

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

Кафедра «Технология строительного производства»

Методические указания

по проведению практических занятий по дисциплине

«Технологические процессы в строительстве»

Авторы Османов С. Г., Иванчук Е. В., Жильникова Т. Н.

Ростов-на-Дону, 2019

Аннотация

Содержатся рекомендации студентам по подготовке к проведению практических занятий по дисциплине Технологические процессы в строительстве. Тематика занятий по своему содержанию и объему подобрана в соответствии с читаемым курсом лекций по дисциплине и направлена на закрепление студентами полученных теоретических знаний. Решение задач на практических занятиях будет способствовать подготовке студентов к курсовому проектированию по данной дисциплине. Даны порядок и методика проведения занятий, а также варианты исходных данных для студентов.

Предназначены для студентов направления 08.03.01 «Строительство» (профиль – «Водоснабжение и водоотведение») очной формы обучения. 8

Авторы

к.т.н.,	доцент	кафедры	«Технология	строительного
производ	дства» Осм	анов С. Г.,		
к.т.н.,	доцент	кафедры	«Технология	строительного
производ	дства» Ива	нчук Е. В.,		
к.т.н.,	доцент	кафедры	«Технология	строительног <mark>о</mark>
производ	дства» Жил	іьникова Т. І	Ⅎ.	

Оглавление

Введение	4
Занятие 1	4
Занятие 2	10
Занятие 3	11
Занятие 4	12
Занятие 5	13
Занятие 6	15
Занятие 7	18
Занятие 8	22
Список рекомендуемой литературы	24

Введение

Практические занятия по курсу "Технологические процессы в строительстве" проводятся в целях закрепления студентами теоретических занятий, полученных на лекциях, а также подготовки их к самостоятельной работе по выполнению необходимых расчетных и графических заданий при курсовом и дипломном проектировании и затем к самостоятельной работе их на производстве.

Занятия, как правило, должны выполняться в аудитории. На дом практические работы задаются в случае пропуска студентом занятия или необходимости окончания оформления результатов аудиторных занятий дома отдельными студентами.

Домашняя работа студента должна заключаться в изучении конспектов лекций и рекомендованной литературы к предстоящим занятиям.

Методические рекомендации по проведению отдельных практических занятий

ЗАНЯТИЕ 1

Тема занятия: Определение размеров котлованов при строительстве водопроводно-канализационных (BK) сооружений

Цель занятия: Научиться правильно, определять необходимые размеры котлованов (в зависимости от принятых методов и схем монтажа сооружений), а также подсчитывать объемы земляных работ в каждом конкретном случае (в зависимости от формы и размеров котлована). Выполнить эти расчеты по методике, приводимой в лекциях по курсу, чем обеспечить закрепление полученных знаний.

Контроль готовности студентов к занятию:

Текущий вопрос перед началом занятий по следующим вопросам:

- 1. Какие Вы знаете основные схемы монтажа ВК сооружений?
- 2. Как определить размеры котлована при 1 схеме монтажа?
- 3. То же, при 2 схеме.
- 4. То же, при 3 и 4 схемах.
- 5. Основные расчетные формулы по определению объемов котлованов.
- 6. Формула для определения объема въездной /выездной траншеи.

Содержание и порядок проведения

Исходные данные:

Каждому студенту выдается вариант объекта строительства ВК сооружения с указанием его конструкции и основных размеров (табл. 1).

No	Наименование объекта строительства	Типовой	Основные раз-
Π/Π	паименование объекта строительства	проект	меры
1	2	3	4
1	Осветлители - перегниватели	902-2-315	Диаметр 12 м глубина 9,5 м
2	Метантенки железобетонные	902-2-228	Диаметр 16 м глубина 2,5 м
3	Отстойники канализационные радиальные вторичные из оборонного железобетона (4 шт)	902-2-377	Диаметр 40 м глубина 5,4 м
4	Песколовки аэрируемые	902-2-372	12х9 м глубина 5,4 м
5	Блок отстойников и фильтров производительностью 200 тыс. м/сут	901-3-128	116х120 м глубина 2 м
6	Резервуар для воды емкостью 2000м	4-18-855	64,5х64,5 м глубина 3,5 м
7	Флотатор для очистки сточных вод	902-2-219	Диаметр 15 м глубина 3,7 м
8	Аэротенки с рассредоточенным впуском сточных вод	902-2-300	90х108 м глубина 4,8 м
9	Блок отстойников и фильтров производительностью 100 тыс. м/сут	901-3-98	119х66 м глубина 2 м
10	Отстойники канализационные радиальные первичные диаметром 30м	902-2-378	Диаметр 30 м глубина 6,3 м
11	Градирня вентиляторная многосекцион- ная	901-6-19	32x12 м глубина 2 м
12	Усреднитель концентрации сточных вод	902-2-337	42х6 м глубина 5,4 м
13	Отстойники первичные горизонтальные	902-2-304	24x36 м глубина 3 м
14	Блок емкостей станции биологической очистки	902-3-3	23х12 м глубина 4 м
15	Насосная станция произв. 8000 м/ч	901-2-75	24x66 м глубина 5 м
16	Нефтеотделитель на расход 660 л/с	902-2-45	18х39,4 м глубина 2,4 м
17	Установка для фторирования воды на 63-100 тыс. м/сут	901-8-2	12x12 м глубина 2,5 м
18	Резервуар для воды емк. 20000 м (2 шт) на расст. 10м друг от друга	4-18-855	64,5х64,5 м глубина 3,5 м
19	Аэротенки с рассредоточенным впуском сточных вод	902-2-300	90х108 м глубина 4,8 м

Продолжение таблицы 1

1	2	3	4
20	Блок фильтров и отстойников на 100 тыс. м/сут	901-3-98	119х66 м глубина 2 м
21	Четыре радиальных канализационных отстойника диаметром по 30 м	902-2-378	глубина 3 м расстояние 6 м
22	Усреднитель сточных вод	902-2-337	42х96 м глубина 5,4 м
23	Насосная станция произв. 8000 м/ч	901-2-75	24x66 м глубина 5 м
24	Установка для фторирования воды про- изв. 63-100 тыс. м/сут	901-8-2	12х12 м глубина 2,5 м
25	Отстойники канализационные радиальные диаметром 40 м (4 шт.)	902-2-377	глубина 5,4 м
26	Прямоугольный резервуар для воды емкостью 2000 м	-	24x18x4,8
27	То же, емкостью 3000 м (2 шт)	-	27x24x4,8
28	То же, емкостью 4000 м (2 шт)	-	36x24x4,8
29	То же, емкостью 5000 м (2 шт)	-	36x30x4,8
30	То же, емкостью 6000 м (2 шт)	-	36x36x4,8
31	То же, емкостью 7000 м (2 шт)	-	42x36x4,8
32	То же, емкостью 8000 м (2 шт)	-	48x36x4,8
33	То же, емкостью 9000 м (2 шт)	-	54x36x4,8
34	То же, емкостью 10000 м (2 шт)	-	60x36x4,8
35	То же, емкостью 11000 м (1 шт)	-	66x36x4,8
36	То же, емкостью 12000 м (1 шт)	-	48x54x4,8
37	То же, емкостью 14000 м (2 шт)	-	54x54x4,8
38	То же, емкостью 15000 м (2 шт)	-	60x54x4,8
39	То же, емкостью 17000 м (2 шт)	-	66x54x4,8
40	То же, емкостью 18000 м (1 шт)	-	72x54x4,8
41	То же, емкостью 20000 м (1 шт)	-	78x54x4,8
42	Цилиндрический резервуар для воды емкостью 100 м (4 шт.)	-	D – 6 м; H – 3,5 м
43	То же, емкостью 150 м (4 шт.)	-	D – 7,5 м; H – 3,6 м
44	То же, емкостью 250 м (4 шт.)	-	D – 9,2 м; H – 3,7 м
45	То же, емкостью 400 м (2 шт.)	-	D – 11,5 м; H – 3,75 м
46	То же, емкостью 650 м (2 шт.)	-	D – 15 м; H – 3,8 м

Окончание таблицы

1	2	3	4
47	То же, емкостью 1000 м (2 шт.)	-	D – 18 м; H – 3,85 м
48	То же, емкостью 1600 м (2 шт.)	-	D – 22,5 м; H – 4,05 м
49	То же, емкостью 2500 м (2 шт.)	-	D – 27,7 м; H – 4,15 м
50	То же, емкостью 4000 м	-	D – 35 м; H – 4,2 м
51	То же, емкостью 6500 м	-	D – 43,6 м; H – 4,4 м

Размеры котлованов определяют исходя из общих размеров сооружения в плане, глубины его заложения, крутизны откосов, а также принятых методов выполнения основных производственных процессов. При этом важно учесть схему монтажа будущего сооружения, определяющую схему движения кранов и других машин при монтаже сборных или возведении монолитных сооружения.

Поскольку при устройстве ВК систем строят в основном заглубленные и чаще всего емкостные сооружения, можно выделить следующие четыре основные схемы их монтажа:

схема 1 (кольцевая) - кран и транспортные средства при возведении сооружения перемещаются вокруг него по берме котлована, не заезжая на его дно;

схема 2 - механизмы движутся по дну котлована за пределами сооружения, по его периметру;

схема 3 - механизмы в процессе строительства сооружения перемещаются непосредственно по его днищу;

схему 4 - предусматривает монтаж сооружения одновременно, т.е. параллельно работающими двумя кранами, при котором конструкции крайних стен и примыкающего пролета сооружения монтируют первым краном с передвижением его и транспортных средств по берме котлована, а конструкции внутри сооружения - вторым краном, передвигающимся по днищу сооружения.

По схеме 1 возводят обычно небольшие сооружения, ширина которых в плане или диаметр не превышает 15 м (B_{coop} < 15 м); размеры котлована (ширина B_{κ} и длина L_{κ}) при этом определяются исходя из внешних размеров сооружения с небольшим уширением его дна с каждой стороны для удобства выполнения работ (рис.1, а)

$$B_{\kappa} = B_{\text{coop}} + 2b_1, \tag{1}$$

$$L_{K}=L_{coop}+2b_{1}, \qquad (2)$$

где B_{coop} , L_{coop} — ширина и длина возводимого сооружения по наружному периметру;

 b_1 — ширина свободного пространства между подошвой откоса выемки выступающей частью днища сооружения (принимается по условиям техники безопасности и удобства работ не менее 0.5-1.0 м).

По схеме 2 возводят сооружения средних габаритов, размеры которых в плане превышают $15 \text{м} \left(B_{\text{соор}} > 15 \text{м} \right)$ при значительном их заглублении и большой массе монтажных элементов. Размеры котлована при этом должны быть достаточными для размещения сооружений, а также для проезда кранов и транспорта вокруг них по дну выемки (рис.1, б) и раскладки сборных конструкции по фронту работ

$$B_{\kappa} = D_{H} * n + (n-1)b_{2} + b_{3},$$
 (3)

$$L_{\kappa} = D_{H} * n_{1} + (n_{1} - 1)b_{2} + b_{3},$$
 (4)

где D_H – диаметр или размер сооружения по наружному периметру;

n и n_1 — число сооружений или секций в одном ряду соответственно в поперечном и продольном направлениях;

b₂ - расстояние между сооружениями в свету;

 b_3 - уширение котлована по дну для безопасного выполнения монтажных работ и движения транспорта

$$b_3=1*2+2R_m=2(1+R_m),$$
 (5)

где 1 – просвет между движущимся краном и сооружением (или откосом выемки);

R_m – радиус поворота машинной платформы крана.

При возведении сооружений из монолитного железобетона размеры котлована определяются по тем же формулам, только с добавлением B_{κ} и L_{κ} удвоенной величины $2b_{on}$ (где b_{on} - ширина опалубочного агрегата или крепления стационарной опалубки и лесов на уровне дна котлована).

По схеме 3 обычно строят крупные сооружения (рис.1, в), размеры которых в плане в несколько (n) раз превышают 15м ($B_{coop} > 15$ n, м). В этом случае размеры котлована равны:

$$B_{\kappa} = B_{\text{coop}} + b_1 + b_4, \tag{6}$$

$$L_{\kappa} = L_{\text{coop}} + 2b_1, \tag{7}$$

где b_4 — уширение котлована для монтажа конструкций последней секции сооружения (см. рис.1, в);

 b_1 – уширение котлована в торцах сооружения для заезда и выезда крана и транспортных средств (принимается равным 6-7 м и зависит от радиуса их поворота)

$$b_4 = 1*3 + 2R_m + B_a,$$
 (8)

где ${\sf F}_a$ – ширина базы грузовых автомашин на уровне кузова (габарит).

По схеме 4 также строят крупные сооружения при $B_{coop} > 15$ n, м.

Размеры котлованов, поскольку уширения их дна на величины b_3 или b_4 не требуются, могут быть определены по формулам, применяемым при 1 схеме.

Размеры котлованов поверху определяют исходя из их размеров понизу B_{κ} , L_{κ} , глубины выемки H и принятых коэффициентов заложения откоса m для соответствующих грунтов.

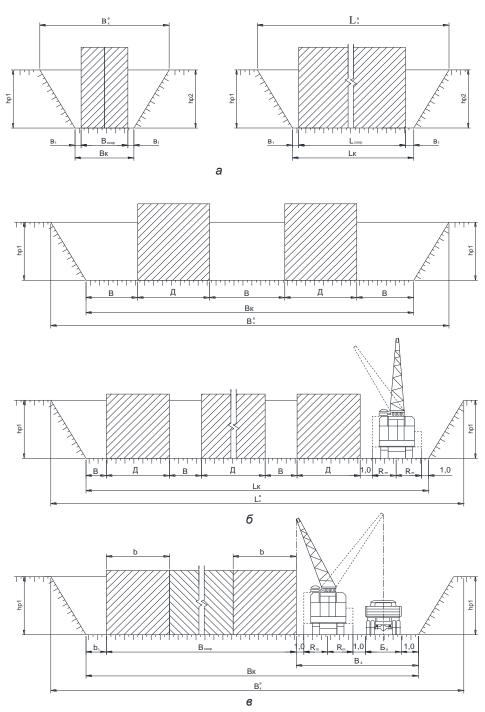


Рис. 1. Определение размеров котлованов емкостных сооружений в зависимости от схемы движения монтажного крана:

- а при движении крана по берме котлована (схема I);
- 6 при движении по дну котлована вокруг сооружения (схема II);
- в с заездом на днище сооружения (схема III).

Значение коэффициента m в зависимости от вида грунта и глубины выемки определяют по СНиП 12-03-2001 [16] и учебнику Салова Ю.З. и Замятина Г.В. [14].

Тема занятия: Подсчет объемов земляных работ при устройстве котлованов под ВК сооружения.

Данное занятие выполняется с использованием результатов предыдущего.

Уточнив по приведенным выше формулам размеры котлована понизу B_{κ} , L_{κ} , назначив крутизну откосов m и зная глубину котлована, определяют размеры котлована поверху $B_{\kappa}^{\rm B}$, $L_{\kappa}^{\rm B}$, и затем вычисляют объем грунта, подлежащего разработке при устройстве котлована.

Объем котлована прямоугольной формы с откосами определяют по формуле опрокинутой усеченной пирамиды (призматоида)

$$V_{K} = \frac{H}{6} \left[B_{K} L_{K} + B_{K}^{B} L_{K}^{B} + (B_{K} + B_{K}^{B}) (L_{K} + L_{K}^{B}) \right], \tag{9}$$

где Вк, Lк – ширина и длина котлована по дну;

 B_{κ}^{B} , L_{κ}^{B} -то же, поверху;

Н – глубина котлована.

Объем котлована, имеющую форму многоугольника с откосами

$$V_{K} = \frac{H}{6} (F_{1} + F_{2} + 4F_{cp}), \tag{10}$$

где F_1 и F_2 – площади дна и верха котлована, м;

 F_{cp} – площадь сечения по середине его высоты, м.

Объем квадратного котлована с откосами определяют по формуле опрокинутого призматоида

$$V_{K} = \frac{H}{3} (F_{1} + F_{2} + \sqrt{F_{1} * F_{2}}), \tag{11}$$

Объем круглого в плане котлована с откосами определяют по формуле опрокинутого усечения конуса

$$V_{K} = \frac{\pi H}{3} (R^2 + r^2 + Rr),$$
 (12)

где R и r – радиусы верхнего и нижнего оснований котлована.

Котлованы для сооружений, состоящих из цилиндрической и конической частей (радиальные отстойники, метантенки и др.), которые обычно возводятся группами, т.е. по нескольку в одном котловане, отрывают в два этапа: вначале устраивают общий прямоугольный котлован с размерами B_{κ} , L_{κ} понизу и B_{κ}^{B} , L_{κ}^{B} поверху от отметки заложения их цилиндрических частей, а затем делают углубления для конических частей каждого сооружения. Соответственно и объемы земляных работ определяют в два этапа: вначале объем общего прямоугольного котлована по приведенным выше формулам, а затем объемы конических углублений с использованием приведенной формулы усеченного конуса.

При подсчетах объемов земляных работ следует также учитывать объемы въездных и выездных траншей $V_{\mbox{\tiny B.Tp.}}$

$$V_{\text{B.Tp.}} = \frac{H^2}{6} \left(3b + 2mH \frac{m^1 - m}{m^1} \right) (m^1 - m), \tag{13}$$

где Н – глубина котлована в местах устройства траншей;

b — ширина их понизу, принимаемая при одностороннем движении 4,5 м, при двустороннем — 6 м;

т – коэффициент заложения откоса котлована;

 ${\rm m}^1-$ коэффициент откоса (уклон) въездной или выездной траншеи (от 1:10 до 1:15).

Общий объем котлована с учетом выездных и въездных траншей

$$V_{\text{общ}} = V_{K} + nV_{B.Tp.}, \tag{14}$$

где V_{κ} – объем собственного котлована;

n – количество въездных и выездных траншей;

 $V_{\text{в.тр.}}$ – их объем.

ЗАНЯТИЕ 3

Тема занятия: Определение размеров траншей для прокладки трубопроводов и коллекторов.

Цель занятия: Закрепить полученные на лекциях знания по производству земляных работ, определении размеров траншеи и подсчету объемов работ по рытью траншей, устройству приямков и обратной засыпке трубопровода.

Контроль готовности студентов к занятию

Текущий выборочный опрос по следующим вопросам:

- 1. Как определяется ширина траншеи по дну и ее проверка по ширине ковша экскаватора.
 - 2. Определение размеров поперечного сечения траншеи.
 - 3. Как построить продольный профиль трассы трубопровода?
 - 4. Формулы расчета объемов земляных работ при устройстве траншеи.
 - 5. Табличный способ расчета объема траншеи.

Содержание и порядок проведения занятия

Исходные данные:

- 1. План трассы трубопровода в горизонталях (по заданию преподавателя)
- 2. Вариант типа труб, их диаметра и др. данные также по заданию преподавателя.

Порядок проведения занятий следующий:

- 1. Путем опроса студентов напоминается общая методика решения задач, связанных с определением размеров и объемов траншеи для прокладки трубопроводов в различных условиях трассы.
- 2. Построение продольного профиля на основании варианта заданного плана трассы в горизонталях. При этом профиль земной поверхности определяется черными отметками и условно изображается в виде отрезков прямых линий между пикетными и характерными точками. Профиль дна траншеи определяют проектные (красные) отметки в этих же точках.

Характерными (плюсовыми) точками являются места изменения геологических условий вдоль трассы, уклона и поворота трубопровода. Пикетные точки в данном случае рекомендуется назначать через 100 м по длине трубопровода.

Величины чёрных отметок в точках, не попавших на линии горизонталей,

определяются методом линейной интерполяции между двумя смежными горизонталями.

Все отметки определяются с точностью до второго знака после запятой.

Численные значения рабочих, черных и красных отметок записываются в так называемой 'легенде" под линиями профилей земной поверхности и дна траншеи в местах сечении на соответствующих пикетных и характерных точках.

3. Размеры траншей определяют следующим образом. Наименьшую ширину траншей по дну $B_{\tau p}$ определяют в зависимости от вида и диаметра труб, способа их прокладки по табл.2 СП 45.13330.2017 [15]. При этом необходимо иметь в виду, что при разработке грунта экскаваторами она должка быть не меньше, чем ширина режущей кромки ковша экскаватора с добавлением в песчаных грунтах и супесях 0,15 м, а глинах и суглинках 0,10 м. Ширина ковша может быть определена исходя из его геометрической емкости по формуле

$$b_k = 1.2\sqrt[3]{q} \tag{15}$$

где q – геометрическая емкость ковша, $м^3$.

При устройстве траншеи с вертикальными откосами и креплениями ширину траншеи увеличивают на их толщину, а при необходимости работы в траншее людей, наименьшее расстояние в свету между трубопроводом (коллектором) и стенами должно быть не менее 0,7 м.

Ширина траншеи по верху зависит от крутизны откосов и определяется по формуле

$$B_{\rm Tp}^{\rm B} = B_{\rm Tp} + 2mH, \tag{16}$$

где B_{rp} – ширина траншеи по дну, м;

m – показатель крутизны откоса траншеи (см. табл. 4.4 и 4.5 учебника [14]; H – глубина (рабочая отметка) траншеи в рассматриваемом сечении.

Площадь поперечного сечения траншеи с откосами определяется как площадь трапеции по формуле

$$F = \frac{B_{\text{Tp}} + B_{\text{Tp}}^{B}}{2} * H = (B_{\text{Tp}} + mH)H$$
 (17)

Глубина траншеи Н зависит от глубины заложения труб, которая устанавливается заданием и определяется по продольному профилю.

Поперечные профили вычерчиваются для точек, где изменяется ширина дна траншеи или крутизна откосов.

Варианты заданий принять по методическим указаниям [22]. Продольный профиль по трассе трубопровода или коллектора необходимо построить по плану трассы в горизонталях в соответствии с вариантом задания из методических указаний [22].

ЗАНЯТИЕ 4

Тема занятия: Подсчет объемов земляных работ при устройстве траншей.

Построенный профиль с рабочими отметками используют для подсчета объема земляных работ. Для этого, зная ширину траншеи по дну, $B_{\text{тр}}$, глубину

выемки и требуемую крутизну откосов, определяют размеры поперечных сечений траншеи в пикетах и характерных точках.

Объем траншеи с наклонными откосами $V_{\mbox{\tiny TP}}$ на участке между смежными пикетами можно определить по формуле:

$$V_{\text{Tp}.i} = \frac{F_1 + F_2}{2} l_i \tag{18}$$

где F_1 и F_2 – площади двух крайних поперечных сечений траншей (в местах пикетов), M^2 ;

 l_{i} – расстояние между поперечниками (пикетами), м.

Его принимают в пределах от 10 до 100 м.

Площади поперечников F_1 и F_2 определяются по формулам:

$$F_1 = (B_{TP} + mH_1)H_1, \qquad (19)$$

$$F_2 = (B_{Tp} + mH_2)H_2$$
, (20)

где H_1 и H_2 – глубина траншеи или рабочие отметки ее в двух крайних поперечных сечениях, м.

Объем траншеи с вертикальными откосами определяется по формуле:

$$V_{\text{Tp}.i} = \frac{B_{\text{Tp}}(H_1 + H_2)}{2} l_i$$
 (21)

Общий объем траншеи будет равен сумме ее объемов на отдельных участках

$$V_{\text{Tp.}} = \sum V_{\text{Tp.}i}$$
 (22)

Подсчет объемов выполняется в табличной форме (табл. 2).

Таблица 2

Точка		$\mathrm{B}_{\mathrm{Tp}},$	Н,		F ₁ ,	$F_1 + F_2$	1,	$V_{\mathrm{Tp.i}}$,
ПК	+	M	М	m	и ₁ , М	2 M	<i>l</i> ₁ , М	v Tp.1, M
0	-	1	2,0	1	6	7,7	100	770
1	-	1	2,6	1	9,4	14,6	100	1460
2	-	1	3,6	1,25	19,8	14,6	40	584
3	40	1	2,6	1	9,4	7,7	60	462
		1	2,0	1	6			
								Σ -
								3276

ЗАНЯТИЕ 5

Тема занятия: Выбор экскаватора и схемы разработки котлована для ВК сооружения

Цель занятия: Получить практические навыки по выбору типа экскаватора для разработки котлована по техническим параметрам, определению. Схемы его разработки.

Выбор экскаватора. Котлованы чаще всего разрабатывают одноковшовыми экскаваторами. Причем, для разработки широких котлованов с погрузкой грунта в транспортные средства используют экскаваторы с прямой лопатой, а

для отрывки небольших котлованов с - обратной лопатой. Для устройства котлованов и каналов применяют экскаваторы - драглайны. Виды экскаваторов и их характеристики приведены в справочниках [21,26], а также в ЕНиР [9].

Выбор марки экскаватора определяется емкостью и высотой ковша. Для разработки крупных котлованов выбирают экскаваторы с емкостью ковша (0,5; 0,8; 1,5 м). При этом, однако, должно соблюдаться требование, чтобы высота ковша не превышала трехкратной высоты забоя (высота копания H).

Выбор метода или способа разработки котлована во многом зависит от размеров и глубины котлована.

- 1. Неширокие котлованы (шириной до $1,5^3$ R) разрабатывает лобовой проходкой с односторонней погрузкой в транспортные средства при движении экскаватора по оси котлована (рис.2, а).
- 2. При ширине котлована от 1,5 R до 1,9 R разработку ведут лобовой проходкой экскаватора с двусторонней подачей транспортных средств (рис.2, б).

Наибольшая ширина лобовой проходки поверху для экскаватора с прямой лопатой при движении его по прямой определяется по формуле

$$B = 2\sqrt{R_0^2 - l_n^2} \,, (23)$$

где R_0 – оптимальный радиус копания экскаватора, м (принимается равным 0,7-0,8 от наибольшего радиуса копания);

 l_n- длинна рабочей передвижки экскаватора.

- 3. Котлованы шириной от 1,9 до 2,5 R разрабатывают уширенной лобовой проходкой с передвижением экскаватора по зигзагу (рис.2, в).
- 4. Котлованы шириной до 3R разрабатывают поперечно-торцевой проходкой (рис.2, Γ).
- 5. Особо широкие котлованы (более 3,5 R) разрабатывают вначале лобовой, а затем боковыми проходками (рис.2, д)

Наибольшая ширина проходок будет равна для зигзагообразной

$$B = 2\sqrt{R_0^2 - l_n^2} + 2nR_c, \tag{24}$$

для поперечно-торцевой

$$B = 2\sqrt{R_0^2 - l_n^2} + 2nR_c,$$
 (25)

для боковой

$$B = 2\sqrt{R_0^2 - l_n^2} - mH + 0.7R_c,$$
 (26)

где R_c – радиус копания на уровне стоянки экскаватора;

n – количество поперечных передвижек экскаватора;

т – коэффициент откоса;

Н – высота забоя.

Количество боковых проходок при разработке котлованов по схеме (рис.2, д) составит

$$n = \frac{B_K^B - B_{\pi o 6.\pi p.}}{B_{6 o \kappa.\pi p.}}, \tag{27}$$

где $B_{\kappa}{}^{\scriptscriptstyle B}$ – ширина котлована по верху, м;

 $B_{\text{лоб.пр.}}$ — ширина лобовой проходки, м;

 $B_{\text{бок.пр.}}$ – ширина боковой проходки, м.

При получении дробного числа его округляют.

ЗАНЯТИЕ 6

Тема занятия: Выбор экскаватора и схемы разработки траншеи для трубопровода или коллектора

Цель занятия: Получить практические навыки по выбору типа экскаватора для разработки траншеи по техническим параметрам, определению схемы работ при механизированной разработке грунта в траншеях

Контроль готовности студентов к занятию

Текущий выборочный опрос по вопросам, выносимым на контроль из лекционного материала.

- 1. При каких условиях целесообразно применять многоковшовые или одноковшовые экскаваторы с различным рабочим оборудованием (обратная лопата, драглайн)?
 - 2. Схемы разработки траншеи одноковшовыми экскаваторами.
 - 3. Условия, определяющие выбор схемы разработки траншеи.
- 4. Мероприятия по технике безопасности при экскаваторной разработке грунта в траншеях.

Содержание и порядок проведения занятий

Исходные данные:

- 1. Вариант подлежащей разработке траншеи, ее размеры, объем и характеристики грунта принимаются студентом по результатам выполнения практических занятий №3 и 4.
 - 2. Срок выполнения работ задается преподавателем.

Порядок проведения занятия

- 1. Путем опроса студентов уточняются возможные схемы разработки грунта при отрывке траншеи.
- 2. Выдается индивидуальное задание каждому студенту с использованием, полученных в результате выполнения практических занятий №3 и 4 данных.
- 3. Описывается методика выбора экскаваторов по техническим параметрам, приведенным в ЕНиР [9] и справочнике [4], исходя из условий индивидуального задания.

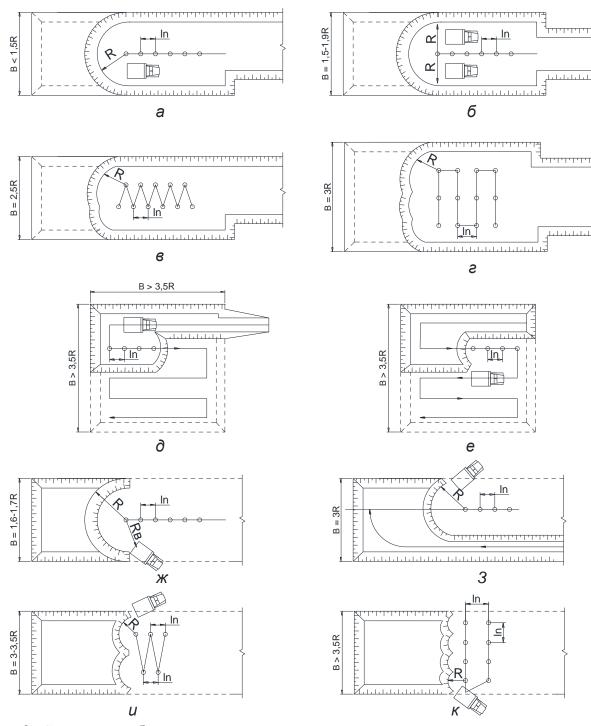


Рис. 2. Схемы разработки котлованов

a — лобовой проходкой с односторонней погрузкой в транспорт; δ — лобовой проходкой с двухсторонней погрузкой в транспорт; ϵ — уширенной лобовой проходкой с перемещением экскаватора по зигзагу; ϵ — уширенной лобовой проходкой с перемещением экскаватора поперек котлована; δ — боковой проходкой экскаватором прямая лопата; ϵ , ϵ , ϵ , ϵ , ϵ , ϵ , ϵ — торцовой проходкой с перемещением экскаватора обратная лопата вдоль котлована; ϵ , ϵ — то же, поперек котлована.

Для разработки траншеи применяют одноковшовые экскаваторы с обратной лопатой и драглайны, а также многоковшовые экскаваторы. Тип экскаватора

выбирают на основании исходных данных (размеров траншеи, объемов земляных работ и продолжительности производства работ).

Рабочие параметры, по которым должен выбираться тип экскаватора, следующие: емкость q и ширина ковша b_k , наибольшая глубина копания H_k , радиусы резания R_p и выгрузки R_B , а также высота выгрузки на транспорт H_B . Рабочие параметры некоторых типов экскаваторов приведены в EHuP [9], а также в справочниках [21,26].

Основным параметром, по которому выбирается экскаватор является глубина копания H_{κ} . Она должна быть не меньше глубины траншеи H_{τ} .

Во избежание разработки излишних объемов грунта емкость ковша следует подбирать из условия соответствия его ширины, определяемой по формуле (15).

Разработка грунта может вестись в отвал (навымет) или с погрузкой в транспортные средства. В последнем случае высота выгрузки на транспорт $H_{\mbox{\tiny B}}$ должна быть не менее высоты транспорта.

Радиусы выгрузки $R_{\scriptscriptstyle B}$ и резания $R_{\scriptscriptstyle p}$ применяемого экскаватора определяют применяемую схему разработки траншеи. Выбор схемы зависит от соотношения между радиусом выгрузки $R_{\scriptscriptstyle B}$ и требуемым радиусом выгрузки $R_{\scriptscriptstyle B.Tpe6.}$

Так, если R_B = $R_{\text{в.треб}}$, то ось движения экскаватора должна совпадать с осью траншеи. Если R_B < $R_{\text{в.треб}}$, то ось движения экскаватора должна быть сдвинута в сторону отвала на расстояние C, равное $R_{\text{в.треб}}$ – R_B . В этом случае экскаватор движется параллельно оси траншеи со смещением в сторону отвала и односторонней выгрузкой грунта. Но при этом должно подтвердиться и другое условие: равенство наибольшего практического радиуса резания R_p расстоянию от бровки траншеи со стороны, противоположной отвалу грунта, до оси движения экскаватора

$$C + \frac{B_{\rm Tp}^{\rm B}}{2} \ge R_p , \qquad (28)$$

где $\frac{B_{\text{тр}}^{\text{B}}}{2}$ — половина ширины траншеи поверху.

Движение экскаватора по зигзагообразной схеме параллельно оси траншеи с двусторонней выгрузкой грунта применяют при отрывке широких траншей, когда

$$C + \frac{B_{Tp}^B}{2} > R_p$$
, a $R_B << R_{B.Tpe6}$

При больших объемах земляных работ траншеи можно разрабатывать двумя параллельно работающими экскаваторами. В этом случае, как и в предыдущем варианте, вынутый грунт укладывают по обе стороны траншеи. Для прокладки труб отвал с одной из берм необходимо бульдозером отодвинуть в сторону, на 15-20 м.

Траншеи с вертикальными стенками разрабатывают чаще всего многоковшовыми экскаваторами. В трубопроводном строительстве наиболее распространены скребковые двухцепные экскаваторы типа ЭТУ-354А и ЭТЦ-252, способные отрывать траншеи прямоугольного и трапецеидального профиля глубиной до 4 м, шириной по дну 0,8 и 1,1 м и шириной по верху до 2,8 и в грунтах 1-3

групп. Траншеи с вертикальными стенками в связных грунтах (суглинках, глинах) для укладки трубопроводов плетями на глубину до 3 м разрабатывают роторными и цепными траншейными, экскаваторами без креплений. При необходимости разработки траншеи более глубоких, чем позволяют возможности выпускаемых экскаваторов непрерывного действия, их разрабатывают комбинированным способом в несколько этапов, когда вначале до определенной глубины делают выемки с помощью бульдозеров или скреперов, а затем роют траншеи многоковшовыми экскаваторами.

ЗАНЯТИЕ 7

Тема занятия: Подбор кранов по техническим и экономическим параметрам для прокладки трубопроводов.

Цель занятия: Привить студентам навыки по выбору типов и марок кранов при строительстве конкретных трубопроводов и коллекторов.

Контроль готовности студентов к занятию

Текущий выборочный опрос по следующим вопросам и разделам.

- 1. Этапы выбора типа и марок кранов.
- 2. Что такое «выбор крана по техническим параметрам?»
- 3. Назовите основные грузоподъемные характеристики кранов.
- 4. Методика выбора кранов. Основные формулы для определения характеристик кранов.
 - 5. Выбор оптимального крана.
 - 6. Определение количества кранов.

Содержание и порядок проведения занятия

Исходные данные: Для выбора крана по монтажу трубопроводов в табл. 3 приведены применительно к каждому варианту необходимые исходные данные.

Порядок проведения занятия

После опроса студентов по теме занятия и выдачи варианта занятия студент выполняет его самостоятельно по нижеприведенной методике.

Краны выбирают в два этапа. На первом - выбирают технически возможные типы кранов по основным рабочим параметрам (вылет крюка, высота подъема или глубина опускания в траншею крюка, грузоподъемность), а на втором – более экономичный, т.е. оптимальный, тип крана.

I ЭТАП: Выбор крана по основным рабочим параметрам производят по следующей методике. Вначале определяют положение крана относительно траншеи, а затем — необходимый минимальный вылет крюка ($L_{\rm K}$).

Вари-	Вид труб	Диа- метр, мм	Глу- бина тран- шеи, м	Кру- тизна отко- сов, 1: m	Способ про- кладки	Особые условия
1	2	3	4	5	6	7
1	Железобетон	800	2,4	1:1	Отдельными трубами	Монтаж с трансп. сред.
2	Стальные	1420	3,0	1:0,75	Непрерыв- ной плетью	
3	Пластмассовые	630	2,2	1:0,5	Укрупнен- ными секци- ями	
4	Железобетон	1200	3,0	1:0,75	Отдельными трубами	С рас- кладкой на берме
5	Чугунные	1000	2,0	1:1	-//-	
6	Асбестоце- мент	400	1,6	1:1	Укрупнен- ными секци- ями	
7	Керамиче- ские	600	2,0	1:0,5	Отдельными трубами	С рас- кладкой на берме
8	Стальные	1000	1,8	1:1	Укрупнен- ными секци- ями 1-24 м.	
9	Бетонные	1000	2,3	1:0,5	Отдельными трубами	С раскл.
10	Керамиче- ские	500	1,8	1:1	-//-	-//-
11	Асбестоце- мент	500	1,6	1:0,75	Трехтрубн. секциями	
12	Стальные	800	1,9	1:0,5	Укрупнен- ными секци- ями 1-24 м.	
13	Керамиче- ские	450	1,8	1:1	Секция по труб.	
14	Асбестоце- мент	350	1,7	1:0,75	Отдельными трубами	С раскл.

Продолжение таблицы 3

1	2	3	4	5	6	7
15	Чугунные	600	1,9	1:1	Отдельными трубами	С раскл.
16	Чугунные	900	2,8	1:0,75	-//-	-//-
17	Железобетон	1600	3,0	1:1	-//-	Монтаж с трансп. сред.
18	Стальные	1200	3,0	1:0,5	Укрупнен- ными секци- ями 1-24 м.	
19	Керамиче- ские	400	2,0	1:1	Отдельными трубами	С рас- клад.
20	Пластмассо-	500	1,2	1:0,75	-//-	-//-
21	Железобетон	1000	2,6	1:0,5	-//-	-//-
22	Стальные	800	2,0	1:1	Плетью	
23	Бетонные фальц	800	2,2	1:0,5	Отдельными трубами	С рас- клад.
24	Стальные	500	4,0	1:0,5	Плетями	
25	Стальные	400	3,5	1:0,5	Отдельными трубами	

При прокладке трубопровода из одиночных труб в трапецеидальные траншеи вылет крюка

$$L_{K} = 0.5b+1.2mH+0.5B_{Kp}=0.5(b+B_{Kp})+1.2mH,$$
 (29)

где b – ширина траншеи по дну;

m – коэффициент крутизны откоса;

Н – глубина траншеи;

 \mathbf{F}_{kp} – ширина базы крана.

При монтаже трубопроводов из укрупненных секций длинной до 24 м

$$L_{K} = 0.5b + 1.2mH + d_{H} + 1 + 0.5B_{KD}, \tag{30}$$

где $d_{\scriptscriptstyle H}$ – наружный диаметр укладываемых труб.

Укладку изолированных плетей из стальных труб ведут с помощью кранов-трубоукладчиков, вылет крюка которых:

$$L_{K} = 0.5b + mH + 2,$$
 (31)

Если укладку плетей ведут стреловыми кранами, то их размещают по другую сторону от плетей. Необходимый вылет крюка при этом составит:

$$L_{K} = 0.5b + mH + l_{5p1} + d_{H} + l_{5p2} + 0.5B_{Kp},$$
 (32)

где $l_{\text{бр1},}\,l_{\text{бр2}}$ — соответственно расстояние от бровки траншеи до трубной плети и от нее до крана ($l_{\text{бр1}}$ = 1 м; $l_{\text{бр2}}$ = 0,5 – 1 м).

Определив требуемый вылет крюка для выбранной схемы работы крана, устанавливают необходимую его грузоподъемность.

Грузоподъемность крана подсчитывают исхода из максимального груза, который должен поднять кран на вылете крюка L_{κ} . Необходимый груз при этом определяется массой монтируемых труб или их секций и плетей с учетом массы грузоподъемных приспособлений.

Получив значение вылета крюка необходимой грузоподъемности, по справочникам [21, 26] подбирают соответствующие типы и марки кранов или крановтрубоукладчиков, используя приведенные в них графики зависимости грузоподъемности кранов от вылета крюка и длины их стрелы.

2 ЭТАП: Выбор экономичного крана

Из нескольких вариантов выбранных кранов путем их технико-экономического сравнения необходимо выбрать более экономичный по себестоимости монтажных работ:

$$C=\Im_{p}/V, \qquad (33)$$

где $Э_p$ — эксплуатационные расходы на прокладку предусматриваемого участка трубопровода, руб.;

V – объем работ, т.е. протяженность трубопровода, пог. м.

Эксплуатационные расходы

$$\Theta_{p} = nC_{M.CM} + 3_{p} + H_{p}, \tag{34}$$

где п – число смен работы крана на прокладке трубопровода;

См.см – стоимость машиносмены крана, руб/смену;

 3_p – заработная плата рабочих, включая машинистов, руб.;

 H_p — накладные расходы (принимаются в размере 10-15% от общей суммы всех других затрат).

Определив все входящие в предыдущую формулу величины, можно вычислить Θ_p , а затем - C.

Число смен работы крана п можно определить путем умножения нормы времени $H_{\text{вр}}$ по EHиP [10,11] на общую протяженность трубопровода, разделив на 8. Стоимость машиносмены крана ($C_{\text{м-см}}$) вычисляется но табл. 10 учебного пособия [29] в зависимости от типа крана. Заработную плату (3_p) вычисляют по расценкам ЕНиР, умножая на общий объем работ. Исходные данные для вычисления накладных расходов (H_p) можно принять по справочнику "Строительные краны" [20].

Вычислив Э_р и затем С для каждого из вариантов, выбирают более экономичный по себестоимости монтажных работ.

При выборе кранов необходимо учитывать не только экономические показатели, но и их технические качества - проходимость в условиях трассы, устойчивость, производительность. Например, в пределах города можно использовать пневмоколесные краны, а в полевых условиях - на гусеничном ходу. Для прокладки магистральных стальных трубопроводов большой протяженности плетями целесообразно использовать мощные краны-трубоукладчики на гусеничном ходу.

ЗАНЯТИЕ 8

Тема занятия: Подбор кранов по техническим и экономическим показателям для монтажа ВК сооружений

Краны для монтажа сборных строительных конструкций ВК сооружений следует выбирать в два этапа. В начале, на 1 этапе, надо выбрать несколько вариантов технически пригодных кранов, а затем, на 2 из них выбирают более экономичный вариант, т.е. кран (по приведенным затратам)

1 ЭТАП. Требуемый вылет крюка крана зависит от принятой схемы производства монтажных работ (1,2,3 или 4), выбор которых зависит от общих размеров емкостного сооружения в плане. Возможные схемы монтажа рассмотрены в практическом занятии №1.

При 1-й схеме монтажа необходимый вылет крюка

$$L_{\kappa} = 0.5B_{\kappa} + 1.2mH + 0.5B_{\kappa p},$$
 (35)

где B_{κ} – ширина котлована по дну, м;

т – коэффициент крутизны его откоса;

Н – глубина котлована, м;

 ${\sf F}_{\sf kp}$ – ширина базы крана, м.

При монтаже сооружения по 2 и 3 схемам, т.е. непосредственно с днища:

$$L_{K} = R_{M} + 1 + 0.5\delta_{1}, \tag{36}$$

где $R_{\text{м}}$ – радиус поворота машинной платформы крана, м;

 δ_1 – толщина монтируемых сборных элементов, м;

Минимальный вылет крюка до транспортных средств при доставке элементов панелевозами:

$$L_{K}^{*} = R_{M} + 1 + 0.5B_{\Pi} + \delta_{2}, \tag{37}$$

а при доставке их в горизонтальном положении на бортовых автомобилях (прицепах, трайлерах)

$$L_{K}^{*} = R_{M} + 1 + 0.5B_{a},$$
 (38)

 δ_2 – расстояние между осями панелевоза и доставленной, но еще не снятой с него панелью.

Из полученных значений L_{κ} и $L^{\hat{}}_{\kappa}$ в данном случае следует принимать большее, чтобы производить монтаж и разгружать элементы при одинаковом вылете крюка крана.

При монтаже по комбинированной 4 схеме, сочетающей в себе элементы 1 и 3 схем, наиболее тяжелые элементы (стеновые панели) крайних пролетов (секций) сооружения монтируют с передвижением крана №1 по берме котлована (схема 1), а внутрирасположенные конструкции — с использованием другого крана (№2), передвигающегося по днищу сооружения (по схеме 3). Таким образом, необходимый вылет крюка крана №1 определяют, как при схеме 1 (т.е. по формуле (35)), а для крана №2 — по формуле (36).

Определив требуемый вылет крюка для выбранной схемы монтажа соору-

жения, устанавливают необходимую для крана грузоподъемность и высоту подъема сборных элементов.

Грузоподъемность крана определяют, исходя из необходимости подъема наиболее тяжелых элементов (с учетом массы монтажных приспособлений) на расчетном вылете крюка ($L_{\rm k}$). Получив значения вылета крюка и необходимой грузоподъемности по имеющимся в справочниках «Строительные краны», в том числе в справочнике под ред. В.П. Становского [20] таблицам и графикам зависимости грузоподъемности от вылета крюка подбирают необходимые типы (марки) кранов.

2 ЭТАП. Технико-экономическое сравнение кранов и выбор оптимального можно выполнить по себестоимости монтажных работ.

$$C=\mathfrak{I}_{\mathfrak{p}}/V, \qquad (39)$$

где $Э_p$ – эксплуатационные расходы на выполнение заданного объема монтажных работ, руб;

V – объем работ (количество сборных конструкций, т или M^3).

Эксплуатационные расходы

$$\Theta_{p} = nC_{M.cM} + 3_{p} + H_{p},$$
 (40)

где С_{м.см} – стоимость машино-смены крана, руб/смену;

n – число смен работы;

 3_p – заработная плата рабочих, включая машинистов, руб.;

 H_p — накладные расходы, принимаемые в размере 10-15% от общей суммы всех других расходов.

Исходные данные для определения стоимости машино-смены строительных кранов приведены в табл. 83-86 справочника под ред. В.П. Станевского [20].

Наиболее экономичный или оптимальный кран будет тот, при котором себестоимость монтажных работ наименьшая.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Белецкий Б.Ф. Технология строительных и монтажных работ. Учеб, для вузов. М.: Высшая школа, 1986. 384 с.
- 2. Белецкий Б.Ф. Технология и организация строительства водопроводно-канализационных сетей и сооружений: Учеб, для техн. -М.: Стройиздат, 1992. 318 с.
- 3. Белецкий Б.Ф. Технология прокладки трубопроводов и коллекторов различного назначения. –М.: Стройиздат, 1992. 260 с.
- 4. Белецкий Б.Ф., Савков В.Г., Еремкин А.М. Монтаж наружных трубопроводов: Справочник. Киев: Будивельник, 1985. 105 с.
- 5. Басс Г.М., Белецкий Б.Ф., Внадыченко Г.П. Строительство водопроводных очистных станций. Учеб, пособие. -М.: Высш. школа, 1979. -172 с.
- 6. Белецкий Б.Ф., Зотов Н.И., Ярославский Л.В. Конструкции водопроводно-канализационных сооружений: Справ, пособие /Под общ. ред. Б.Ф. Белецкого. -М.: Стройиздат, 1989. 448 с.
- 7. Вхадычеяко Т.П., Белецкий Б.Ф. Технология строительства водопроводных и канализационных сооружений. Киев: Высш. школа, 1982. 335 с.
- 8. Бородавкин П.П., Березин В. Л. Сооружение магистральных трубопроводов. -М.: Недра, 1987. 472 с.
- 9. ЕНиР. Сборник Е2. Вып. 1. Механизированные и ручные земляные работы. -М.: Стройиздат, 1989. 224 с.
- 10. ЕНиР. Сборник Е4. Монтаж сборных и устройство, монолитных железобетонных конструкций. Вып. 1. Здания и пром. сооружения. -М.: Стройиздат, 1987. 64 с.
- 11. ЕНиР. Сборник Е9. Сооружение систем теплоснабжения, водоснабжения, газоснабжения и канализации. Вып. 2. Наружные сети и сооружения. -М.: Прейскурант издат, 1987. 95 с.
- 12. ЕНиР. Сборник Е13. Расчистка трассы линейных сооружений от леса. -М.: Стройиздат, 1988. 30 с.
- 13. ЕНиР. Сборник Е22. Сварочные работы. Вып. 1. Конструкций зданий и пром. сооружений. -М.: Стройиздат, 1987. 101 с.
- 14. Садов Ю.З., Замятин Г.В. Инженерные сооружения основы строительного производства. -М.: Стройиздат, 1990. 367 с.
- 15. СП 45.13330.2017 Земляные сооружения, основания и фундаменты. М.: Стандартинформ, 2017.
- 16. СНиП 12-03-2001. Безопасность труда в строительстве. Часть 1. Общие требования. М.: ГУП ЦПП, 2001.
- 17. СНиП 12-04-2002. Безопасность труда в строительстве. Часть 2. Строительное производство. М.: ГУП ЦПП, 2002.

- 18. СП 129.13330 Наружные сети и сооружения водоснабжения и канализации. М.: Стандартинформ, 2017.
- 19. СНиП 1.04.03.-85. Нормы продолжительности строительства, и задела в строительстве предприятий, зданий и сооружений. -М.: Стройиздат, 1987. 552 с.
- 20. Справочник. Строительные краны /Под ред. В.П. Станевского Киев.: Будивельник., 1984. 238 с.
- 21. Справочник строителя (в 2-х томах) /Под общей ред. Л.Р.Маиляна. Ростов н/Д: Изд-во РГСУ. 1996. Т.2. 507 с. Авторы: Белецкий Б.Ф., Гильман Я.Д., Журавлев В.П., Кальнин Ю.П. и др.
- 22. Методические указания по выполнению курсового проекта, на тему: Технология прокладки напорных и безнапорных трубопроводов из различных видов труб. РИСИ. кафедра ТСП, сост. проф. Б.Ф. Белецкии. Ростов н/Д 1997. 33 с.
- 23. Методические указания к выполнению курсового проекта по монтажу емкостных водопроводно-канализационных сооружений. РИСИ, кафедра ТСП. сост. проф. Белецкий Б.Ф. Ростов н/Д 1994. -34 с.
- 24. Методические указания по компоновке сборных емкостных сооружений систем водоснабжения и водоотведения при их монтаже. РИСИ, каф. ТСП, сост. проф. Белецкий Б.Ф. Ростов н/Д, 1990. 30 с.
- 25. Методические указания по разработке курсового проекта строительства заглубленных водозаборов и насосных станций. РИСИ, каф. ТСП, сост. проф. Белецкий Б.Ф., Ростов H/Д, 1996. 32 с.
- 26. Машины для земляных работ: Справ, пособие по строит, машинам /Г.В. Кириллов, П.И. Марков, А.В. Роннев и др. Под ред. М.Д. Полосина, В.И. Полякова. 3-е изд. перераб. и доп. М.: Стройиздат, 1994. 288 с.
- 27. Машины грузоподъемные для строительно-монтажных работ /В.И. Поляков, М.Д. Полосин. 3-е изд. перереб. и доп. М.: Стройиздат, 1993. 244 с.
- 28. Машины и оборудование для бетонных и железобетонных работ / Я.Г. Могилевский, И.Г. Совалов. А.Л. Копелевич. Под общ. ред. М.Д. Полосина, В.И. Полякова. 2-е изд. перераб. и доп. М.: Стройиздат, 1993. 199 с.
- 29. Хамзин С.К., Караев А..К. Технология строительного производства: Курсовое и дипломное проектирование. М.: Высшая школа, 1989. 216 с.

