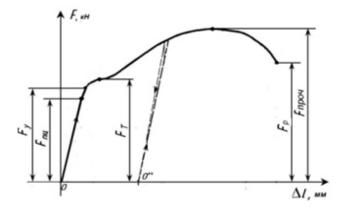


Рисунок 6.3 – Абсолютная деформация

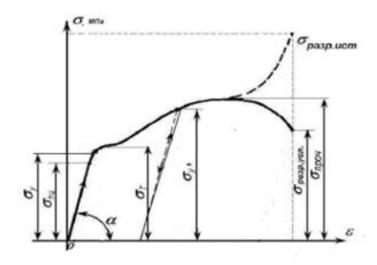


Рисунок 6.4— Диаграмма напряжений

абсолютная деформация (Δl , мм) и преобразовать её в диаграмму напряжений в координатах напряжение (σ , МПа) — относительная деформация (ε), используя формулы σ =F/S, ε = $\Delta l/l$ _0

Используя закон Гука для упругих деформаций $\sigma = \mathrm{E}\varepsilon$, определить модуль упругости материала $\mathrm{E} = \frac{\sigma}{\varepsilon}$ и сам материал образца.

Лабораторная работа №7

Тема: Расчеты на прочность и жесткость при кручении

Цель работы: Знать формулы для расчета напряжений в точке поперечного сечения бруса, условия прочности и жесткости при кручении. Уметь выполнять проектировочные и проверочные расчеты круглого бруса для статически определимых систем, проводить проверку на жесткость.

Расчетные формулы:

Распределение касательных напряжений по сечению при кручении (рис. 7) Касательное напряжение в точке A:

$$\tau_A = \frac{M_{\kappa \rho A}}{J_{\rho}},$$

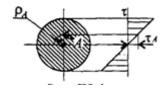


Рисунок 7.1- Распределение касательных напряжений по сечению при кручении Γ де ρ_A – расстояние от точки A до центра сечения.

Условия прочности при кручении

$$au_{ ext{ iny K}} = rac{M_{ ext{ iny K}}}{W_{
ho}} \leq [au_{ ext{ iny K}}]; \quad W_p = rac{\pi d^3}{16} pprox 0,2 d^3 ext{(круг)},$$
 $W_p = rac{\pi d^3}{16} (1- ext{c}^4) ext{(кольцо)},$

 M_{κ} - крутящийся момент в сечении, Н·м, Н·мм;

 W_{ρ} – момент сопротивления при кручении, м³, мм³;

 $[\tau_{\rm K}]$ – допускаемое напряжение при кручении, H/мм², H/мм².

Проектировочный расчет, определение размеров поперечного сечения

Сечение – круг:
$$d \ge \sqrt[3]{\frac{M_{\rm K}}{0.2[\tau_{\rm K}]}}$$
.

Сечение – кольцо:
$$d \ge \sqrt[3]{\frac{M_{ ext{K}}}{0.2(1-c^4)[au_{ ext{K}}]'}}$$

где d– наружный диаметр круглого сечения;

 $d_{{ t BH}}$ – внутренний диаметр кольцевого сечения; $c=d_{{ t BH}}/d.$

Определение рационального расположения колес по валу.

Рациональное расположение колес — расположение, при котором максимальное значение крутящегося момента на валу — наименьшее из возможных. Для экономии металла сечение бруса рекомендуется выполнить кольцевым.

Условия жесткости при кручении

$$\varphi_0 = \frac{M_K}{GJ_p} \le [\varphi_0]; \quad G \approx 0.4E,$$

G — модуль упругости при сдвиге, $\frac{H}{M^2}$, $\frac{H}{MM^2}$;

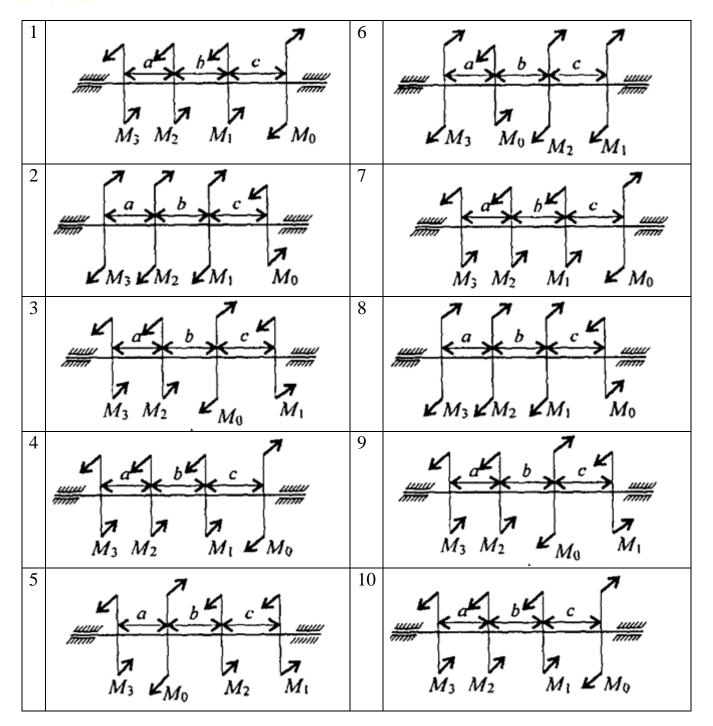
E – модуль упругости при растяжении, H/M^2 , H/MM^2 .

 $[arphi_0]$ – допускаемый угол закручивания, $[arphi_0]\cong 0$,5 \div 1 град/м;

 J_p – полярный момент инерции в сечении, м⁴, мм⁴.

Проектировочный расчет, определение наружного диаметра сечения

$$J_p \geq rac{M_{ ext{K}}}{G[arphi_0]}; \qquad J_p = rac{\pi d^4}{32} pprox 0,1 d^4 ext{(круг)}; \qquad d \geq \sqrt[4]{rac{32J_p}{\pi}}.$$
 $J_p = rac{\pi d^4}{32} (1-c^4) ext{(кольцо)}; \qquad d \geq \sqrt[4]{rac{32J_p}{\pi(1-c^4)}}.$

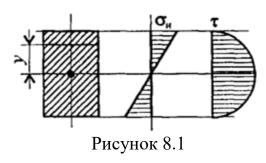

Задание. Для стального вала круглого поперечного сечения определить значение внешних моментов, соответствующих передаваемым мощностям, и уравновешенный момент.

Построить эпюру крутящих моментов по длине вала. Определить диаметры вала по сечениям из расчетов на прочность и жесткость. Полученный больший результат округлить.

При расчете использовать следующие данные: вал вращается с угловой скоростью 25 рад/с; металл вала — сталь, допускаемое напряжение кручения 30 МПа, модуль упругости при сдвиге $8 \cdot 10^4$ МПа; допускаемый угол закручивания $[\varphi_0] = 0.02$ рад/м.

Провести расчет для вала кольцевого сечения, приняв c=0.9. Сделать выводы о целесообразности выполнения вала, круглого или кольцевого сечения, сравнив площади поперечных сечений.

Параметр		Вариант											
	1	1 2 3 4 5 6 7 8 9 10											
a=b=c, M	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0			
P_{1} , к B т	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,0			
P_2 , к B т	2,6	2,7	2,8	2,9	3,0	3,1	3,2	3,3	3,4	3,5			
<i>P</i> ₃ , кВт	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9	4,0			
№ варианта						•	№ В	ариант	a	•			


Лабораторная работа №8 Тема: Расчеты на прочность при изгибе

Цель работы: Знать распределение нормальных напряжений при чистом изгибе, расчетные формулы. Уметь строить эпюры поперечных сил и изгибающих моментов, выполнять проектировочные и проверочные расчеты на прочность, выбирать рациональные формы поперечных сечений.

Расчетные формулы:

Распределение нормальных и касательных напряжений при изгибе

$$\sigma_{_{\mathrm{H}}}=\frac{\mathrm{M}_{_{\mathrm{H}}}y}{J_{x}};$$

$$\tau_{max} = \frac{1,5Q}{A},$$

где M_u — изгибающий момент в сечении; Q — поперечная сила в сечении; y — расстояние до нейтрального слоя; J_x —осевой момент инерции сечения (рис. 8); W_x — осевой момент сопротивления сечения; A — площадь сечения. Y словия прочности при изгибе

$$\sigma_{\scriptscriptstyle \mathrm{M}}^{max} = \frac{M_{\scriptscriptstyle \mathrm{M}}}{W_{\scriptscriptstyle \mathrm{Y}}} \leq [\sigma_{\scriptscriptstyle \mathrm{M}}],$$

где $[\sigma_{u}]$ – допускаемое напряжение.

Знаки изгибающих моментов и поперечных сил (рис. 8.2)

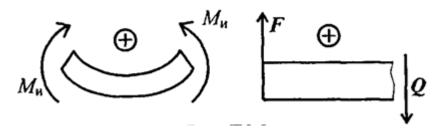
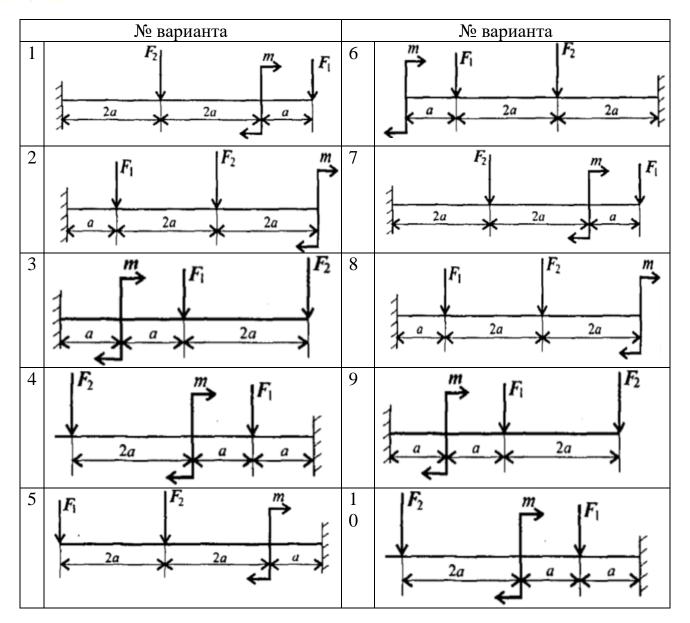



Рисунок 8.2- Знаки изгибающих моментов и поперечных сил

Задание. Для одноопорной балки, нагруженной сосредоточенными силами и парой сил с моментом m, построить эпюры поперечных сил и изгибающих моментов. Найти максимальный изгибающий момент и из условия прочности подобрать поперечное сечение для балки в виде двутавра и прямоугольника с соотношением сторон h=2b. Материал — сталь, допускаемое напряжение 160 МПа. Рассчитать площади поперечных сечений и сделать вывод о целесообразности применения сечения.

Параметр		Вариант											
	1	1 2 3 4 5 6 7 8 9 10											
F ₁ , κΗ	10	12	14	16	18	10	22	24	26	28			
F ₂ , κΗ	4,4	4,8	7,8	8,4	12	12,8	17	18	22,8	24			
т, кН∙м	8	7	6	5	4	8	7	6	5	4			
а,м	0,2	0,2	0,3	03	0,4	0,4	0,5	0,5	0,6	0,6			

Лабораторная работа №9

Тема: Определение критической силы при расчетах на устойчивость

Цель работы: Знать расчетные формулы для определения критической силы. Уметь выполнять расчет на устойчивость.

Расчетные формулы:

Расчетная гибкость стержня $\lambda = \frac{\mu l}{i_{min}}$,

где μ — коэффициент приведенной длины, i_{min} - минимальный радиус инерции сечения (для стандартных профилей из ГОСТ).

Формула Эйлера
$$F_{\rm Kp} = \frac{\pi^2 E I_{min}}{(\mu l)^2}$$
,

Допускаемая сжимающая сила $[F_y] = \frac{F_{\text{кp}}}{[s_y]}$,

Условие устойчивости $F \leq [F_y]$.

Задание. Проверить устойчивость стержня. Стержень длиной l, м защемлен одним концом, сечение — швеллер ГОСТ 8240-89, материал — Ст3, запас устойчивости трехкратный. Стержень нагружен сжимающей силой F (рис. 9.1)

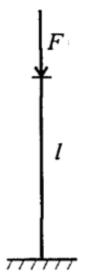


Рисунок 9.1 – Схема нагружения стержня

Параметр		Вариант										
	1	1 2 3 4 5 6 7 8 9 10										
F, ĸH	100	85	82	93	105	120	112	130	98	145		
№ швеллера	18	18a	20	20a	22	22a	24	24a	27	30		
l,M	1,2	1,2	1,3	1,3	1,4	1,4	1,5	1,5	1,6	1,6		

Лабораторная работа №10

Тема: Определение параметров зубчатых колес по их размерам

Цель работы: Получить практические навыки при определении параметров зубчатых колес.

Оборудование и инструмент: Прямозубое цилиндрическое колесо, штангенциркуль.

Теоретическое обоснование

В прямозубой передаче зубья входят в зацепление по всей длине. Вследствие погрешностей изготовления передачи и ее износа при работе процесс выхода одной пары зубьев из зацепления и начало зацепления другой пары сопровождаются ударами и шумом, величина которых возрастает с увеличением окружной скорости колес. Прямозубые передачи поэтому применяют при невысоких окружных скоростях.

Элементы эвольвентных зубчатых колес стандартизованы.

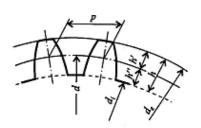


Рисунок 10.1

Шаг зубьев по делительной окружности $p = \pi d/z$, где z – число зубьев

p

Основной параметр - модуль зубьев $m = \pi$, мм; $\tau 1 = \tau 2 = \tau$, так как в зацеплении могут быть зубчатые колеса только одного модуля.

Модуль стандартизован - 1 ряд: 1; 1,25; 1,5; 2; 2,5; 3, 4; 5; 6; 8 ... 80;

Диаметр делительной окружности: d = mz;

Делительная окружность делит зуб по высоте на 2 части: головку и ножку;

Высота головки ha = m;

Высота ножки hf = 1,25m;

Высота зуба h =2,25m;

Диаметр окружности выступов da = m(z + 2);

Диаметр окружности впадин df = m (z - 2,5);

Расстояние между центрами двух зубчатых колес, находящихся в зацеплении:

$$a_{\omega} = \frac{d_1}{2} + \frac{d_2}{2} = \frac{m_1 z_1}{2} + \frac{m_2 z_2}{2} = m \frac{z_1 + z_2}{2},$$

Размеры зубчатой передачи могут быть уменьшены при заданном передаточном отношении путем уменьшения числа зубьев меньшего колеса. При изготовлении колеса с малым числом зубьев может происходить подрезание зубьев, т. е. врезание головки зуба стандартного инструмента — рейки, червячной фрезы или долбяка — в ножку зуба колеса (рисунок 10.2). При этом значительно снижается прочность зуба. При проектировании зубчатых передач не следует принимать число зубьев колеса меньше zmin, значение которого для приводных передач рекомендуется zmin ≥17.

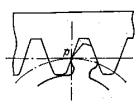


Рисунок 10.2

Корригированием называется улучшение профиля зуба. Корригирование применяется для устранения подрезания зубьев шестерни при z<zmin.

В зависимости от назначения, размеров и технологии получения заготовки зубчатые колеса имеют различную конструкцию. Цилиндрические и конические шестерни выполняют как одно целое с валом (вал-шестерня). Это объясняется тем, что раздельное изготовление увеличивает стоимость производства вследствие увеличения числа посадочных поверхностей, требующих точной обработки, а также вследствие необходимости применения того или иного соединения (например, шпоночного).

Насадочные шестерни применяют в случаях, когда они должны перемещаться вдоль вала или в зависимости от условий сборки.

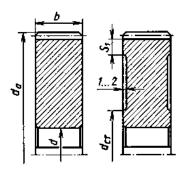


Рисунок 10.3 - Монолитные зубчатые колеса:

 $S_1=2,5m+2mm; d_{ct}=0,5d+10mm$

При диаметре окружности вершин $d_a \le 150$ мм колеса изготовляют в форме сплошных дисков из проката или из поковок (рисунок 1.3). Зубчатые колеса диаметром $d_a \le 500$ мм получают ковкой (рисунок 1.4), отливкой или сваркой. Колеса диаметром $d_a > 500$ мм выполняют отливкой или сваркой. Бандажированные или свертные колеса применяют в целях экономии легированных сталей.

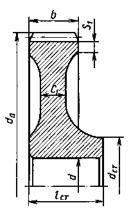


Рисунок 10.4 - Конструкция кованного колеса при d_а≤500 мм:

$$S_1$$
=2,5 m+2 mm; S_2 = 2,5 m_e(m_{te})+2 mm; $d_{c\tau}$ =1,5d+10 mm; $l_{c\tau}$ =(0,8...1,5)d; C_1 =0,4...0,5b; C_2 =(2...2,5) S_2

Основные конструктивные элементы колеса – обод, ступица и диск (рисунок 10.5).

Обод с зубчатым венцом шириной b воспринимает нагрузку от зубьев и должен быть достаточно прочным и в то же время податливым, чтобы способствовать равномерному распределению нагрузки по длине зуба. Жесткость обода обеспечивает его толщина S.

Ступица - выступающая часть колеса с размерами: d_{cr} , l_{cr} и посадочным отверстием d. Ступица служит для соединения колеса с валом и может быть расположена симметрично, несимметрично относительно обода или равна ширине обода. Это определяется технологическими или конструктивными условиями. Длина ступицы l_{cr} должна быть оптимальной, чтобы обеспечить, с одной стороны, устойчивость колеса на валу в плоскости, перпендикулярной оси вала, а с другой — получение заготовок ковкой и нарезание шпоночных пазов методом протягивания.

Диск соединяет обод и ступицу. Его толщина С определяется в зависимости от способа изготовления колеса. Иногда в дисках колес выполняют отверстия, которые используют при транспортировке и обработке колес, а при больших размерах и для уменьшения массы. Диски больших литых колес усиливают ребрами или заменяют спицами. Острые кромки на торцах ступицы и углах обода притупляют фасками f.

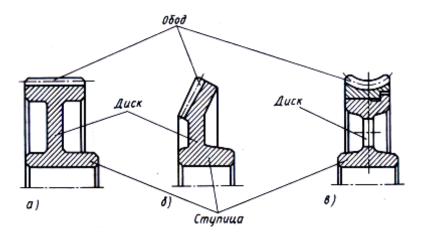


Рисунок 10.5 – Основные конструктивные элементы колеса

Порядок выполнения работы:

- 1. Рассмотреть кинематическую схему передачи.
- 2. Определить число зубьев шестерни z_1 =
- 3. Определить число зубьев колеса z_2 =
- 4. Определить передаточное отношение $U = z_1 / z_2$.
- 5. Замерить межосевое расстояние a_{ω} измерительным инструментом.
- 6. Передача прямозубая, угол наклона зубьев отсутствует $\beta = 0$.

7. Определить модуль зацепления
$$m = \frac{2a_{\omega}}{z_1 + z_2}$$

8. Определить геометрические параметры передачи.

Делительные диаметры
$$egin{aligned} d_1 &= m*z_1 \\ d_2 &= m*z_2 \end{aligned}$$

9. Уточнить межосевое расстояние с помощью формулы
$$a_{\omega} = \frac{d_1 + d_2}{2}$$

10.Определить вершины зубьев
$$\begin{aligned} d_{\mathrm{a1}} &= d_1 + 2*m \\ d_{\mathrm{a2}} &= d_2 + 2*m \end{aligned}$$

10.Определить вершины зубьев
$$d_{\mathrm{a2}} = d_2 + 2 * m$$
 11.Определить диаметры впадин
$$d_{f1} = d_1 - 2.5 * m$$

$$d_{f2} = d_2 - 2.5 * m$$

12. Сделать выводы о геометрических параметры передачи, модуле зацепления и межосевом расстоянии.

Nº	Величина и её размерность	Обозначение	Способ определения			
			Вычисления	Замер		
1	Число зубьев	Z	-			
2	Диаметр вершин, (мм)	da	-			
3	Модуль зубьев, (мм) (округляем до стандартного значения)	m	m = da /(z+2)			
4	Делительный диаметр, (мм)	d	d = mz			
5	Диаметр впадин, (мм)	df	df = m(z-2,5)			
6	Ширина венца, (мм)	b	-			
7	Диаметр посадочного отверстия, (мм)	d0	-			
8	Диаметр ступицы, (мм)	dст	-			
9	Длина ступицы, (мм)	Іст	-			
10	Толщина обода, (мм)	S1	-			
11	Толщина диска, (мм)	C1	-			

Контрольные вопросы

- 1.В чем заключаются достоинства и недостатки прямозубых зубчатых колес
- 2. Какими способами получают заготовки зубчатых колес
- 3.Из каких основных частей состоит зубчатое колесо
- 4. Почему шестерни часто выполняют заодно с валом. Как они называются
- 5.В каких случаях применяют насадные шестерни.
- 6. Какое минимальное число зубьев допускается для шестерни.

Перечень использованных информационных источников

- 1. Вереина, Л.И. Техническая механика: Учебник / Л.И. Вереина. М.: Academia, 2018. 316 c.
- 2. Вереина, Л.И. Техническая механика: Учебник / Л.И. Вереина. М.: Академия, 2015. 320 с.
- 3. Вереина, Л.И. Техническая механика: Учебник / Л.И. Вереина. М.: Academia, 2017. 224 с.
- 4. Михайлов, А.М. Техническая механика: Учебник / А.М. Михайлов. М.: Инфра-М, 2018. 160 с.