

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

Кафедра «Строительная механика и теория сооружений»

Учебно-методическое пособие

«Расчет тонкостенного цилиндрического резервуара на ветровую нагрузку с помощью программного комплекса Лира» по дисциплине

«Теория расчета пластин и оболочек»

Авторы Демченко Д. Б., Маяцкая И. А., Чепурненко А. С., Языев Б. М.

Ростов-на-Дону, 2024

Аннотация

Учебно-методическое пособие предназначено для студентов вех форм обучения технических направлений (специальностей), подготовки В обучающихся частности, для студентов, ПО специальности 08.05.01 «Строительство уникальных зданий и сооружений».

Учебно-методическое пособие содержит основные теоретические положения, пример решения типовой задачи, материал для самостоятельного выполнения домашних, контрольных и расчетно-графической работы.

Авторы

к.т.н., доцент кафедры «Сопротивление материалов» Демченко Д.Б.

к.т.н., доцент кафедры «Сопротивление материалов» Маяцкая И.А.

к.т.н., ст. преподаватель кафедры «Сопротивление материалов» Чепурненко А.С.

д.т.н., профессор кафедры «Сопротивление материалов» Языев Б.М.

Оглавление

Введение4
1. Основные теоретические положения4
1.1. Расчет цилиндрического резервуара на ветровую нагрузку
2. Пример расчета цилиндрического резервуара на
ветровую нагрузку19
2.1. Исходные данные
3. Численное решение задачи с помощью программного
комплекса ЛИРА25
Контрольные вопросы39
Рекомендуемая литература39

Управление цифровых образовательных технологий

Теория расчета пластин и оболочек

введение

При проектировании тонкостенных конструкций используются результаты теоретических исследований теории пластин и оболочек. У инженера-проектировщика возникает основная задача, которая состоит в определении параметров рациональной и оптимальной конструкции при заданной нагрузке.

В пособии дан методический материал по теории расчета цилиндрических оболочек. Используя эти данные, можно определить оптимальные параметры конструкции с помощью программного комплекса ЛИРА. Для решения задач оптимального проектирования необходимо проводить анализ условий оптимальности тонкостенных оболочечных конструкций и алгоритма определения оптимальных параметров для различных видов цилиндрических оболочек и схем нагружения.

Проектирование – наиболее ответственный этап разработки конструкции, в процессе которого определяются ее технические характеристики и проверяется возможность реализации поставленной задачи. Определение наилучшего конструктивного решения – чрезвычайно сложный процесс, состоящий из работ по обеспечению наилучших эксплуатационных условий нагружения, выбору рациональных схем, форм деталей и эффективных материалов, способствующих получению минимальной массы конструкции с учетом технологичности и стоимости.

Чтобы найти правильное конструктивное решение, обеспечивающее

минимальную массу конструкции, необходимо знать, как и в какой степени те или иные параметры и технология изготовления влияют на прочность, а также

представлять себе поведение конструкции при разрушении.

Одним из методов, применяемых при расчете тонкостенных конструкций, является численное решение, например, расчет с помощью программного комплекса ЛИРА.

1. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

1.1. Расчет цилиндрического резервуара на ветровую нагрузку

1.1.1. Определение усилий

Рассмотрим цилиндрический резервуар, подверженный ветровому давлению (рис. 1.1).

Экспериментальные исследования (обдувка цилиндров) показали, что ветровая нагрузка действует перпендикулярно к поверхности цилиндра и в кольцевом направлении изменяется по закону, изображенному на рис. 1.2,а.

В зависимости от степени шероховатости обдуваемой поверхности цилиндра картина распределения давления ветра несколько меняется. Для более шероховатой поверхности точка перехода от давления к отсосу немного смещается навстречу ветру. Компоненты ветровой нагрузки *p*₁ и *p*₂ принимаются равными нулю, а *p*₃ может быть представлена рядом Фурье

$$p_{3} = \sum_{n} p_{3n} \cos n\theta \ (n = 0, 1, 2, 3, ...).$$
(1.1)

Рис. 1.2

Как показали эксперименты, при аппроксимации (приближенном задании) функции давления ветра на цилиндрическую поверхность можно ограничиться рядом из трех членов (рис. 1.2,6), то есть задать *р*₃ в виде

$$p_{3} = \sum_{n=0}^{n=2} p_{3n} \cos n\theta = p_{30} + p_{31} \cos \theta + p_{32} \cos 2\theta =, \qquad (1.2)$$
$$= p(-0,7+0,5\cos\theta+1,2\cos2\theta),$$

то есть, $p_{30} = -0.7 p;$ $p_{31} = 0.5 p;$ $p_{32} = 1.2 p$, (1.3) где p – максимальная величина ветрового давления.

Решая систему уравнений равновесия безмоментной теории оболочек для цилиндрической оболочки принимают вид [9,10]:

a)
$$R \frac{\partial N_1}{\partial x} + \frac{\partial S}{\partial \theta} + Rp_1 = 0;$$

 $\delta = \frac{\partial N_2}{\partial \theta} + R \frac{\partial S}{\partial x} + Rp_2 = 0;$
 $\epsilon = N_2 = Rp_3.$

получим выражения для усилий в виде:

$$N_{1} = \left\{ \frac{n}{R} \left[(p_{2n} - np_{3n}) \frac{x^{2}}{2} - D_{1}x \right] + D_{2} \right\} \cos n\theta ,$$

$$S = -\left[(p_{2n} - n \cdot p_{3n}) x - D_{1} \right] \sin(n\theta) \quad \text{и}$$

$$N_{2} = Rp_{3n} \cos n\theta , \text{ где } D_{1} \text{ и } D_{2} - \text{произвольные постоянные.}$$

При небольшой высоте резервуара ветровое давление может быть приято постоянным по высоте, не зависящим от *х.* Подставляя значения *p*₃ из (1.2) в эти уравнения, получаем усилия

$$N_{1} = -\frac{x^{2}}{2R} \sum_{0}^{2} n^{2} p_{3n} \cos n\theta - \frac{x}{R} \sum_{0}^{2} nD_{1n} \cos n\theta + \sum_{0}^{2} D_{2n} \cos n\theta;$$

$$S = x \sum_{0}^{2} np_{3n} \sin n\theta + \sum_{0}^{2} D_{1n} \sin n\theta;$$

$$N_{2} = R \sum_{0}^{2} p_{3n} \cos n\theta.$$
(1.4)

Постоянные интегрирования D_{1n} (n = 0, 1, 2) и D_{2n} (n = 0, 1, 2) определяются из статических граничных условий.

Считая, что нижний край оболочки закреплен, а верхний свободен, и принимая начало координат у верхнего края оболочки, получим

при
$$x = 0$$
 $N_1 = 0$, $S = 0$. (1.5)

Из этих условий непосредственно получаем

$$D_{1n} = 0, \quad D_{2n} = 0.$$
 (1.6)

Усилия (1.4), с учетом направления внешней нагрузки, можно записать в виде

$$N_{1} = \frac{x^{2}p}{2R} [0 + 1^{2} p_{31} \cos \theta + 2^{2} p_{32} \cos 2\theta] = \frac{x^{2}p}{2R} (0,5 \cos \theta + 4,8 \cos 2\theta);$$

$$S = -xp [0 + 1p_{31} \sin \theta + 2p_{32} \sin 2\theta] = -xp (0,5 \sin \theta + 2,4 \sin 2\theta);$$

$$N_{2} = -Rp [p_{30} \cdot 1 + p_{31} \cos \theta + p_{32} \cos 2\theta] =$$

$$= -Rp (-0,7 + 0,5 \cos \theta + 1,2 \cos 2\theta).$$

(1.7)

Определим значения внутренних усилий для различных сечений: Сечение: *x=0.* $0 \le \theta \le 2\pi$.

$$N_1 = 0; \quad S = 0.$$

Сечение: $0 \le x \le l; \quad 0 \le \theta \le 2\pi$:

$$\begin{split} N_{2(0)} &= -pR\left(-0,7+0,5+1,2\right) = -pR; \quad N_{2\left(\frac{\pi}{6}\right)} = -pR\left(-0,7+0,5\frac{\sqrt{3}}{2}+1,2\frac{1}{2}\right) = -0,33pR; \\ N_{2\left(\frac{\pi}{4}\right)} &= -pR\left(-0,7+0,5\frac{\sqrt{2}}{2}\right) = 0,35pR; \quad N_{2\left(\frac{\pi}{3}\right)} = -pR\left(-0,7+0,5\frac{1}{2}-1,2\frac{1}{2}\right) = 1,05pR; \\ N_{2\left(\frac{\pi}{2}\right)} &= -pR\left(-0,7-1,2\right) = 1,9pR; \quad N_{2\left(\frac{2\pi}{3}\right)} = -pR\left(-0,7-0,5\frac{1}{2}-1,2\frac{1}{2}\right) = 1,55pR; \\ N_{2\left(\frac{3\pi}{4}\right)} &= N_{2\left(\frac{\pi}{3}\right)} = 1,05pR; \quad N_{2\left(\frac{5\pi}{6}\right)} = -pR\left(-0,7-0,5\frac{\sqrt{3}}{2}+1,2\frac{1}{2}\right) = 0,53pR; \\ N_{2(x)} &= -pR\left(-0,7-0,5+1,2\right) = 0; \quad N_{2\left(\frac{7\pi}{6}\right)} = N_{2\left(\frac{5\pi}{6}\right)} = 0,53pR; \\ N_{2\left(\frac{5\pi}{4}\right)} &= -pR\left(-0,7-0,5\frac{\sqrt{2}}{2}\right) = 1,05pR; \quad N_{2\left(\frac{4\pi}{3}\right)} = N_{2\left(\frac{2\pi}{3}\right)} = 1,55pR; \\ N_{2\left(\frac{5\pi}{4}\right)} &= -pR\left(-0,7-1,2\right) = 1,9pR; \quad N_{2\left(\frac{5\pi}{3}\right)} = -pR\left(-0,7+0,5\frac{1}{2}-1,2\frac{1}{2}\right) = 1,05pR; \\ N_{2\left(\frac{3\pi}{4}\right)} &= -pR\left(-0,7+0,5\frac{\sqrt{2}}{2}\right) = 0,35pR; \quad N_{2\left(\frac{1\pi}{3}\right)} = N_{2\left(\frac{\pi}{6}\right)} = -0,33pR. \end{split}$$

Эпюра усилия N₂ показана на рис. 1.3.

Сечение: *x=I/2.* $0 \le \theta \le 2\pi$.

$$N_{1(0)} = \frac{pl^2}{8R} (0,5+4,8) = 0,66 \frac{pl^2}{R};$$

$$N_{1\left(\frac{\pi}{6}\right)} = \frac{pl^2}{8R} \left(0,5\frac{\sqrt{3}}{2}+4,8\frac{1}{2}\right) = 0,35\frac{pl^2}{R};$$

$$N_{1\left(\frac{\pi}{4}\right)} = \frac{pl^2}{8R} \left(0,5\frac{\sqrt{2}}{2}\right) = 0,04\frac{pl^2}{R};$$

$$N_{1\left(\frac{\pi}{3}\right)} = \frac{pl^2}{8R} \left(0,5\frac{1}{2}-4,8\frac{1}{2}\right) = -0,27\frac{pl^2}{R};$$

$$\begin{split} N_{l\left(\frac{\pi}{2}\right)} &= \frac{pl^{2}}{8R} \left(-4,8\right) = -0.6 \frac{pl^{2}}{R}; \\ N_{l\left(\frac{2\pi}{3}\right)} &= \frac{pl^{2}}{8R} \left(-0.5 \frac{1}{2} - 4.8 \frac{1}{2}\right) = -0.33 \frac{pl^{2}}{R}; \\ N_{l\left(\frac{3\pi}{4}\right)} &= -N_{l\left(\frac{\pi}{4}\right)} = -0.04 \frac{pl^{2}}{R}; \quad (2.10) \\ N_{l\left(\frac{5\pi}{6}\right)} &= \frac{pl^{2}}{8R} \left(-0.5 \frac{\sqrt{3}}{2} + 4.8 \frac{1}{2}\right) = -0.25 \frac{pl^{2}}{R}; \\ N_{l\left(\frac{5\pi}{6}\right)} &= \frac{pl^{2}}{8R} \left(-0.5 + 4.8\right) = 0.54 \frac{pl^{2}}{R}; \\ N_{l\left(\frac{7\pi}{6}\right)} &= \frac{pl^{2}}{8R} \left(-0.5 \frac{\sqrt{3}}{2} + 4.8 \frac{1}{2}\right) = 0.25 \frac{pl^{2}}{R}; \\ N_{l\left(\frac{5\pi}{4}\right)} &= N_{l\left(\frac{3\pi}{4}\right)} = -0.04 \frac{pl^{2}}{R}; \\ N_{l\left(\frac{4\pi}{3}\right)} &= \frac{pl^{2}}{8R} \left(-0.5 \frac{1}{2} + 4.8 \frac{1}{2}\right) = 0.27 \frac{pl^{2}}{R}; \\ N_{l\left(\frac{4\pi}{3}\right)} &= \frac{pl^{2}}{8R} \left(-0.5 \frac{1}{2} + 4.8 \frac{1}{2}\right) = 0.27 \frac{pl^{2}}{R}; \\ N_{l\left(\frac{4\pi}{3}\right)} &= N_{l\left(\frac{\pi}{2}\right)} = -0.6 \frac{pl^{2}}{R}; \end{split}$$

$$N_{l\left(\frac{5\pi}{3}\right)} = \frac{pl^{2}}{8R} \left(0,5\frac{1}{2}-4,8\frac{1}{2}\right) = -0,27\frac{pl^{2}}{R};$$
$$N_{l\left(\frac{11\pi}{6}\right)} = \frac{pl^{2}}{8R} \left(0,5\frac{\sqrt{3}}{2}+4,8\frac{1}{2}\right) = 0,35\frac{pl^{2}}{R}.$$

Эпюра усилия N₁ показана на рис. 1.4.

Рис. 1.3

Рис. 1.4

Сечение: x=/, $0 \le \theta \le 2\pi$.

$$\begin{split} S_{(0)} &= 0; \quad S_{\left(\frac{\pi}{6}\right)} = -pl\left(0,5\frac{1}{2} + 2,4\frac{\sqrt{3}}{2}\right) = -2,33pl; \quad S_{\left(\frac{\pi}{4}\right)} = -pl\left(0,5\frac{\sqrt{2}}{2} + 2,4\right) = -2,75pl; \\ S_{\left(\frac{\pi}{3}\right)} &= -pl\left(0,5\frac{\sqrt{3}}{2} + 2,4\frac{\sqrt{3}}{2}\right) = -2,51pl; \\ S_{\left(\frac{\pi}{2}\right)} &= -pl\left(0,5+0\right) = -0,5pl; \end{split}$$

$$\begin{split} S_{\left(\frac{2\pi}{3}\right)} &= -pl\left(0,5\frac{\sqrt{3}}{2} - 2,4\frac{\sqrt{3}}{2}\right) = 1,65\,pl;\\ S_{\left(\frac{3\pi}{4}\right)} &= -pl\left(0,5\frac{\sqrt{2}}{2} - 2,4\right) = 2,05\,pl; \quad (1.11) \end{split}$$

$$\begin{split} S_{\left(\frac{5\pi}{6}\right)} &= -pl\left(0,5\frac{1}{2}-2,4\frac{\sqrt{3}}{2}\right) = 1,83pl; \qquad S_{(\pi)} = 0; \\ S_{\left(\frac{7\pi}{6}\right)} &= -S_{\left(\frac{5\pi}{6}\right)} = -1,83pl; \\ S_{\left(\theta=\frac{5\pi}{4}\right)} &= -S_{\left(\theta=\frac{3\pi}{4}\right)} = -2,05pl; \\ S_{\left(\frac{4\pi}{3}\right)} &= -S_{\left(\frac{2\pi}{3}\right)} = -1,65pl; \\ S_{\left(\frac{3\pi}{2}\right)} &= -S_{\left(\frac{\pi}{2}\right)} = 0,5pl; \end{split}$$

$$\begin{split} S_{\left(\frac{5\pi}{3}\right)} &= -S_{\left(\frac{\pi}{3}\right)} = 2,51 pl; \\ S_{\left(\frac{11\pi}{6}\right)} &= -S_{\left(\frac{\pi}{6}\right)} = 2,33 pl; \end{split}$$

$$\begin{split} N_{\mathrm{I}(0)} &= \frac{pl^2}{2R} \big(0.5 + 4.8 \big) = 2.65 \, \frac{pl^2}{R} \, ; \quad N_{\mathrm{I}\left(\frac{\pi}{3}\right)} = \frac{pl^2}{2R} \bigg(0.5 \frac{\sqrt{3}}{2} + 4.8 \frac{1}{2} \bigg) = 1.42 \, \frac{pl^2}{R} \, ; \\ N_{\mathrm{I}(\pi/4)} &= \frac{pl^2}{2R} \bigg(0.5 \frac{\sqrt{2}}{2} + 0 \bigg) = 0.18 \, \frac{pl^2}{R} \, ; \quad N_{\mathrm{I}\left(\frac{\pi}{3}\right)} = \frac{pl^2}{2R} \bigg(0.5 \frac{1}{2} - 4.8 \frac{1}{2} \bigg) = -1.08 \, \frac{pl^2}{R} \, ; \\ N_{\mathrm{I}\left(\frac{\pi}{2}\right)} &= \frac{pl^2}{2R} \big(0 - 4.8 \big) = -2.4 \, \frac{pl^2}{R} \, ; \quad N_{\mathrm{I}\left(\frac{2\pi}{3}\right)} = \frac{pl^2}{2R} \bigg(-0.5 \frac{1}{2} - 4.8 \frac{1}{2} \bigg) = -1.32 \, \frac{pl^2}{R} \, ; \\ N_{\mathrm{I}\left(\frac{\pi}{3}\right)} &= \frac{pl^2}{2R} \bigg(-0.5 \frac{\sqrt{2}}{2} + 0 \bigg) = -0.18 \, \frac{pl^2}{R} \, ; \quad N_{\mathrm{I}\left(\frac{5\pi}{3}\right)} = \frac{pl^2}{2R} \bigg(-0.5 \frac{\sqrt{3}}{2} + 4.8 \frac{1}{2} \bigg) = 0.98 \, \frac{pl^2}{R} \, ; \\ N_{\mathrm{I}\left(\frac{3\pi}{4}\right)} &= \frac{pl^2}{2R} \bigg(-0.5 + 4.8 \bigg) = 2.15 \, \frac{pl^2}{R} \, ; \quad N_{\mathrm{I}\left(\frac{7\pi}{6}\right)} = \frac{pl^2}{2R} \bigg(-0.5 \frac{\sqrt{3}}{2} + 4.8 \frac{1}{2} \bigg) = 0.98 \, \frac{pl^2}{R} \, ; \\ N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} &= \frac{pl^2}{2R} \bigg(-0.5 + \frac{4.8}{R} \bigg) = -0.18 \, \frac{pl^2}{R} \, ; \quad N_{\mathrm{I}\left(\frac{5\pi}{6}\right)} = \frac{pl^2}{2R} \bigg(-0.5 \frac{\sqrt{3}}{2} + 4.8 \frac{1}{2} \bigg) = 0.98 \, \frac{pl^2}{R} \, ; \\ N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} &= N_{\mathrm{I}\left(\frac{3\pi}{4}\right)} = -0.18 \, \frac{pl^2}{R} \, ; \quad N_{\mathrm{I}\left(\frac{5\pi}{3}\right)} = \frac{pl^2}{2R} \bigg(-0.5 \frac{\sqrt{3}}{2} + 4.8 \frac{1}{2} \bigg) = 0.98 \, \frac{pl^2}{R} \, ; \\ N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} &= N_{\mathrm{I}\left(\frac{3\pi}{4}\right)} = -0.18 \, \frac{pl^2}{R} \, ; \quad N_{\mathrm{I}\left(\frac{5\pi}{3}\right)} = \frac{pl^2}{2R} \bigg(-0.5 \frac{\sqrt{3}}{2} + 4.8 \frac{1}{2} \bigg) = 0.98 \, \frac{pl^2}{R} \, ; \\ N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} &= N_{\mathrm{I}\left(\frac{3\pi}{4}\right)} = -0.18 \, \frac{pl^2}{R} \, ; \quad N_{\mathrm{I}\left(\frac{5\pi}{3}\right)} = \frac{pl^2}{2R} \bigg(-0.5 \frac{\sqrt{3}}{2} - 4.8 \frac{1}{2} \bigg) = -1.32 \, \frac{pl^2}{R} \, ; \\ N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} &= N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} = -2.4 \, \frac{pl^2}{R} \, ; \quad N_{\mathrm{I}\left(\frac{5\pi}{3}\right)} = N_{\mathrm{I}\left(\frac{5\pi}{3}\right)} = -1.08 \, \frac{pl^2}{R} \, ; \quad N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} = -N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} = 0.18 \, \frac{pl^2}{R} \, ; \\ N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} &= -N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} = -N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} = 0.18 \, \frac{pl^2}{R} \, ; \quad N_{\mathrm{I}\left(\frac{5\pi}{3}\right)} = N_{\mathrm{I}\left(\frac{5\pi}{3}\right)} = N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} = -N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} = 0.18 \, \frac{pl^2}{R} \, ; \\ N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} = -N_{\mathrm{I}\left(\frac{5\pi}{4}\right)} = -N_{\mathrm{I}\left($$

Эпюры усилий для сечения *х=*/показаны на рис. 1.5.

Рис. 1.5

Эпюры усилий в продольных сечениях показаны на рис. 1.6.

Сечение:
$$0 \le x \le l; \quad \theta = 0, \quad \frac{\pi}{4}, \quad \frac{\pi}{2}, \quad \frac{3\pi}{4}, \quad \pi = \frac{7\pi}{4}:$$

Рис. 1.6 **1.1.2. Определение упругих перемещений**

Для определения упругих перемещений оболочки необходимо подставить значение компонентов нагрузки (1.4) в следующие уравнения [9,10]:

$$u = \frac{1}{Eh} \cos n\theta \int \left\{ \frac{n}{R} \left[\left(p_{2n} - np_{3n} \right) \frac{x^2}{2} - D_1 x \right] + D_2 - \mu R p_{3n} x + D_3 \right\} dx =$$

$$= \frac{1}{Eh} \left\{ \frac{n}{R} \left[\left(p_{2n} - np_{3n} \right) \frac{x^3}{6} - D_1 \frac{x^2}{2} \right] + D_2 x - \mu R p_{3n} x + D_3 \right\} \cos n\theta.$$

$$v = \frac{1}{Eh} \left\{ \frac{\left(p_{2n} - np_{3n} \right) \left[\frac{n^2 x^4}{24R^2} - (1 + \mu) x^2 \right] - D_1 \left[\frac{n^2 x^3}{6R^2} - 2(1 + \mu) x \right] + \right\} \sin n\theta.$$

$$w = \frac{1}{Eh} \begin{cases} R^2 p_{3n} - \mu \left[\left(p_{2n} - np_{3n} \right) \frac{nx^2}{2} - nD_1 x \right] - \\ - \left(p_{2n} - np_{3n} \right) \left[\frac{n^3 x^4}{24R^2} - n(1+\mu)x^2 \right] - \\ - \frac{n}{R} \left(\frac{nx^2}{2} D_2 + nD_3 x - \frac{1}{2} \mu nRp_{3n} x^2 + D_4 \right) \end{cases} \cos n\theta.$$

Учитывая равенство нулю произвольных интегрирования D_{1n} и $D_{2n,r}$, получим

$$u = \frac{1}{Eh} \left\{ \left(p_{2n} - np_{3n} \right) \frac{nx^3}{6R} - \mu R p_{3n} x + D_3 \right\} \cos n\theta.$$
(1.12)

$$v = \frac{1}{Eh} \left\{ \left(p_{2n} - np_{3n} \right) \left[\frac{n^2 x^4}{24R^2} - (1 + \mu) x^2 \right] + \frac{1}{R} \left(nD_3 x - \frac{1}{2} \mu nR p_{3n} x^2 + D_4 \right) \right\} \sin n\theta.$$
(1.13)

$$w = \frac{1}{Eh} \left\{ R^2 p_{3n} - \mu \left(p_{2n} - np_{3n} \right) \frac{nx^2}{2} - \left(p_{2n} - np_{3n} \right) \left[\frac{n^3 x^4}{24R^2} - n(1 + \mu) x^2 \right] - \right\} \cos n\theta.$$
(1.14)

Произвольные интегрирования определим из кинематических граничных условий: а) x = l, u = 0; б) x = l v = 0. В результате получим

– из условия а)

$$u = \frac{1}{Eh} \left\{ (p_{2n} - np_{3n}) \frac{nl^3}{6R} - \mu R p_{3n} l + D_3 \right\} \cos n\theta = 0. \rightarrow$$

$$\to D_3 = \mu R p_{3n} l - (p_{2n} - np_{3n}) \frac{nl^3}{6R}.$$
(a)
– из условия 6)

$$v = \frac{1}{Eh} \begin{cases} \left(p_{2n} - np_{3n} \right) \left[\frac{n^2 l^4}{24R^2} - (1+\mu) l^2 \right] + \\ + \frac{1}{R} \left(nD_3 l - \frac{1}{2} \mu nRp_{3n} l^2 + D_4 \right) \end{cases} \sin n\theta = 0.$$

Отсюда

$$D_{4} = -\left\{ \left(p_{2n} - np_{3n} \right) \left[\frac{n^{2}l^{4}}{24R} - R(1+\mu)l^{2} \right] + \mu nRp_{3n}l^{2} - \left(p_{2n} - np_{3n} \right) \frac{n^{2}l^{4}}{6R} - \frac{1}{2}\mu nRp_{3n}l^{2} \right\}$$

или

$$D_{4} = \left\{ \left(p_{2n} - np_{3n} \right) \left(\frac{n^{2}l^{4}}{8R} + R^{2}l^{2}(1+\mu) \right) - \frac{\mu nRl^{2}}{2} p_{3n} \right\}$$
(6)

Подставив из (а) и (б) значения *D*₃ и *D*₄ в выражения для перемещений (1.8 ÷ 1.10), получим

$$u = \frac{1}{Eh} \left\{ (p_{2n} - np_{3n}) \frac{nx^3}{6R} - \mu R p_{3n} x + \mu R l p_{3n} - (p_{2n} - np_{3n}) \frac{nl^3}{6R} \right\} \cos n\theta = \frac{1}{Eh} \left[(p_{2n} - np_{3n}) \frac{n}{6R} (x^3 - l^3) + \mu R p_{3n} (l - x) \right] \cos n\theta.$$
(B)

$$v = \frac{1}{Eh} \begin{cases} \left(p_{2n} - np_{3n} \right) \left[\frac{n^2 x^4}{24R^2} - (1+\mu) x^2 \right] - \left(p_{2n} - np_{3n} \right) \frac{n^2 x l^3}{6R^2} + \\ + \frac{\mu n x}{2} (l-x) p_{3n} + \left(p_{2n} - np_{3n} \right) \frac{n^2 l^4}{6R^2} \left(\frac{3}{4} + \frac{R^2}{l^2} (1+\mu) - \frac{\mu n l^2}{2} p_{3n} \right) \end{cases} \sin n\theta = \\ = \frac{1}{Eh} \left\{ \left(p_{2n} - np_{3n} \right) \left[\frac{n^2}{24R^2} \left(3l^4 - 4l^3 x + x^4 \right) \right] + \mu n \left(lx - \frac{1}{2} x^2 - \frac{1}{2} l^2 \right) p_{3n} \right\} \sin n\theta. \end{cases}$$
(F)

$$w = \frac{1}{Eh} \begin{cases} R^2 p_{3n} - (p_{2n} - np_{3n}) \frac{\mu n x^2}{2} - (p_{2n} - np_{3n}) \left[\frac{n^3 x^4}{24R^2} - n(1+\mu) x^2 \right] - \\ - \frac{n}{R} \left(nD_3 x - \frac{1}{2} \mu nRp_{3n} x^2 + D_4 \right) \end{cases} \cos n\theta$$

$$w = \frac{1}{Eh} \begin{cases} \left(p_{2n} - np_{3n} \right) \begin{bmatrix} n(1+\mu)(x^2 - l^2) - \frac{\mu n x^2}{2} \\ -\frac{n^3}{24R^2} (x^4 + l^4) + \frac{n^3 l^3 x}{6R^2} \end{bmatrix} + \begin{bmatrix} R^2 + \frac{\mu n^2}{2} (l-x)^2 \end{bmatrix} p_{3n} \end{cases} \cos n\theta$$
(A)

В этом случае граничные условия относительно *w* на крае *x* = / не выполняются; у закрепленного края возникает изгибное напряженное состояние, имеющее местный характер.

При расчете цилиндрического резервуара на ветровую нагрузку компонента *р*_{2n} принимается равной нулю. В этом случае полученные уравнения для перемещений принимают вид

$$u = -\frac{1}{Eh} \left[\frac{n^2}{6R} p_{3n} (x^3 - l^3) - \mu R p_{3n} (l - x) \right] \cos n\theta$$

$$;$$

$$v = -\frac{1}{Eh} \left[\frac{n^3}{24R^2} p_{3n} (3l^4 - 4l^3x + x^4) - \mu n p_{3n} \left(lx - \frac{1}{2}x^2 - \frac{1}{2}l^2 \right) \right] \sin n\theta$$

$$;$$

$$w = \frac{1}{Eh} \left\{ -n p_{3n} \left[\frac{n(1 + \mu)(x^2 - l^2) - \frac{\mu n x^2}{2}}{-\frac{n^3}{24R^2} (x^4 + l^4) + \frac{n^3 l^3 x}{6R^2}} \right] + p_{3n} \left[R^2 + \frac{\mu n^2}{2} (l - x)^2 \right] \right\} \cos n\theta$$

$$. \qquad (1.17)$$

Ограничиваясь тремя членами разложения нагрузки в (1.2), получим

$$u = -\frac{1}{Eh} \left[\frac{1}{6R} \left(x^3 - l^3 \right) \sum_{0}^{2} n^2 p_{3n} \cos n\theta - \mu R \left(l - x \right) \sum_{0}^{2} p_{3n} \cos n\theta \right]$$

Управление цифровых образовательных технологий

Теория расчета пластин и оболочек

; (1.18)

$$v = -\frac{1}{Eh} \left[\frac{(3l^4 - 4l^3x + x^4)}{24R^2} \sum_{0}^{2} n^3 p_{3n} \sin n\theta - \mu \left(lx - \frac{1}{2} x^2 - \frac{1}{2} l^2 \right) \sum_{0}^{2} n p_{3n} \sin n\theta \right]$$
; (1.19)

$$w = \frac{1}{Eh} \left[\frac{\frac{x^4 + l^4 - 4l^3x}{24R^2} \sum_{0}^{2} n^4 p_{3n} \cos n\theta + R^2 \sum_{0}^{2} p_{3n} \cos n\theta + \frac{1}{2} \frac{2(l^2 - x^2) + \mu(3l^2 - 2lx - x^2)}{2} \sum_{0}^{2} n^2 p_{3n} \cos n\theta + \frac{1}{2} \frac{2(l^2 - x^2) + \mu(3l^2 - 2lx - x^2)}{2} \sum_{0}^{2} n^2 p_{3n} \cos n\theta \right]$$
. (1.20)

Перемещения, с учетом (1.2), можно записать в виде

$$u = \frac{p}{Eh} \begin{bmatrix} \frac{1}{6R} (x^3 - l^3) (0.5\cos\theta + 4.8\cos 2\theta) - \\ -\mu R (l - x) (-0.7 + 0.5\cos\theta + 1.2\cos 2\theta) \end{bmatrix}_{;(1.21)}$$

$$v = \frac{p}{Eh} \begin{bmatrix} \frac{(3l^4 - 4l^3x + x^4)}{24R^2} (0.5\sin\theta + 9.6\sin2\theta) - \\ -\mu \left(lx - \frac{1}{2}x^2 - \frac{1}{2}l^2 \right) (0.5\sin\theta + 2.4\sin2\theta) . \end{bmatrix}$$
(1.22)

$$w = \frac{-p}{Eh} \begin{bmatrix} \frac{x^4 + l^4 - 4l^3x}{24R^2} (0.5\cos\theta + 19.2\cos2\theta) + \\ + \frac{2(l^2 - x^2) + \mu(3l^2 - 2lx - x^2)}{2} (0.5\cos\theta + 4.8\cos2\theta) \\ + R^2 (-0.7 + 0.5\cos\theta + 1.2\cos2\theta). \end{bmatrix}$$
(1.23)

2. ПРИМЕР РАСЧЕТА ЦИЛИНДРИЧЕСКОГО РЕЗЕРВУАРА НА ВЕТРОВУЮ НАГРУЗКУ

2.1. Исходные данные

$$l = 15$$
м; $R = 3$ м; $p = 0,5\kappa H / M^2$.
Материал – сталь: $E = 2 \cdot 10^8 \, \mathrm{\kappa H/M^2}$, $h = 5$ мм, $\mu = 0,3$

2.2. Определение усилий

Сечение: $x = 0; \quad 0 \le \theta \le 2\pi$. $N_1 = 0; \quad S = 0$.

Подставив в (1.8) параметры резервуара, получим значения усилия N_2 в различных точках сечения $0 \le x \le l$. $N_{2(0)} = -pR = -0.5 \cdot 3 = -1.5 \kappa H / M;$ $N_{2\left(\frac{\pi}{4}\right)} = 0.35 pR = 0.35 \cdot 0.5 \cdot 3 = 0.52 \kappa H / M;$ $N_{2\left(\frac{\pi}{2}\right)} = 1.9 pR = 1.9 \cdot 0.5 \cdot 3 = 2.85 \kappa H / M;$ $N_{2\left(\frac{3\pi}{4}\right)} = 1.05 pR = 1.58 \kappa H / M;$ $N_{2(\pi)} = 0.$

Подставив в (1.9) параметры резервуара, получим значения усилия N_I в различных точках сечения $x = I/2; 0 \le \theta \le 2\pi$

$$N_{1(0)} = 0,66 \frac{pl^2}{R} = 0,66 \frac{0.5 \cdot 15^2}{3} = 24,75 \kappa H / M;$$

$$N_{l\left(\frac{\pi}{4}\right)} == 0.04 \frac{pl^2}{R} = 0.04 \frac{0.5 \cdot 15^2}{3} = 1.50 \kappa H / M;$$

$$N_{l\left(\frac{\pi}{2}\right)} = -0.6 \frac{pl^2}{R} = -0.6 \frac{0.5 \cdot 15^2}{3} = -22,50 \kappa H / m;$$

$$N_{l\left(\frac{3\pi}{4}\right)} = -0.04 \frac{pl^2}{R} = -0.04 \frac{0.5 \cdot 15^2}{3} = -1.50 \kappa H / m;$$
$$N_{l(\pi)} = 0.54 \frac{pl^2}{R} = 0.54 \frac{0.5 \cdot 15^2}{3} = 20.25 \kappa H / m;$$

Подставив в (1.10) параметры резервуара, получим значения усилий S и N_I в различных точках сечения x = I; $0 \le \theta \le 2\pi$

$$S_{(0)} = 0; \quad S_{\left(\frac{\pi}{6}\right)} = -2,33 \, pl = -2,33 \cdot 0,5 \cdot 15 = -17,48 \kappa H \, / \, M;$$

$$S_{\left(\frac{\pi}{4}\right)} = -2,75 \, pl = -2,75 \cdot 0,5 \cdot 15 = -20,62 \kappa H \, / \, M;$$

$$\begin{split} S_{\left(\frac{\pi}{3}\right)} &= -2,51\,pl = -2,51\cdot0,5\cdot15 = -18,82\kappa H \,/\,\text{M};\\ S_{\left(\frac{\pi}{2}\right)} &= -0,5\,pl = -0,5\cdot0,5\cdot15 = -3,75\kappa H \,/\,\text{M};\\ S_{\left(\frac{2\pi}{3}\right)} &= 1,65\,pl = 1,65\cdot0,5\cdot15 = 12,38\kappa H \,/\,\text{M};\\ S_{\left(\frac{3\pi}{4}\right)} &= 2,05\,pl = 2,05\cdot0,5\cdot15 = 15,38\kappa H \,/\,\text{M};\\ S_{\left(\frac{3\pi}{6}\right)} &= 1,83\,pl = 1,83\cdot0,5\cdot15 = 13,72\kappa H \,/\,\text{M};\\ S_{\left(\frac{5\pi}{6}\right)} &= 0;\\ S_{\left(\frac{\pi}{6}\right)} &= -1,83\,pl = -1,83\cdot0,5\cdot15 = -13,72\kappa H \,/\,\text{M};\\ S_{\left(\frac{\pi}{6}\right)} &= -2,05\,pl = -2,05\cdot0,5\cdot15 = -15,38\kappa H \,/\,\text{M}; \end{split}$$

$$\begin{split} S_{\left(\frac{4\pi}{3}\right)} &= -1,65\,pl = -1,65\cdot0,5\cdot15 = -12,38\kappa H \,/\,m; \\ S_{\left(\frac{3\pi}{2}\right)} &= 0,5\,pl = 0,5\cdot0,5\cdot15 = 3,75\kappa H \,/\,m; \\ S_{\left(\frac{5\pi}{3}\right)} &= 2,51\,pl = 2,51\cdot0,5\cdot15 = 18,82\kappa H \,/\,m; \\ S_{\left(\frac{7\pi}{4}\right)} &= 2,75\,pl = 2,75\cdot0,5\cdot15 = 20,62\kappa H \,/\,m; \\ S_{\left(\frac{11\pi}{6}\right)} &= 2,65\frac{pl^2}{R} = 2,65\frac{0,5\cdot15^2}{3} = 99,38\kappa H \,/\,m; \\ N_{1(0)} &= 2,65\frac{pl^2}{R} = 0,18\frac{0,5\cdot15^2}{3} = 6,75\kappa H \,/\,m; \\ N_{1(\pi/4)} &= 0,18\frac{pl^2}{R} = -2,4\frac{0,5\cdot15^2}{3} = 6,75\kappa H \,/\,m; \\ N_{1\left(\frac{\pi}{2}\right)} &= -2,4\frac{pl^2}{R} = -2,4\frac{0,5\cdot15^2}{3} = -90,00\kappa H \,/\,m; \\ N_{1\left(\frac{3\pi}{4}\right)} &= -0,18\frac{pl^2}{R} = -0,18\frac{0,5\cdot15^2}{3} = -6,75\kappa H \,/\,m; \\ N_{1(\pi)} &= 2,15\frac{pl^2}{R} = 2,15\frac{0,5\cdot15^2}{3} = 80,62\kappa H \,/\,m; \end{split}$$

Эпюры усилий в поперечных сечениях представлены на рис. 2.1.

Рис. 2.1

Эпюры усилий в продольных сечениях представлены на рис. 2.2:

Управление цифровых образовательных технологий

Теория расчета пластин и оболочек

2.3. Определение напряжений

$$\begin{aligned} |\sigma_{1\max}| &= \frac{|N_1|}{h} = \frac{99,38}{5 \cdot 10^{-3}} = 19,88 \cdot 10^3 = 1988 \kappa H / M^2 \approx 19,9 M\Pi a; \\ \sigma_{2\max} &= \frac{|N_{2\max}|}{h} = \frac{2,85}{5 \cdot 10^{-3}} = 570 \kappa H / M^2 \approx 0,6 M\Pi a; \\ |\tau_{x\theta\max}| &= \frac{|S_{\max}|}{h} = \frac{20,62}{5 \cdot 10^{-3}} = 4124 \kappa H / M^2 \approx 4,1 M\Pi a. \end{aligned}$$

2.4. Определение перемещений

Определим значение перемещений и и и в сечении с $\theta = 0; \ \theta = \pi$ x = 0;

Из (1.21) имеем
$$(x = 0)$$

 $u = \frac{p}{Eh} \begin{bmatrix} \frac{1}{6R} (-l^3)(0,5\cos\theta + 4,8\cos 2\theta) - \\ -\mu Rl(-0,7+0,5\cos\theta + 1,2\cos 2\theta) \end{bmatrix}$

1

Определим перемещение
$$u$$
 при $\theta = 0$
 $u_{(0)} = \frac{p}{Eh} \left[\frac{1}{6R} (-l^3)(0.5+4.8) - \mu Rl(-0.7+0.5+1.2) \right] = -\frac{p}{Eh} \left(\frac{5.3}{6R} + \mu Rl \right) = -\frac{0.5 \cdot 15 \cdot 10^3}{2 \cdot 10^8 \cdot 5 \cdot 10^{-3} \cdot 3} 190.1 = -0.5 \text{ мм.}$

Определим перемещение u при $\theta = \pi$

$$u_{(\pi)} = \frac{p}{Eh} \left[\frac{1}{6R} \left(-l^3 \right) \left(-0.5 + 4.8 \right) - \mu Rl \left(-0.7 - 0.5 \cos \theta + 1.2 \right) \right] = \frac{pl}{EhR} \left[-\frac{4.3}{6} l^2 \right] = -\frac{0.5 \cdot 15 \cdot 10^3}{2 \cdot 10^8 \cdot 5 \cdot 10^{-3} \cdot 3} 0,717 \cdot 15^2 = -0.4 \text{ MM}.$$

Из (1.23) имеем (x=0)

$$w = \frac{-p}{Eh} \begin{bmatrix} \frac{l^4}{24R^2} (0.5\cos\theta + 19, 2\cos 2\theta) + \frac{(2+3\mu)l^2}{2} (0.5\cos\theta + 4, 8\cos 2\theta) + \\ +R^2 (-0.7+0.5\cos\theta + 1, 2\cos 2\theta) \end{bmatrix}$$

Определим перемещение w при $\theta = 0$

$$\begin{split} w_{(0)} &= -\frac{p}{Eh} \bigg[\frac{l^4}{24R^2} \big(0,5+19,2 \big) + \frac{(2+3\mu)l^2}{2} \big(0,5+4,8 \big) + R^2 \bigg] = \\ &= -\frac{p}{EhR^2} \bigg[\frac{19,7}{24} \cdot 15^4 + \frac{5,3}{2} \big(2+3 \cdot 0,3 \big) \cdot 3^2 \cdot 15^2 + 3^4 \bigg] = - \\ &= -\frac{0,5 \cdot 10^3}{2 \cdot 10^8 \cdot 5 \cdot 10^{-3} \cdot 3^2} \big(41554,7+15562,1+81 \big) = -3,2 \text{MM.} \end{split}$$
 Определим перемещение *w* при $\theta = \pi$

Управление цифровых образовательных технологий

Теория расчета пластин и оболочек

$$w_{(\pi)} = \frac{p}{EhR^2} \left[\frac{l^4}{24} (-0.5 + 19.2) + \frac{(2 + 3\mu)l^2R^2}{2} (-0.5 + 4.8) + R^4 (-0.7 - 0.5 + 1.2) \right] = \frac{5 \cdot 10^{-4}}{9} \left[\frac{18.7l^4}{24} + 4.3 \frac{(2 + 3\mu)l^2}{2} R^2 \right] = 2.9$$
 MM.

3. ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ С ПОМОЩЬЮ ПРОГРАММНОГО КОМПЛЕКСА ЛИРА

1. Создать новую задачу, выбрать признак схемы 5

Описание схемы	×
Признак схемы	
5 - Шесть степеней свободы в узле (X,Y,Z,Ux,Uy,Uz) 🛛 👻	?
Имя задачи Ветровая нагрузка	
Шифр задачи Ветровая нагрузка	
Описание задачи (до 255 символов)	^
	~

2. В силу симметрии будем рассматривать половину оболочки. Перейти во вкладку «Создание и редактирование» и выбрать генерацию цилиндра

3. Количество отрезков n2 в кольцевом направлении принять равным 20, а n1 задать таким образом, чтобы стороны конечного элемента были примерно равны

Поверхности вращения
Элементы Пластины Стержни Тип решетки Стержни Стержни Стержни
n1 <u>32</u> R <u>3</u> м n2 <u>20</u> H <u>15</u> м fi <u>180</u> °
H n1 fi
Координаты базового узла ✓ Указать курсором × 0. Y 0. Z 0.
∕ X ?

4. Перейти в проекцию на XOZ, выделить нижние узлы и закрепить их по X, Y и Z

5. Перейти в проекцию на ХОҮ, выделить крайние узлы и задать им закрепление по Ү.

6. Далее необходимо рассчитать нагрузку для каждого конечного элемента, используя формулу 1.2. Расчет будем выполнять в программе Microsoft Excel. Для этого делим интервал [0; п] на 20 частей вводим угол θ с шагом п/20 = 0,15708

	A .	B
1	p=	0.5
2	θ	
з	0	
4	0.15708	
5	0.31416	
6	0.47124	
7	0.62832	
8	0.7854	
9	0.94248	
10	1.09956	
11	1.25664	
12	1.41372	
13	1.5708	
14	1.72788	
15	1.88496	
16	2.04204	
17	2.19912	
18	2.3562	
19	2.51328	
20	2.67036	
21	2.82744	
22	2.98452	
23	3.1416	

Для каждого значения в вычисляем рз по формуле 1.2

	Α	В	С	D	E
1	p=	0.5			
2	θ	p₃			
3	0	=\$B\$1*(-0	.7+0.5*COS	6(A3)+1.2*(COS(2*A3))
4	0.15708	0.467556			
5	0.31416	0.373174			
6	0.47124	0.225422			
7	0.62832	0.037663			
8	0.7854	-0.17323			
9	0.94248	-0.38847			
10	1.09956	-0.58918			
11	1.25664	-0.75816			
12	1.41372	-0.88153			
13	1.5708	-0.95			
14	1.72788	-0.95974			
15	1.88496	-0.91266			
16	2.04204	-0.81617			
17	2.19912	-0.68235			
18	2.3562	-0.52677			
19	2.51328	-0.36684			
20	2.67036	-0.22008			
21	2.82744	-0.10235			
22	2.98452	-0.02629			
23	3.1416	-5.8E-11			

7. Находясь в проекции на ХОҮ, выделяем первый элемент. При этом выделится весь вертикальный ряд элементов. Управление цифровых образовательных технологий

Скиф

8. Переходим во вкладку «Нагрузки на узлы и элементы» и выбираем «Нагрузка на пластины». Систему координат выбираем местную, направление по Z.

17			
Задание нагрузок			
🔏 🕴 🔔 🌽 🎒 Super 👫			
Нагрузки на пластины			
Система координат О Глобальная 💿 Местная			
Направление ОХ ОҮ ОZ			
Тип нагрузки			
the state			
S N STAT			
Текущая нагрузка			

9. В поля для значений Р2 и Р4 вводим значение из ячейки В3 в Microsoft Excel, соответствующее углу $\theta = 0$. В качестве Р1 и Р3 вводим значение из ячейки В4

Пара	аметры 🛛 🗙
P1	0.468 RH/M ²
P2	0.5 ĸH/m ²
РЗ	0.468 RH/M ²
P4	0.5 KH/m ²
	$\begin{array}{c} \mathbf{Z}_1 \\ \mathbf{P} & \mathbf{Y}_1 \\ \mathbf{P}_3 \\ \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{X}_1 \end{array} \begin{array}{c} \mathbf{Z}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \\ \mathbf{P}_1 \\ \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{X}_1 \end{array}$
	Проект

10. Выделяем следующий вертикальный ряд элементов и повторяем те же действия, сместившись в Microsoft Excel на строку ниже

11. Повторяем указанные действия для оставшихся элемен-

12. Выделяем все элементы и назначаем им жесткость. Удельный вес можно оставить равным нулю

Задание жесткости для	пластин		
Учет ортотропии	E2 0		
E 200000 MIIa V 0.3	V21 0 G 0		
Н 0.5 см	Ro 0 MH/M ³		
Учет нелинейности			
Тип КЭ Плита,оболочка	Параметры материала		
🔵 Балка-стенка	Параметры арматуры		
Учет сдвига О м			
Комментарий	Цвет		
1	2		

13. Переходим во вкладку «Расчет» и выполняем полный расчет. Изополя кольцевых и меридиональных нормальных напряжений, а также касательных напряжений приведены соответственно на рис. 3.1 – 3.3.

При аналитическом расчете наибольшая величина кольцевых напряжений составила 0.6 МПа, а при решении в ПК ЛИРА-САПР – 2.1 МПа.

Для меридиональных напряжений аналитически получено 19.9 МПа, а в программном комплексе – 17.9 МПа.

Для касательных напряжений аналитический результат – 4.1 МПа, а в МКЭ комплексе – 4 МПа.

Изгибающие и крутящие моменты при расчете методом конечных элементов практически равны нулю (их изополя приведены на рис. 3.4 – 3.6), поэтому использование безмоментной теории в данной задаче является обоснованным.

Отклонение результатов, полученных в программном комплексе от аналитического решения, можно объяснить редким разбиением конструкции.

При большом количестве элементов целесообразно использовать импорт расчетной схемы из текстового файла, предварительно сгенерированного при помощи программ, написанных на каком-либо языке программирования.

Рис. 3.1. Изополя кольцевых напряжений

Рис. 3.2. Изополя меридиональных напряжений

Рис. 3.4. Изополя кольце-

вых изгибающих моментов

-0.0074 -0.00647 -0.00555 -0.00462 -0.0037 -0.00277 -0.00185 -0.00092--4.98e-00:4.98e-00:4.98e-0050.000924 0.00185 0.00277 0.0037 0.00462 0.00498 Загружение 1

Изополя напряжений по Му Единицы измерения - (кН*м)/м

Рис. 3.5. Изополя меридиональных изгибающих моментов

-0.00063-0.000522-0.00041{-0.000313-0.00020{-0.00010--6.29e-0066.29e-0060.000104 0.000209 0.000313 0.000418 0.000522 0.000627 0.000731 0.000837 Загружение 1 Изополя напряжений по Мху Единицы измерения - (кН*м)/м

Рис. 3.6. Изополя крутящих моментов

контрольные вопросы

1. Уравнения равновесия безмоментной теории для цилиндрической оболочки.

2. К оболочкам какой Гауссовой кривизны относится цилиндрическая оболочка?

3. Условия существования безмоментного напряженного состояния.

4. Связь между внутренними усилиями и напряжениями при безмоментном напряженном состоянии.

5. Как описывается ветровая нагрузка?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Бидерман В.Л. Механика тонкостенных конструкций. – М.:Машиностроение, 1977. – 488 с.

2. Бутенко Ю.И. и др. Строительная механика стержневых систем и оболочек. – Киев.: Изд-во «Вища школа», 1980. – 488 с.

3. Жемочкин Б.Г. Теория упругости. – М.: Госстройиздат, 1957. – 256 с.

4. Колкунов Н.В.Основы расчета упругих оболочек. – М.:Высш. шк., 1972. – 296с

5. Новожилов В.В. Теория тонких оболочек. – Ленинград: Судпромгиз, 1962. – 431 с.

6. Огибалов П.М., КолтуновМ. А. Оболочки и пластины. – М.:МГУ,1969. – 695с.

7. Филин А.П. Элементы теории оболочек. – Л.:Стройиздат,1975. – 256 с.

8. Александров А.В., Потапов В.Д. Основы теории упругости и пластичности. М.: Высшая школа, 1990. 400 с.

9. Краснобаев И.А., [и др.] Теория пластин и оболочек. Ростов-на-Дону: Рост. гос. строит. ун-т., 2012. 114 с.

10. Демченко Б.М., Маяцкая И.А. Теория упругости с основами пластичности и ползучести. Часть 3. Балки, пластины, оболочки. Ростов-на-Дону: Рост. гос. строит. ун-т., 2015. 169 с.