

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

Кафедра «Теоретическая и прикладная механика»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к лабораторной работе «Определение момента инерции ротора Методом падающего груза»

по дисциплинам

«Прикладная механика», «Техническая механика»

Авторы Камышанов А.И., Ровеньков Е.Д.

Ростов-на-Дону, 2022

Аннотация

Методические указания предназначены для студентов всех форм обучения направления 15.03.01, 15.03.02.

Авторы

доцент, канд. техн. наук Камышанов А.И., доцент, канд. техн. наук Ровеньков Е.Д.

ОГЛАВЛЕНИЕ

Общие сведения	4
Описание лабораторной установки	4
Краткие теоретические сведения	5
Последовательность выполнения работы	7
Контрольные вопросы	7
Оформление лабораторной работы	8
Литература	9

Общие сведения

Масса является мерой инертности в поступательном движении, а момент инерции – во вращательном. В динамических расчетах момент инерции звена механизма относительно некоторой оси играет ту же фундаментальную роль, что и масса звена.

Момент инерции может быть определен различными методами, но все они основаны на дифференциальных уравнениях динамики, так как только в законах движения проявляет себя свойство инертности тел. Для простейших симметричных тел с изотропно распределенной массой моменты инерции определяются аналитически.

При моделировании движения системы взаимодействующих тел, и механизмов в частности, вводится понятие приведенного момента инерции. Это величина, обладая которой звено приведения имеет кинетическую энергию, равную кинетической энергии всей системы. Величина эта является функцией положения тел, образующих систему.

Описание лабораторной установки

На оси электромотора ${\bf 1}$ установлен диск ${\bf 2}$ и шкив ${\bf 3}$. Относительно оси вращения эта система имеет момент инерции $-I_0$ На шкиве ${\bf 3}$ радиуса ${\bf r}$ намотан трос ${\bf 4}$, к свободному концу которого прикреплен груз ${\bf 5}$ массой ${\bf m}$. При включении установки освобождается тормоз ${\bf 6}$, удерживающий ротор, секундомер фиксирует время ${\bf t}$ прохождения грузом расстояния ${\bf h}$ между датчиками времени ${\bf 7}$.

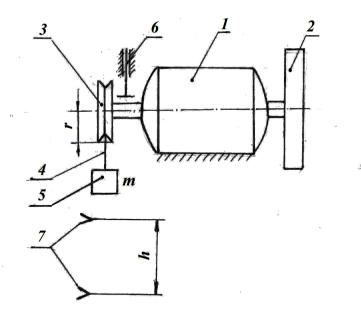


Рис. 1. Схема лабораторной установки

Краткие теоретические сведения

Дифференциальное уравнение движения ротора имеет вид

$$I_{\Pi} \varepsilon = M$$
.

где I_{Π} – приведенный к оси двигателя момент инерции системы, $\mathcal{KZ}^{\bullet}\mathcal{M}^2$;

$$\varepsilon = \frac{d^2 \varphi}{c / t^2}$$
 – угловое ускорение, $\frac{1}{c e \kappa}$;

 $M = m \ g \ r$ – момент силы тяжести груза ${m m}$ относительно оси вращения, $H \cdot M$;

 ϕ – угол поворота ротора.

Приведенный момент инерции системы определится из равенства:

$$T_{\Pi} = T$$
:

где $T_{\Pi}=rac{1}{2}\,I_{\Pi}\,\omega^2$, $\mathcal{A}\mathscr{H}$; – кинетическая энергия звена при-

ведения,

$$T=rac{1}{2}\,\left(I_0\;\omega^2\,+m\;v^2
ight)$$
 , Дж c – кинетическая

энергия всей системы;

$$I_0$$
 – момент инерции ротора, κe^{-M^2} ; $\omega = \frac{d\phi}{dt}$ – угловая скорость ротора, $\frac{1}{ce\kappa}$;

$$v=\omega \ r, \ rac{M}{ce\kappa}$$
 — скорость движения груза массой $m{m},$

откуда

$$I_{\Pi} = I_0 + m r^2$$
.

Решая дифференциальное уравнение движения ротора, получаем

$$I_{\Pi}\,\varphi=\frac{M\,t^2}{2};$$

учитывая, что $\phi = \frac{h}{a}$, окончательно имеем:

$$I = m r^{2} \left(\frac{gt^{2}}{2h} - 1 \right). \tag{1}$$

Момент инерции $I_{\rm J}$ диска 2 играет существенную роль в моменте инерции I_0 системы ротора. Его значение можно определить аналитически.

$$I_{\rm A} = \frac{\pi}{32} \gamma b d^4, \tag{2}$$

где b, d – ширина и диаметр диска, \mathcal{M} ;

$$\gamma-\,$$
 плотность стали, $\, rac{{\it K}{\it C}}{{\it M}^3} \cdot$

Последовательность выполнения работы

- 1. Ознакомиться с конструкцией лабораторной установки и правилами техники безопасности.
- 2. Замерить значения t_i (i=1...3), определить среднее значение t=t . $-\sum\limits_{\substack{3 \ i=1}}^{} {}_i$
- $\it 3.$ Вычислить $\it I_0$ по формуле ($\it 1$), подставляя среднее значение $\it t.$
- 4. Замерить размеры l и b диска 2 , вычислить значение $I_{\!\scriptscriptstyle
 m I}$ по формуле (2), приняв $\gamma=7850~\frac{\kappa z}{}$.
- 5. Оформить отчет по лабораторной работе, заключив его краткими выводами из полученных результатов опыта.

Контрольные вопросы

- 1. Что характеризует момент инерции тел вращения?
- 2. От чего зависит момент инерции тел вращения?
- 3. Дайте определение понятию инертности тела.
- 4. Как изменится численное значение момента инерции ротора, если будут меняться значения параметров установки r, $m,\ h.$
 - 5. Почему величина $I_{\scriptscriptstyle
 m I}$ должна быть меньше I_0 ?

Группа _____

Студент

Прикладная механика, техническая механика

Преподаватель____

Оформление лабораторной работы

Лабораторная работа

Определение момента инерции ротора методом падающего груза

Схема установки Исходные данные					
3 6	$\frac{1}{\sqrt{2}}$ $\frac{2}{\sqrt{2}}$	Масса груза	m = _		ĸe
	<u> </u>	Высота падения	h = .		м
+W=(1		Радиус барабана	r =		м
1		Диаметр диска	d =		м
4 m		Ширина диска			
7			-		
=					
>					
		екундомера			
	Время паден	ия груза, сек.		1 3	
	Номер измерения	-		$t = \frac{1}{3} \sum_{i=1}^{3} t_i$	i
1	2	3		3 i=1	
	I				
_	Момент ине	-			
$I_{\mathbf{A}} = \frac{n}{3}$	$\frac{1}{2} \gamma b d^4 = $		_=_		
	Момент ине	рции ротора			
$I_0 = m r^2 \left(\frac{g_0}{2} \right)$	$(\frac{t^2}{h}-1) =$		_=		
Выводы:					
			 Дата		
TIOMERICE LIP ALOMADALE			<u> дата</u>		

Литература

- 1. Тимофеев, Г.А. Теория механизмов и машин М.: Юрайт, 2012.
- 2. Смелягин, А.И. Теория механизмов и машин. Курсовое проектирование: Учебное пособие. – М.: ИНФРА-М, 2014.