

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Кафедра «Физика»

Практикум

Лабораторная работа № 08 «Определение удельного вращения и концентрации раствора сахара с помощью сахариметра» по дисциплине

«Физика»

Авторы Егорова С. И., Жданова Т. П., Кудря А. П., Лемешко Г. Ф.

Аннотация

Методические указания содержат краткое описание процесса распространения плоскополяризованного света в оптически активных веществах. Предназначены для студентов инженерных специальностей всех форм обучения, в программу учебного курса которых входит выполнение лабораторных работ по физике (раздел <<Оптика>>).

Авторы

д.т.н., профессор Егорова С.И., к.ф.-м.н., доцент Жданова Т.П., ст. преподаватель Кудря А.П., к.ф.-м.н., профессор Лемешко Г.Ф.

Оглавление

Теоретическая часть			4
Устройство сахариметра и ме	тодика изм	ерений	8
Порядок выполнения работы			9
Задание1. Определение сахара			
Задание2. Определение н Контрольные вопросы	концентраци	и раствора	caxapa.11
Рекомендуемая литература			

pa.

Физика

<u>Цель работы:</u> 1) определение удельного вращения раствора сахара с помощью сахариметра;

2) определение концентрации растворов саха-

<u>Оборудование:</u> сахариметр, набор трубок с растворами сахара разной концентрации.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Свет — это электромагнитные волны длины которых лежат в пределах от 400 до 700 нм. Электромагнитные волны поперечны: векторы напряженностей электрического \vec{E} и магнитного \vec{H} полей волны взаимно перпендикулярны и колеблются синфазно перпендикулярно вектору скорости $\vec{\upsilon}$ (\vec{c}) распространения волны (перпендикулярно лучу). Эмпирически установлено, что физиологические, фотоэлектрические и другие действия света вызываются колебаниями вектора напряженности электрического поля \vec{E} , который называется в оптике *световым вектором*.

Свет, который можно представить как совокупность световых векторов \vec{E} , равновероятно ориентированных по всем направлениям, перпендикулярным скорости распространения луча, называется **естественным**.

Свет, в котором направления колебаний светового вектора каким-либо образом упорядочены, называется **поля- ризованным.**

Свет, в котором вектор $ar{E}$ колеблется только в одной плоскости, перпендикулярной лучу, называется **плоскопо- пяризованным**.

Плоскость, в которой колеблется световой вектор \vec{E} , называется *плоскостью колебаний* или *плоскостью по-ляризации* (рис. 1).

Плоскополяризованный свет можно получить из естественного с помощью приборов, называемых *поляризаторами*.

Устройство, позволяющее анализировать свет, вышедший из поляризатора, называется **анализатором**.

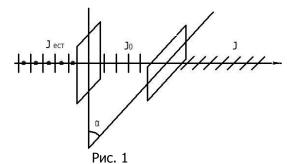
Поляризатор и анализатор взаимозаменяемы. В качестве поляризатора и анализатора могут быть использованы поляроидные пленки, призмы Николя (николи) или другие устройства.

Плоскость, проходящая через поляризатор (анализатор) и в которой колеблется световой вектор \vec{E} , называется плоскостью поляризатора или главным сечением поляризатора (анализатора).

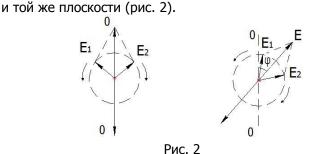
Если на скрещенные под некоторым углом α поляризатор и анализатор направить естественный свет, то из анализатора выходит доля света, согласно **закону Малюса**, пропорциональная квадрату косинуса угла между главными сечениями поляризатора и анализатора (см. рис. 1):

$$J = J_0 \cos^2 \alpha \,, \tag{1}$$

где $J_{\scriptscriptstyle 0} = \frac{J_{\scriptscriptstyle ecm.}}{2}$ - интенсивность поляризованного света, вы-


шедшего из поляризатора, $J_{\it ecm}$ – интенсивность естественного света; J – интенсивность поляризованного света, вышедшего из анализатора (рис. 1).

Из закона Малюса следует, что если $\alpha=90^{o}$, то J=0, т.е. поляризатор и анализатор скрещены под прямым углом или «поставлены на темноту», а если $\alpha=0^{o}$, то $J=J_{o}$ - поляризатор и анализатор параллельны или «поставлены на свет». Таким образом:


$$0 \le \cos^2 \alpha \le 1$$
, a $0 \le J \le J_0$.

Оптически активными называются вещества, способные поворачивать плоскость поляризации света при прохождении его через такие вещества, как камфора, никотин, сахар, кварц и другие, имеющие асимметричное строение молекул.

Вращение плоскости поляризации было объяснено Френелем. Он предложил вектор \vec{E} плоско поляризованного света рассматривать как совокупность двух векторов \vec{E}_{l} и \vec{E}_{2} с левым и правым вращением. В обычных средах угловая скорость вращения векторов \vec{E}_{l} и \vec{E}_{2} одинакова, так что суммарный вектор \vec{E} в любой момент времени лежит в одной

В оптически активных веществах, благодаря особенности их структуры, угловые скорости вращения векторов \vec{E}_I и \vec{E}_2 становятся разными, и по мере прохождения луча в оптически активной среде, вектор \vec{E} будет отклоняться от начального положения на угол

$$\varphi = \alpha \cdot l \cdot C \,, \tag{2}$$

где α - удельное вращение раствора, зависящее от природы оптически активного вещества и растворителя, длины волны света и температуры; l - длина хода луча в веществе; C - концентрация раствора оптически активного вещества.

Выражение (2) используется в двух случаях.

1. По известным $C_{_{2m}}$, $l_{_{2m}}$ и $\varphi_{_{2m}}$ определяют удельное вра-

щение раствора:

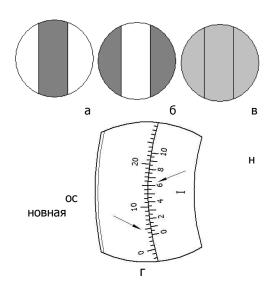
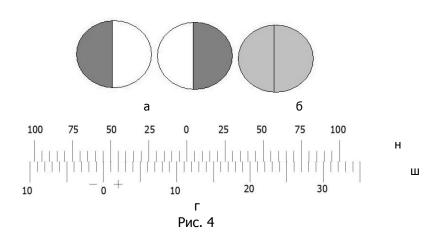
$$\alpha = \frac{\varphi_{_{9m}}}{C_{_{9m}} \cdot l_{_{9m}}} \tag{3}$$

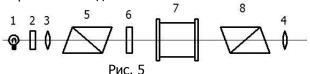
2. По известным α , l , ϕ определяют концентрацию раствора оптически активного вещества:

$$C = \frac{\varphi}{\alpha \cdot l}.$$
 (4)

Между скрещенными под некоторым углом поляризатором и анализатором (николями) помещают трубку с раствором оптически активного вещества (сахара).

Поле зрения между николями, «поставленными на темноту», просветляется. Чтобы добиться полного гашения света, нужно анализатор повернуть вокруг луча на угол φ , равный углу вращения плоскости поляризации. Когда поле зрения окуляра равномерно затемнено рис. Зв (или рис. 4в), измеряем угол φ по шкале 3г (или рис. 4г).


Рис. 3

Этот метод позволяет с достаточно большой точностью определять концентрации растворов оптически активных веществ, хорошо растворимых в воде, и широко используется в пищевой промышленности, медицине, криминалистике.

УСТРОЙСТВО САХАРИМЕТРА И МЕТОДИКА ИЗМЕРЕНИЙ.

В данной работе используется сахариметр, позволяющий с высокой точностью определять концентрацию сахара, растворенного в воде.

Оптическая схема сахариметра

1 — осветительная лампа; 2 — светофильтр; 3 — объектив; 4 — окуляр; 5 — поляризатор; 6 — кварцевая пластина; 7 — кювета с раствором; 8 — анализатор

Осветительная лампа 1 установлена в главный фокус объектива 3, после которого получают плоскопараллельный пучок света. Светофильтр 2 пропускает свет определенной

длины волны. После поляризатора 5 линейно поляризованный свет проходит через кювету с раствором 7, анализатор 8 и окуляр 4. Благодаря кварцевой пластине 6 поле зрения окуляра разделено на три или две части (рис. 3, 4) в зависимости от конструктивных особенностей сахариметра. Четкое изображение поля зрения достигается перемещением окуляра вдоль оптической оси. Поле зрения между поляризатором и анализатором, изначально поставленных на «темноту» (рис. Зв или 4в), просветляется (рис. За, б или 4а, б). Для получения начального изображения поля зрения (рис. Зв или 4в) необходимо анализатор повернуть вокруг луча на угол φ , равный углу вращения плоскости поляризации. Численное значение угла ϕ измеряют по отсчетной шкале (рис. 3г или 4г), механически связанной с анализатором. Так, например, по шкале рис. 3г показаниям соответствует значение угла $3,60^{\circ}$, а по шкале 4г – 11,75°. Приборная погрешность шкалы 3г и 4г $\Delta \phi = 0.05^{\circ}$.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Задание1. Определение удельного вращения раствора сахара

- 1. Занести в таблицу значения известных концентраций C_1 , C_2 , C_3 и их длины l_1 , l_2 , l_3 .
- 2. Пустую камеру сахариметра закрыть шторкой и включить осветительную лампу.
- 3. Совместить «ноль» на шкале и «ноль» нониуса.
- 4. Наблюдая в окуляр, перемещением его вдоль оптической оси добиться резкого изображения (рис.3 а, б или 4 а, б).
- 5. Вращением анализатора вокруг оптической оси, добиться четкого, равномерного затемнения полей (рис 3в или 4в) не должно быть резкого выделения какой-то стороны.
- 6. Произвести отсчет угла φ_0 по нониусу (рис 3г или 4г).
- 7. Трижды повторив пункты 2-6, определить среднее значение $\langle \varphi_{o} \rangle$, которое принимается за начало отсчета.
- 8. Поместить в камеру сахариметра трубку с раствором саха-

ра известной концентрации $C_{\scriptscriptstyle I}$.

- 9. Повторить пункты 3 5.
- 10. Произвести отсчёт угла φ_I' по нониусу (рис 3г или 4г). Занести в таблицу.
- 11. Повторить пункты 3-5 для других трубок с известной концентрацией (C_2 , C_3). Занести в таблицу углы φ_2' , φ_3' .
- 12. Определить углы вращения плоскости поляризации по формуле: $\varphi_i = \varphi_i' \langle \varphi_0 \rangle$. Занести в таблицу.

Далее возможны 2 способа нахождения α (по заданию преподавателя).

Первый способ (аналитический)

- 1. По формуле (3) рассчитать удельное вращение α для известных концентраций C_1 , C_2 , C_3 .
- 2. Найти среднее значение $\langle \alpha \rangle$.
- 3. Вычислить абсолютные погрешности для каждого измерения $\Delta lpha$ и среднюю абсолютную погрешность $\langle \Delta lpha \rangle$.
- 4. Найти относительную погрешность по формуле:

$$\delta\alpha = \frac{\langle \Delta\alpha \rangle}{\langle \alpha \rangle} 100\%.$$

5. Записать ответ в виде $\alpha = \langle \alpha \rangle \pm \langle \Delta \alpha \rangle$.

Второй способ (графический) - возможен только в том случае, когда длины трубок одинаковы.

- 1. Построить график зависимости $\varphi = f(C)$ для растворов известной концентрации.
- 2. По тангенсу угла наклона (β) интерполирующей прямой определить среднее значение удельного вращения:

$$\langle \alpha \rangle = \frac{\Delta \varphi}{l} = \frac{tg\beta}{l}$$
.

3. Вычислить относительную и абсолютную погрешности для концентрации C_I по формулам:

$$\delta\alpha = \frac{\Delta\varphi}{\langle\varphi_{I}\rangle} + \frac{\Delta l}{l_{I}} + \frac{\Delta C_{_{3m}}}{C_{I}},$$

где $\Delta \varphi = 0.05^{\circ}$, $\Delta l = 0.05 \, \mathrm{MM}$,

 $\Delta C_{_{2m}}=0.5\%$ - приборные погрешности.

$$\Delta \alpha = \langle \alpha \rangle \cdot \delta \alpha$$
.

4. Записать ответ в виде $\alpha = \langle \alpha \rangle \pm \Delta \alpha$.

Таблица 1

Tao/ini						инца т		
N п/п	$C_{_{\mathfrak{I}m}}$	$l_{_{\mathfrak{I}m}}$	$arphi_0$	$arphi_{\scriptscriptstyle \supset m}'$	$arphi_{\scriptscriptstyle \supset m}$	α	Δα	δα
[]	%	мм	град	град	град	град %∙мм	<u>град</u> %∙мм	%
1								
2								
3								
Средні	ие зна	эчения						

Задание2. Определение концентрации раствора сахара.

- 1. Занести в таблицу 2 длину трубки неизвестной концентрации l_x , среднее значение $\langle \varphi_o \rangle$ и среднее значение $\langle \alpha \rangle$ из таблицы 1.
- 2. Поместить в камеру сахариметра трубку с раствором сахара неизвестной концентрации C_{χ} и повторить пункты 8-10 задания 1.
- 3. Вычислить концентрацию C_{x} по формуле

$$C_X = \frac{\varphi_X}{\langle \alpha \rangle \cdot l_X} \ .$$

4. Вычислить относительную δC_x и абсолютную ΔC_x погрешности по формулам:

$$\delta C_X = \frac{\Delta \varphi}{\varphi_X} + \frac{\Delta l}{l_X} + \delta \alpha,$$

где $\Delta \phi = 0.05^{o}$ и $\Delta l = 0.05\,{\rm MM}$ - приборные погрешности, $\delta\,\alpha$ - берётся из таблицы 1.

$$\Delta C_X = C_X \cdot \delta C_X$$
.

5. Записать ответ в виде $C_x = \langle C_x \rangle \pm \Delta C_x$.

Таблица 2

N п/п	l_x	$\langle lpha angle$	$\langle arphi_o angle$	φ_x'	φ_{x}	C_x	δC_x	ΔC_x
[]	ММ	<u>град</u> %∙мм	град	град	град	%	%	%

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. В чем состоит отличие поляризованного света от естественного?
- 2. Что называется световым вектором?
- 3. Что называется плоскостью колебаний? плоскостью поляризации?
- 4. Что называется поляризатором? анализатором?
- 5. Какие вещества называются оптически активными?
- Как объясняется вращение плоскости поляризации оптически активными веществами?
- 7. Сформулируйте закон Малюса.
- 8. От каких факторов зависит удельное вращение?
- 9. В чем заключается методика измерений?
- 10. Сформулируйте закон Брюстера.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Трофимова Т. И. Курс физики.- М.: Высш. шк., 2004
- 2. Федосеев В. Б. Физика,- Ростов н/Д: Феникс, 2009