

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

Кафедра «Теплогазоснабжение и вентиляция»

Практикум

по дисциплине

«Теплофизика»

Авторы Скорик Т. А., Глазунова Е. К.

Аннотация

Практикум предназначен для студентов заочной формы обучения направления 20.03.01 «Техносферная безопасность»

По основным темам изучаемой дисциплины приводится краткая теоретическая часть, дающая определения основных понятий, основные формулы, пояснение к ним, методика решения задачи. Имеются приложения с данными из нормативной и справочной литературы, необходимыми для решения задач

Авторы

к.т.н., доцент кафедры «Теплогазоснабжение и вентиляция» Скорик Т.А.,

к.т.н., доцент кафедры «Теплогазоснабжение и вентиляция» Глазунова Е.К.

Оглавление

ЗАДАНИЕ	5
ВариантВариант	6
• • • •	
Перлитопластобетон	
СОДЕРЖАНИЕ	
ОСНОВНЫЕ УСЛОВИЯ 1 Расчет показателей тепловой защиты здания	
1.1 Приведенное сопротивление теплопередаче 1.2 Санитарно-гигиенический показатель ограждени 2 Теплоустойчивость ограждающих конструкций	ій .26
3 Сопротивление воздухопроницанию ограждаю	щих
конструкций	34
4 Расчет теплоусвоения поверхности полов	37
5 Защита от переувлажнения ограждающих констру	кций
	42
5.1. Определение вероятности конденсации водя пара в ограждении	яного 42 ощих 46
Приложение А	
ПРИЛОЖЕНИЕ Б	
ПРИЛОЖЕНИЕ В	
ПРИЛОЖЕНИЕ Г	
ПРИЛОЖЕНИЕ Д	76
ПРИЛОЖЕНИЕ Е	77
ПРИЛОЖЕНИЕ Ж	78
ПРИЛОЖЕНИЕ 3	78

ПРИЛОЖЕНИЕ И	79
ПРИЛОЖЕНИЕ К	79
ПРИЛОЖЕНИЕ Л	80
ПРИЛОЖЕНИЕ М	81
ПРИЛОЖЕНИЕ Н	82
ПРИЛОЖЕНИЕ П	84
ПРИЛОЖЕНИЕ Р	
ПРИЛОЖЕНИЕ С	

ЗАДАНИЕ

Определить необходимые теплозащитные показатели строительных конструкций жилого дома, согласно условиям приведенных ниже задач. Сделать выводы о пригодности для использования в строительстве этих конструкций и их соответствии нормативным требованиям.

Район строительства определяется по варианту (таблица 1). Номер варианта принимается по определенной букве фамилии.

Данные для расчетов из таблицы 2 определяются по первой букве фамилии;

Таблицы 3 – по второй; таблицы 4 – по третьей.

Таблица 1

Вариант	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Буква	A	Б	В	Γ	Д	Е	Ë	Ж	3	И	К	Л	M	Н	О
фамилии															

Окончание таблицы 1

Вариант	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Буква	П	P	С	T	У	Φ	X	Ц	Ч	Ш	Щ	Ы	Э	Ю	R
фамилии															

Таблица 2 - Район строительства

Вариант	Город	Вариант	Город
1	Калининград	16	Тула
2	Краснодар	17	Тамбов
3	Смоленск	18	Владимир
4	Ростов-на-Дону	19	Тверь
5	Волгоград	20	Москва
6	Воронеж	21	Вологда
7	Липецк	22	Кострома
8	Екатеринбург	23	Новгород
9	Пенза	24	Псков
10	Самара	25	Нижний Новгород
11	Ярославль	26	Иваново
12	Астрахань	27	Курск
13	Брянск	28	Ульяновск

14	Орел	29	Саратов
15	Рязань	30	Калуга

Таблица 3 – Основной конструкционный материал наружной стены здания

Вариант	Материал	Плотность
		ρ, κг/м³
1	2	3
1	Кладка из глиняного обыкновенного кирпича (ГОСТ 530) на цемент- но-песчаном растворе	1800
2	Кладка из глиняного обыкновенного кирпича (ГОСТ 530) на цемент- но-шлаковом растворе	1700

Продолжение таблицы 3

1	2	3
3	Кладка из глиняного обыкновенного кирпича (ГОСТ 530) на цемент-	1600

	но-перлитовом растворе	
4	Кладка из силикатного кирпича (ГОСТ 379) на цементно-песчаном	1800
	растворе	
5	Кладка из керамического пустотного кирпича плотностью 1400 кг/м³	1600
	на цементно-песчаном растворе	
6	Кладка из керамического пустотного кирпича плотностью 1300 кг/м ³	1400
	на цементно-песчаном растворе	
7	Кладка из керамического пустотного кирпича плотностью 1000 кг/м^3	1200
	на цементно-песчаном растворе	
8	Кладка из силикатного одиннадцатипустотного кирпича (ГОСТ 379) на	1500
	цементно-песчаном растворе	
9	Кладка из силикатного четырнадцатипустотного кирпича (ГОСТ 379)	1400
	на цементно-песчаном растворе	
10	Туфобетон	1800
11	То же	1600
12	То же	1400

13	Пемзобетон	1600
14	То же	1400
15	Бетон на вулканическом шлаке	1400
16	Керамзитобетон на керамзитовом песке	1800
17	То же	1600
18	То же	1400
19	Шлакопемзопенобетон	1400
20	Бетон на доменных гранулированных шлаках	1800

Окончание таблицы 3

1	2	3
21	Бетон на доменных гранулированных шлаках	1600
22	То же	1400
23	Бетон на котельных шлаках, алгопоритобетон	1800
24	То же	1600
25	То же	1400
26	Бетон на зольном гравии	1400
27	Кладка из глиняного обыкновенного кирпича на цементно-песчаном	1800

	растворе	
28	Кладка из глиняного обыкновенного кирпича на цементно-шлаковом	1700
	растворе	
29	Кладка из силикатного кирпича на цементно-песчаном растворе	1800
30	Кладка из керамического пустотного кирпича плотностью 1400 кг/м ³	1600
	на цементно-песчаном растворе	

Таблица 4 - Материал утеплителя ограждающей конструкции

Вариант	Материал	Плотность
		ρ, κг/м³
1	2	3
1	Маты минераловатные прошивные (ГОСТ 21880)	100
2	То же	75
3	То же	125
4	Плиты мягкие на синтетическом и битумном связующем (ГОСТ 9573)	250
5	То же	225

Управление цифровых образовательных технологий

Теплофизика

6	То же	200
---	-------	-----

Продолжение таблицы 4

DIRECTIVIC TOOM		
1	2	3
7	Плиты мягкие на синтетическом и битумном связующем (ГОСТ 9573)	100
8	Плиты минераловатные повышенной жесткости на органофосфатном связующем	200
9	Плиты полужесткие минераловатные на крахмальном связующем	200
10	То же	125
11	Плиты из стеклянного штапельного волокна «URSA»	85
12	Маты из стеклянного штапельного волокна «URSA»	25
13	То же	15
14	Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499)	45
15	Перлитопластбетон	100
16	Плиты минераловатные повышенной жесткости на органофосфатном связующем	200

17	Пенополистирол «Стиропор» PS 30	30
18	Пенополистирол экструзионный «Пеноплекс»	35
19	То же, тип 45	45
20	То же	40
21	Пенопласт ПВХ-1	125
22	То же	100
23	Пенополиуретан	80
24	То же	60
25	То же	40
26	Плиты из резольнофенолформальдегидного пенопласта (ГОСТ 20916)	90
27	То же	80
28	То же	50

Окончание таблицы 4

1	2	3
29	Перлитопластобетон	200
30	Маты минераловатные прошивные (ГОСТ 21880)	125

Расчет показателей тепловой защиты производится для условных строительных конструкций, схемы которых приведены ниже (рисунок 1).

При решении задач следует иметь в виду, что указанные размеры (в мм) являются общими для всех вариантов. Буквенные обозначения размеров рассчитываются индивидуально по варианту.

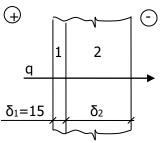
СОДЕРЖАНИЕ

Задача 1. Определить нормируемое сопротивление теплопередаче и толщину слоя утеплителя однородной многослойной конструкции (условие 1):

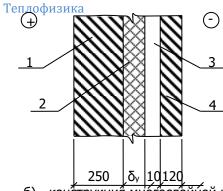
- 1.1 наружной стены (рисунок 1 а, б);
- 1.2 покрытия (рисунок 1 г).

<u>Задача 2.</u> Построить температурный график в ограждении и определить минимальную температуру внутренней поверхности (условие 2):

- 2.1 наружной стены;
 - 2.2 покрытия.

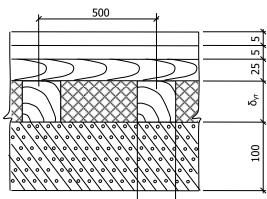


<u>Задача 3.</u> Определить приведенное сопротивление теплопередаче неоднородной конструкции утепленного пола над неотапливаемым подвалом (рисунок 1 в).

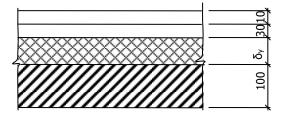

Задача 4. Определить теплоустойчивость ограждающих конструкций, рассчитанных в задаче 1 (условие 3):

- 4.1 наружной стены (рисунок 1 б);
 - 4.2 покрытия (рисунок 1 г).

- а) конструкция наружной стены:
 - 1) известково-песчаная штукатурка;
 - 2)основной конструкционный материал (таблица 3)



б) - конструкция многослойной наружной


стены:

- 1) конструкционный материал;
- 2) утеплитель (таблица 4);
- 3) воздушная прослойка;
- 4) конструкционный материал

- в) конструкция перекрытия над подвалом:
 - 1) линолеум;
 - 2) ДВП;
 - 3) настил из доски;
 - 4) лага деревянная
 - 5) Ж/б плита перекрытия

- г) конструкция совмещенного покрытия здания:
- 4) рубероид;
 - 3) цементная стяжка;
- 2) утеплитель;
 - 1) Ж/б плита

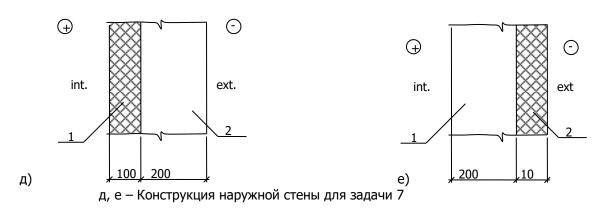


Рисунок 1 – Схемы строительных конструкций

Задача 5. Определить теплоусвоение поверхности пола с конструкцией, рассчитанной в задаче 3 (условие 4).

Задача 6. Определить воздухопроницаемость наружной стены (рис. 1 б), рассчитанной в задаче 1 (условие 6).

<u>Задача 7.</u> Построить график вероятного влагонакопления в толще наружной стены (метод Фокина-Власова): 7.1 - для конструкции на рисунке 1 д;

7.2 – для конструкции на рисунке 1 е.

Задача 8. Определить сопротивление паропроницанию наружной стены (рисунок 1. б):

- 8.1 по условию недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатации (условие 5.1);
- 8.2 по условию ограничения влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздуха (условие 5.2).

ОСНОВНЫЕ УСЛОВИЯ

проектирования тепловой защиты наружных ограждений:

1.
$$R_o^r \geq R_{mp}$$
.

5.
$$R_{vp}^{pac} \geq R_{vp}^{mp}$$
.

2.
$$\tau_e \geq t_d$$
.

$$_{5.1.} R_{vp} \geq R_{vp1}^{mp}$$

3.
$$A_{\tau}^{pac} \leq A_{\tau}^{mp}$$
.

5.2.
$$R_{vp} \ge R_{vp2}^{mp}$$
.

4.
$$Y_f^{pac} \leq Y_f^{mp}$$
.

6.
$$R_{\text{int}}^{pac} \ge R_{\text{int}}^{mp}$$
.

1 РАСЧЕТ ПОКАЗАТЕЛЕЙ ТЕПЛОВОЙ ЗАЩИТЫ ЗДАНИЯ

Нормами [1] установлены три показателя тепловой защиты здания; два из них характеризуют теплозащитные свойства наружных ограждающих конструкций и являются определяющими при их расчете — это приведенное сопротивление теплопередаче ограждающих конструкций и санитарно-гигиенический показатель ограждений.

Они рассчитываются для холодного периода года, влияют на удельный расход тепловой энергии для отопления и на тепловую защиту здания.

1.1 Приведенное сопротивление теплопередаче

 R_{o} , м^{2.o}С/Вт, ограждающих конструкций следует принимать не менее нормируемых значений R^{rp} , м^{2.o}С/Вт, определяемых по приложению Γ в зависимости от градусо- суток района строительства $\Gamma CO\Pi$, °С·сут. (условие 1)

Градусо-сутки отопительного периода

$$\Gamma CO\Pi = (t_{e} - t_{om})z_{om}, \tag{1}$$

где $t_{\rm B}$ — расчетная средняя температура внутреннего воздуха здания, °C, принимаемая для расчета ограждающих конструкций группы зданий по поз. 1 приложению Γ по минимальным значениям оптимальной температуры для соответствующих зданий по ГОСТ 30494 (в интервале 20-22 °C), для группы зданий по поз. 2 приложению Γ — согласно классификации помещений и минимальных значений оптимальной температуры по ГОСТ 30494 (в интервале 16-21 °C); зданий по поз. 3 приложению Γ — по нормам проектирования соответствующих зданий;

 t_{or} , $z_{o\tau}$ — средняя температура наружного воздуха, °C, и продолжительность, сут, отопительного периода, принимаемые по [2] для периода со средней суточной температурой наружного воздуха не более 10 °C — при проектировании лечебно-профилактических, детских учреждений и домов-интернатов для престарелых, и не более 8 °C — в остальных случаях (приложение A).

Для производственных зданий с избытками явной теплоты более 23 Вт/м 3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 $^{\circ}$ С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных) $R^{\text{тр}}$, м $^{2.0}$ С/Вт, следует принимать не менее значений, определяемых по формуле

$$R^{mp} = \frac{n(t_{\scriptscriptstyle g} - t_{\scriptscriptstyle H})}{\Delta t_{\scriptscriptstyle n} \alpha_{\scriptscriptstyle g}}, \tag{2}$$

где n – коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху и приведенный в приложении E;

 Δt_n — нормируемый температурный перепад между температурой внутреннего воздуха t_B и температурой внутренней поверхности τ_{int} ограждающей конструкции, °C, принимаемый по приложению Д;

 a_{B} — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м $^{2.0}$ С), принимаемый по приложению Ж;

 $t_{\scriptscriptstyle B}$ – то же, что и в формуле (1);

t_н – расчетная температура наружного воздуха в холодный период года, °С, для всех зданий, кроме производственных зданий, предназначенных для сезонной эксплуатации, принимаемая равной средней температуре наиболее холодной пятидневки обеспеченностью 0,92

Наружные ограждающие конструкции зданий должны удовлетворять:

- нормируемому сопротивлению теплопередаче $R^{\text{тр}}$ для однородных конструкций наружного ограждения по R_o ; для неоднородных конструкций по приведенному сопротивлению теплопередаче R_o^r ; при этом должно соблюдаться условие $R_o\left(unuR_o^r\right) \ge R^{mp}$;
- расчетному температурному перепаду Δt_0 между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции.
- При этом расчетный температурный перепад не должен превышать нормируемых величин $\Delta t_{\rm h}$ минимальной температуре, равной температуре точки росы $t_{\rm d}$ при расчетных условиях внутри помещения на всех участках внутренней поверхности наружных ограждений с температурами au_{int} ; при этом должно соблюдаться условие $au_{\rm int} \geq t_{\rm d}$.

Для плоских ограждающих конструкций с теплопроводными включениями толщиной больше 50 % толщины ограждения, теплопроводность которых не превышает теплопроводности основного материала более чем в 40 раз, приведенное термическое сопротивление определяется следующим образом:

а) плоскостями, параллельными направлению теплового потока, ограждающая конструкция (или часть ее) условно разрезается на участки, из которых одни участки могут быть однородными (однослойными) — из одного материала, а другие неоднородными — из слоев с различными материалами; термическое сопротивление ограждающей конструкции R_{aT} , $M^{2.0}$ C/BT, определяется по формуле (3) применительно к термическому со-

противлению, где термическое сопротивление отдельных однородных участков конструкции определяется по формуле (4) или для многослойных участков по формуле (5);

6) плоскостями, перпендикулярными направлению теплового потока, ограждающая конструкция (или часть ее, принятая для определения R_{aT}) условно разрезается на слои, из которых одни могут быть однородными — из одного материала, а другие неоднородными — из разных материалов. Термическое сопротивление однородных слоев определяется по формуле (4), неоднородных — по формуле (3) и термическое сопротивление ограждающей конструкции R_{T} — как сумма термических сопротивлений отдельных однородных и неоднородных слоев — по формуле (6).

$$R_o^r = A / \sum_{i=1}^m (A_i / R_{o,i}^r),$$
 (3)

где $A_i, R_{o,i}^r$ — соответственно площадь \dot{r} го участка характерной части ограждающей конструкции, м², и его приведенное сопротивление теплопередаче, м².оС/Вт;

A – общая площадь конструкции, равная сумме площадей отдельных участков, м 2 ;

m – число участков ограждающей конструкции с различным приведенным сопротивлением теплопередаче

Термическое сопротивление R, м^{2.0}С/Вт, однослойного слоя многослойной ограждающей конструкции, а также однослойной ограждающей конструкции следует определять по формуле

$$R = \delta / \lambda$$
, (4)

где δ – толщина слоя, м;

 λ — расчетный коэффициент теплопроводности материала слоя, BT/(м \cdot °C), принимаемый согласно приложение Б.

Термическое сопротивление ограждающей конструкции R_k , $M^{2.0}$ C/BT, с последовательно расположенными однородными слоями следует определять как сумму термических сопротивлений отдельных слоев

$$R_k = R_1 + R_2 + \dots + R_n + R_{a.l}, (5)$$

где $R_1, R_2, ..., R_n$ – термические сопротивления отдельных слоев ограждающей конструкции, м^{2.0}С/Вт, определяемые по формулам (4, 6);

 $R_{a,l}$ — термическое сопротивление замкнутой воздушной прослойки, принимаемое по приложению И.

Приведенное термическое сопротивление ограждающей конструкции

$$R_k^r = (R_{aT} + 2R_T)/3. (6)$$

Температуру внутренней поверхности $\tau_{\text{в}}$, °С, однородной однослойной или многослойной ограждающей конструкции с однородными слоями следует определять по формуле

$$\tau_{\scriptscriptstyle B} = t_{\scriptscriptstyle B} - \left[n(t_{\scriptscriptstyle B} - t_{\scriptscriptstyle H}) \right] / (R_{\scriptscriptstyle O} a_{\scriptscriptstyle B}). \tag{7}$$

1.2 Санитарно-гигиенический показатель ограждений

Этот показатель определяет комфортность и санитарно-гигиеническое состояние помещения. Он включает в себя:

- температурный перепад между температурами внутреннего воздуха и внутренней поверхности наружного ограждения, Δt_0 , °C;
- температуру на внутренней поверхности ограждений τ_{int} , °C, которая должна быть выше температуры точки росы t_{d} , °C.

Расчетный температурный перепад Δt_0 , °C, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не должен превышать нормируемых величин Δt_0 , °C, установленных в приложении Д, и определяется по формуле

$$\Delta t_o = \frac{n(t_{\scriptscriptstyle B} - t_{\scriptscriptstyle H})}{R_{\scriptscriptstyle O} a_{\scriptscriptstyle B}}.$$
 (8)

Температура внутренней поверхности ограждающей конструкции (за исключением вертикальных светопрозрачных конструкций) в зоне теплопроводных включений, в углах и оконных откосах должна быть не ниже температуры точки росы внутреннего воздуха при расчетной температуре наружного воздуха в холодный период года (условие 2).

Примечание. Относительную влажность внутреннего воздуха для определения температуры точки росы в местах теплопроводных включений ограждающих конструкций, в углах и оконных откосах следует принимать: для помещений жилых зданий, больничных учреждений, диспансеров, амбулаторно-поликлинических учреждений, родильных домов, домов-интернатов для престарелых и инвалидов, общеобразовательных детских школ, детских садов, яслей, яслей-садов (комбинатов) и и детских домов – 55 %; для помещений кухонь – 60 %; для ванных комнат – 65 %; для теплых подвалов и подполий с коммуникациями – 75 %; для помещений общественных зданий (кроме вышеуказанных) – 50 %.

Температура внутренней поверхности конструктивных элементов остекления окон зданий (кроме производственных) должна быть не ниже плюс 3 °C, а непрозрачных элементов окон – не ниже температуры точки росы при расчетной температуре наружного воздуха в холодный период года, для производственных зданий – не ниже 0 °C.

2 ТЕПЛОУСТОЙЧИВОСТЬ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ

Рассчитанные по разделу 1 для холодного периода года конструкции наружных ограждений проверяются на теплоустойчивость для теплого периода года.

При наличии в здании отопления с автоматическим регулированием температуры внутреннего воздуха теплоустойчивость помещений в холодный период года не нормируется.

В районах со среднемесячной температурой июля 21 °C и выше расчетная амплитуда колебаний температуры

внутренней поверхности ограждающих конструкций $A_{ au}^{pac}$, обусловленная нестационарными теплопоступлениями от солнечной радиации, не должна быть более нормируемой амплитуды колебаний температуры внутренней поверхности ограждающей конструкции $A_{ au}^{mp}$ (условие 3)

$$A_{\tau}^{mp} = 2.5 - 0.1(t_{H} - 21), \, ^{\circ}C, \tag{9}$$

где $t_{_H}$ — средняя месячная температура наружного воздуха за июль, $^{\circ}$ С, принимаемая по приложению A табл. A.2.

Расчетную амплитуду колебаний температуры внутренней поверхности ограждающей конструкции $A_{ au}^{pac}$ следует определять по своду правил [2] следующим образом.

Расчетная амплитуда колебаний температуры внутренней поверхности ограждающей конструкции

$$A_{\tau}^{pac} = A_{t,H}^{pac} / V , \circ_{\mathsf{C}} , \tag{10}$$

где $A_{t,n}^{pac}$ – расчетная амплитуда колебаний температуры наружного воздуха, °С, определяемая, согласно формуле (17);

 ν – величина затухания расчетной амплитуды колебаний температуры наружного воздуха $A_{t,\mu}^{pac}$ в ограждающей конструкции, определяемая, согласно формуле (11).

При проектировании ограждающих конструкций с учетом их теплоустойчивости необходимо руководствоваться следующими положениями:

- теплоустойчивость конструкции зависит от порядка расположения слоев материалов;
- величина затухания амплитуды колебаний температуры наружного воздуха v в двухслойной конструкции увеличивается, если более теплоустойчивый материал расположен изнутри;
- наличие в конструкции ограждения воздушной прослойки увеличивает теплоустойчивость конструкции.

Показателем теплоустойчивости наружной ограждающей конструкции является v — величина затухания расчетной амплитуды колебаний температуры наружного воздуха внутри ограждения. Эта величина показывает, во сколько раз амплитуда колебаний температуры внутренней поверхности ограждения уменьшается по сравнению с расчетной амплитудой колебаний температуры наружного воздуха.

Расчетные показатели для слоев ограждающей конструкции заносятся в табл.С. 1 приложение С.

Величину затухания расчетной амплитуды колебаний температуры наружного воздуха v в ограждающей конструкции, состоящей из однородных слоев, рассчитывают по формуле

$$v = 0.9 \cdot 2.718^{D/\sqrt{2}} \left[(s_1 + a_g)(s_2 + Y_1)...(s_n + Y_{n-1})(a_H + Y_n) \right] / \left[(s_1 + Y_1)(s_2 + Y_2)...(s_n + Y_n)a_H \right],$$
(11)

где D – тепловая инерция ограждающей конструкции, определяемая по формулам (13, 14);

 s_1 , s_2 , ..., s_n – расчетные коэффициенты теплоусвоения материала отдельных слоев ограждающей конструкции, $Bt/(M^{2. \circ}C)$, принимаемые по приложению Б или по результатам теплотехнических испытаний;

 Y_1 , Y_2 , ... Y_{i-1} , Y_1 — коэффициенты теплоусвоения наружной поверхности отдельных слоев ограждающей конструкции, Вт/(м²- °C), определяемые по формулам 15, 16;

 a_{B} – то же, что и в формуле 7 (приложение Ж);

 a_{H} — коэффициент теплоотдачи наружной поверхности ограждающей конструкции по летним условиям, $BT/(M^{2. o}C)$, определяемый по формуле

$$a_{H} = 1{,}16(5+10\sqrt{V}),$$
 (12)

где V – минимальная из средних скоростей ветра по румбам за июль, повторяемость которых составляет 16 % и более, принимаемая согласно [2], но не менее 1 м/с (приложение A, табл. A.2);

Для определения коэффициентов теплоусвоения наружной поверхности отдельных слоев ограждающей конструкции тепловую инерцию ограждающей конструкции следует определять по формуле

$$D = R_1 s_1 + R_2 s_2 + \dots + R_n s_n, (13)$$

где R_1 , R_2 , ..., R_n – термические сопротивления отдельных слоев ограждающей конструкции, м^{2.0}С/Вт, определяемые по формуле (6);

 s_1 , s_2 , ..., s_n – расчетные коэффициенты теплоусвоения материала отдельных слоев ограждающей конструкции, $Bt/(M^{2.0}C)$, принимаемые по приложению Б.

Следует предварительно вычислить тепловую инерцию каждого слоя по формуле

$$D_i = R_i \cdot S . (14)$$

Коэффициент теплоусвоения наружной поверхности слоя Y, BT/(м²-°С), с тепловой инерцией D≥1 следует принимать равным расчетному коэффициенту теплоусвоения S материала этого слоя конструкции по приложению S.

Коэффициент теплоусвоения наружной поверхности слоя Y с тепловой инерцией D < 1 следует определять расчетом, начиная с первого слоя (считая от внутренней поверхности ограждающей конструкции) следующим образом

а) для первого слоя

$$Y_{1} = (R_{1}s_{1}^{2} + a_{\varepsilon})/(1 + R_{1}a_{\varepsilon});$$
(15)

б) для і-го слоя

$$Y_{i} = (R_{i} s_{i}^{2} + Y_{i-1})/(1 + R_{i} Y_{i-1}),$$
(16)

где R_{1} , R_{i} — термические сопротивления соответственно первого и і-го слоев ограждающей конструкции, м^{2.o}С/Вт,

 s_1 , s_i – расчетные коэффициенты теплоусвоения материала соответственно первого и i-го слоев, BT/(м².oC),

 Y_{1} , Y_{i} , Y_{i-1} — коэффициенты теплоусвоения наружной поверхности соответственно первого, i-го и (i-1)-го слоев ограждающей конструкции, Bт/(м².оС).

Расчетная амплитуда колебаний температуры наружного воздуха

$$A_{t,\mu}^{pac} = 0.5A_{i,\mu} + \rho (I_{\text{max}} - I_{a\nu}) / \alpha_{\mu}, \circ c, \tag{17}$$

где $A_{t,H}$ — максимальная амплитуда температуры наружного воздуха в июле, °C, принимаемая согласно [2](приложение A, табл. A.2.);

ho – коэффициент поглощения солнечной радиации материалом наружной поверхности ограждающей конструкции, принимаемый по приложение P;

 I_{max} , I_{av} — соответственно максимальное и среднее значения суммарной солнечной радиации (прямой и рассеянной), Вт/м², принимаемые согласно приложению Л: для наружных стен — как для вертикальной поверхности западной ориентации, для покрытий — как для горизонтальной поверхности;

 a_{H} – то же, что в формуле (12).

3 СОПРОТИВЛЕНИЕ ВОЗДУХОПРОНИЦАНИЮ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ

Сопротивление воздухопроницанию ограждающих конструкций за исключением заполнений световых про-

емов (окон, балконных дверей и фонарей), зданий и сооружений $R_{\mathrm{inf}}^{\mathit{pac}}$ должно быть не менее нормируемого сопротивления воздухопроницанию (условие 6), определяемого по формуле

$$R_{\rm inf}^{\it pac} = \Delta p / G_n$$
, $M^{2} \cdot \mathbf{q} \cdot \Pi \mathbf{a} / K \Gamma$, (18)

где Δp — разность давлений воздуха на наружной и внутренней поверхностях ограждающих конструкций, Па, определяемая в соответствии с формулой (19);

 G_n — нормируемая воздухопроницаемость ограждающих конструкций, кг/(м²-ч), принимаемая в соответствии с табл.5.

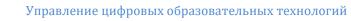
Разность давлений воздуха на наружной и внутренней поверхностях ограждающих конструкций

$$\Delta p = 0.55H(\gamma_{H} - \gamma_{G}) + 0.03\gamma_{H} v^{2}, \, \Pi a, \tag{19}$$

где H – высота здания (от уровня пола первого этажа до верха вытяжной шахты), м;

 y_{H} , y_{B} — удельный вес соответственно наружного и внутреннего воздуха, H/M^{3} , определяемый по формуле

$$\gamma = 3463/(273+t),\tag{20}$$


t – температура воздуха: внутреннего (для определения y_{int}) – принимается, согласно оптимальным параметрам по ГОСТ 12.1.005, ГОСТ 30494 и СанПиН 2.1.2.1002; наружного (для определения y_H) – принимается равной средней температуре наиболее холодной пятидневки обеспеченностью 0,92 по СП 131.13330 (прил. 1);

u – максимальная из средних скоростей ветра по румбам за январь, повторяемость которых составляет 16 % и более, принимаемая по таблице A1 (приложение A).

Нормируемую воздухопроницаемость G_n , $\kappa \Gamma/(M^2 \cdot 4)$, ограждающей конструкции зданий следует принимать по таблице 5.

Таблица 5 – Нормируемая воздухопроницаемость ограждающих конструкций

Ограждающие конструкции	Воздухопроницаемость G_n ,
	кг/(м²-ч), не более
1. Наружные стены, перекрытия и покрытия жилых, обществен-	0,5
ных, административных и бытовых зданий и помещений	
2. Наружные стены, перекрытия и покрытия производственных	1,0
зданий и помещений	
3. Стыки между панелями наружных стен:	

а) жилых зданий	0,5*
б) производственных зданий	1,0*
4. Входные двери в квартиры	1,5
5. Входные двери в жилые, общественные и бытовые здания	7,0
6. Окна и балконные двери жилых, общественных и бытовых зда-	6,0
ний и помещений в деревянных переплетах; окна и фонари произ-	
водственных зданий с кондиционированием воздуха	

Окончание таблицы 5

7. Окна и балконные двери жилых, общественных и бытовых зда-	5,0
ний и помещений в пластмассовых или алюминиевых переплетах	
8. Окна, двери и ворота производственных зданий	8,0
9. Фонари производственных зданий	10,0
*В кг/(м·ч).	

Сопротивление воздухопроницанию окон и балконных дверей жилых и общественных зданий, а также окон и фонарей производственных зданий $R_{\mathrm{inf}}^{\mathit{pac}}$ должно быть не менее нормируемого сопротивления воздухопроницанию $R_{\mathrm{inf}}^{\mathit{mp}}$, м²-ч/кг, определяемого по формуле

$$R_{\rm inf}^{mp} = \left(1/G_n\right) \cdot \left(\Delta p / \Delta p_o\right)^{2/3},\tag{21}$$

где $\Delta p_o = 10$ Па — разность давлений воздуха наружной и внутренней поверхностях светопрозрачных ограждающих конструкций.

Сопротивление воздухопроницанию многослойной ограждающей конструкции

$$R_{\inf}^{pac} = R_{\inf 1} + R_{\inf 2} + ... + R_{\inf n}, M^{2\cdot q \cdot \Pi a / K\Gamma}$$
 (22)

где $R_{\inf 1}, R_{\inf 2}, ..., R_{\inf n}$ – сопротивления воздухопроницанию отдельных слоев ограждающей конструкции, м²-ч·Па/кг, принимаемые по приложение О.

4 РАСЧЕТ ТЕПЛОУСВОЕНИЯ ПОВЕРХНОСТИ ПОЛОВ

Теплоусвоение полов зданий должно соответствовать требованиям СП 50.13330. Расчетный показатель теплоусвоения поверхности пола Y_f^{pac} , $Bt/(M^{2.0}C)$, должен быть не более Y_f^{mp} (табл. 6) и определяется следующим образом:

а) если покрытие пола (первый слой конструкции пола) имеет тепловую инерцию $D_1=R_1s_1\geq 0.5$, то показатель теплоусвоения поверхности пола

$$Y_f^{pac} = 2s_1; (23)$$

6) если первые n слоев конструкции пола ($n \ge 1$) имеют суммарную тепловую инерцию $D_1 + D_2 + ... + D_n < 0,5$, но тепловая инерция (n+1) слоев $D_1 + D_2 + ... + D_{n+1} \ge 0,5$, то показатель теплоусвоения поверхности пола Y_f следует определять последовательно расчетом показателей теплоусвоения поверхностей слоев конструкции, начиная с n-го до i-го:

для *п*-го слоя

$$Y_f^{pac} = (2R_n s_n^2 + s_{n+1})/(0.5 + R_n s_{n+1});$$
(24)

для *i*-го слоя (*i=n-*1; *n-*2; ... ;1)

$$Y_{i} = \left(4R_{i}S_{i}^{2} + Y_{i+1}\right) / \left(1 + R_{i}Y_{i+1}\right). \tag{25}$$

Показатель теплоусвоения поверхности пола Y_f^{pac} принимается равным показателю теплоусвоения поверхности і-го слоя Y_1 .

Таблица 6 – **Нормируемые значения показателя** Y_f^{mp}

Здания, помещения и отдельные участки	Показатель теплоусвоения
	поверхности пола Y_f^{mp} ,
	Вт/(м ^{2.0} С)
1. Здания жилые, больничных учреждений (больниц, клиник, стацио-	
наров и госпиталей), диспансеров, амбулаторных поликлинических	
учреждений, родильных домов, домов ребенка, домов-интернатов	
для престарелых и инвалидов, общеобразовательных детских школ,	12
детских садов, яслей, яслей-садов (комбинатов), детских домов и	
детских приемников-распределителей.	

Окончание табл. 6

2. Общественные здания (кроме указанных в поз. 1); вспомогатель-

ные здания и помещения промышленных предприятий; участки с по-	
стоянными рабочими местами в отапливаемых помещениях произ-	14
водственных зданий, где выполняются легкие физические работы	
(категория I).	
3. Участки с постоянными рабочими местами в отапливаемых поме-	
щениях производственных зданий, где выполняются физические ра-	17
боты средней тяжести (категория II).	

Расчетное значение показателя теплоусвоения поверхности пола $Y_f^{\it pac}$ следует определять по своду правил [2].

Расчетный показатель теплоусвоения поверхности пола $Y_f^{\it pac}$, $Bt/(M^{2.0}C)$, определяется следующим образом:

а) если покрытие пола (первый слой конструкции пола) имеет тепловую инерцию $D_1=R_1s_1\geq 0.5$, то по-казатель теплоусвоения поверхности пола

$$Y_f^{pac} = 2s_1; (26)$$

6) если первые n слоев конструкции пола ($n \ge 1$) имеют суммарную тепловую инерцию $D_1 + D_2 + ... + D_n < 0.5$, но тепловая инерция (n + 1) слоев $D_1 + D_2 + ... + D_n \ge 0.5$, то показатель теплоусвоения поверхности пола Y_f следует определять последовательно расчетом показателей теплоусвоения поверхностей слоев конструкции, начиная с n-го до i-го:

для *п*-го слоя

$$Y_f^{pac} = (2R_n s_n^2 + s_{n+1})/(0.5 + R_n s_{n+1}); \tag{27}$$

для i-го слоя (i = n-1; n-2; ...; 1)

$$Y_{i} = \left(4R_{i}S_{i}^{2} + Y_{i+1}\right)/\left(1 + R_{i}Y_{i+1}\right),\tag{28}$$

где $D_1+D_2+...+D_{n+1}$ – тепловая инерция соответственно 1-го, 2-го, ..., (n+1)-го слоев конструкции;

 R_i , R_0 — термические сопротивления, м^{2.0}С/Вт, соответственно \dot{F} го и n-го слоев конструкции пола;

 s_1 , s_1 , s_n , s_{n+1} — расчетные коэффициенты теплоусвоения материала соответственно 1-го, \dot{F} го, n-го, (n+1)-го слоев конструкции пола, $Bt/(M^{2.0}C)$, при условии эксплуатации A;

 Y_{i+1} — показатель теплоусвоения поверхности (i+1)-го слоя конструкции пола, $BT/(M^{2.0}C)$.

Если расчетная величина Y_f^{pac} показателя теплоусвоения поверхности пола окажется не более нормативной величины Y_f^{pac} , установленной в СП 50.13330, то этот пол удовлетворяет требованиям в отношении теплоусвоения; если $Y_f^{pac} > Y_f^{mp}$, то следует взять другую конструкцию пола или изменить толщины некоторых его слоев до удовлетворения требованиям $Y_f^{pac} \le Y_f^{mp}$. Показатель теплоусвоения поверхности пола Y_f^{pac} принимается равным показателю теплоусвоения поверхности 1-го слоя Y_f .

5 ЗАЩИТА ОТ ПЕРЕУВЛАЖНЕНИЯ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ

5.1. Определение вероятности конденсации водяного пара в ограждении

Под влиянием разности парциальных давлений водяного пара в помещении и в наружном воздухе происходит диффузия водяного пара через ограждение наружу. В холодный период года температура по толщине ограждения снижается от т_{int} до т_{ехt}, что делает возможными конденсацию и даже замерзание влаги, и приводит к снижению прочности и теплозащитных характеристик материалов ограждающей конструкции.

Вывод о возможности конденсации водяного пара внутри ограждения производится графоаналитическим методом Фокина-Власова по взаиморасположению графиков фактической и максимальной упругостей водяного пара (рисунок 2).

Максимальная упругость водяного пара E, Па зависит при данном барометрическом давлении только от температуры (приложения M, H).

Вероятные значения E, Па определяются по температурному графику, построение которого рассматривалось в задаче 2 для плоскостей: внутренней «B», наружной «H», на границе между слоями 1-2 и вспомогательных 1 и 2 и по ним строится график в виде ветви параболы.

где e_{B} – упругость водяного пара, Па, на внутренней поверхности ограждения, определяемая из выражения,

$$e_{\scriptscriptstyle g} = \varphi_{\scriptscriptstyle g} \cdot E_{\scriptscriptstyle g}. \tag{29}$$

Здесь E_{B-} максимальная упругость водяного пара, Па, определенная по температуре воздуха t_B , °C;

 φ_{B} - относительная влажность воздуха в помещении; $\varphi_{B} = 55 \%$;

 $e_{\!\scriptscriptstyle H}$ – упругость водяного пара, Па, на наружной поверхности наружного ограждения, определенная с помощью выражения

$$e_{\mu} = \varphi_{\mu} \cdot E_{\mu} \,, \tag{30}$$

 E_{H} – максимальная упругость водяного пара, Па, определяемая по расчетной среднемесячной температуре наружного воздуха самого холодного месяца – января (таблица А. 1, приложение А);

 $\phi_{\rm H}$ – средняя месячная относительная влажность воздуха самого холодного месяца, определяемая по приложение A.

 R_{VP} – общее сопротивление паропроницанию, м²-ч·Па/мг, наружного ограждения, вычисляемое в случае двухслойного ограждения по формуле

$$R_{\nu p} = \frac{\delta_1}{\mu_1} + \frac{\delta_2}{\mu_2} \,, \tag{31}$$

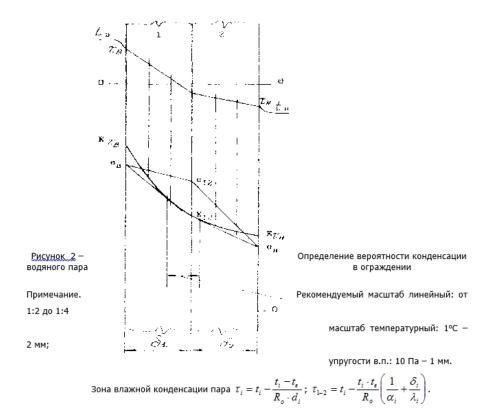


График фактической упругости \emph{e} , Па, строится на основании зависимости

$$e_{12} = e_{\scriptscriptstyle g} - \frac{e_{\scriptscriptstyle g} - e_{\scriptscriptstyle H}}{R \, v p} \cdot \frac{\delta_1}{\mu_1} \,, \tag{32}$$

где δ_1 и δ_2 – толщины слоев ограждения, м;

 μ_1 и μ_2 – коэффициенты паропроницаемости соответственно первого и второго слоев, мг/(м·ч·Па), определяемые по прил. Б.

Конденсация водяного пара возможна при пересечении линии графиков максимальной E и фактической e упругости. В этом случае, проведя касательные из точек $e_{\mathcal{B}}$ и $e_{\mathcal{H}}$ к кривой E, а через точки касания – вертикальные линии, определяют зону возможной конденсации.

5.2 Расчет сопротивления паропроницанию ограждающих конструкций

Сопротивление паропроницанию R_{vp} , $м^2 \cdot q \cdot \Pi a/mr$, ограждающей конструкции (в пределах от внутренней поверхности до плоскости возможной конденсации) должно быть не менее наибольшего из следующих нормируемых сопротивлений паропроницанию (условия 5а, 56):

<u>Ба) нормируемого сопротивления паропроницанию $R_{\nu p1}^{mp}$, м²-ч-Па/мг (из условия недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатации), определяемого по формуле</u>

$$R_{\nu p 1}^{mp} = (e_{\scriptscriptstyle B} - E) R_{\nu p}^{\scriptscriptstyle P} / (E - e_{\scriptscriptstyle H}); \tag{33}$$

 $R_{\nu p2}^{mp}$, м²-ч-Па/мг (из условия ограничения влаги в ограждающей конструкции за период с отрицательными средними месячными температурами наружного воздуха), определяемого по формуле

$$R_{vp2}^{mp} = \frac{0.0024z_o(e_s - E_o)}{\rho_w \delta_w \Delta w_{av} + \eta},$$
(34)

где $\mathcal{C}_{\varepsilon}$ – парциальное давление водяного пара внутреннего воздуха, Па, при расчетной температуре и относительной влажности этого воздуха;

$$e_{\scriptscriptstyle g} = (\varphi_{\scriptscriptstyle g}/100)E_{\scriptscriptstyle g} \tag{35}$$

где $E_{\scriptscriptstyle g}$ – парциальное давление насыщенного водяного пара, Па, при температуре $t_{\scriptscriptstyle B}$, принимается по своду правил;

 φ_{B} – относительная влажность внутреннего воздуха, %;

 $R^e_{\nu p}$ – сопротивление паропроницанию, м²-ч-Па/мг, части ограждающей конструкции, расположенной между наружной поверхностью ограждающей конструкции и плоскостью возможной конденсации, определяемое по своду правил [2];

- $e_{_{\!\scriptscriptstyle H}}$ среднее парциальное давление водяного пара наружного воздуха, Па, за годовой период, определяемое по СП 131.13330;
- z_0 продолжительность, сут, периода влагонакопления, принимаемая равной периоду с отрицательными средними месячными температурами наружного воздуха по СП 131.13330;
- E₀ парциальное давление водяного пара, Па, в плоскости возможной конденсации, определяемое при средней температуре наружного воздуха периода месяцев с отрицательными средними месячными температурами;
 - ρ_{w} плотность материала увлажняемого слоя, кг/м³;

 δ_{w} – толщина увлажняемого слоя ограждающей конструкции, м, принимаемая равной 2/3 толщины однородной (однослойной) стены или толщине теплоизоляционного слоя (утеплителя) многослойной ограждающей конструкции;

 Δw_{av} – предельно допустимое приращение расчетного массового отношения влаги в материале увлажняемого слоя, %, за период влагонакопления z_0 , принимаемое по табл. 7;

E – парциальное давление водяного пара, Па, в плоскости возможной конденсации за годовой период эксплуатации,

$$E = (E_1 z_1 + E_2 z_2 + E_3 z_3)/12, (36)$$

Таблица 7 – Предельно допустимые значения коэффициента Δw_{av}

Материал ограждающей конструкции	Предельно допустимое при-
	ращение расчетного массо-
	вого отношения влаги в ма-
	териале
	Δw _{av} , %
1. Кладка из глиняного кирпича и керамических блоков	1,5

2. Кладка из силикатного кирпича	2,0
3. Легкие бетоны на пористых заполнителях (керамзитобетон,	5
шугизитобетон, перлитобетон, шлакопемзобетон)	
4. Ячеистые бетоны (газобетон, пенобетон, газосиликат и др.)	6
5. Пеногазостекло	1,5
6. Фибролит и арболит цементные	7,5
7. Минераловатные плиты и маты	3
8. Пенополистирол и пенополиуретан	25
9. Фенольно-резольный пенопласт	50
10. Теплоизоляционные засыпки из керамзита, шунгизита, шла-	3
ка	
11. Тяжелый бетон, цементно-песчаный раствор	2

где E_1 , E_2 , E_3 — парциальное давление водяного пара, Па, принимаемое по температуре в плоскости возможной конденсации, устанавливаемой при средней температуре наружного воздуха соответственно зимнего, весеннеосеннего и летнего периодов.

Плоскость возможной конденсации в однородной (однослойной) ограждающей конструкции располагается на расстоянии, равном 2/3 толщины конструкции от ее внутренней поверхности, а в многослойной конструкции совпадает с наружной поверхностью утеплителя.

 z_1 , z_2 , z_3 – продолжительность, мес, зимнего, весенне-осеннего и летнего периодов года, определяемая по табл. СП 131.13330 с учетом следующих условий: а) к зимнему периоду относятся месяцы со средними температурами наружного воздуха ниже минус 5 °C; б) к весенне-осеннему периоду относятся месяцы со средними температурами наружного воздуха от минус 5 до плюс 5 °C; в) к летнему периоду относятся месяцы со средними температурами воздуха выше плюс 5 °C;

 η – коэффициент,

$$\eta = 0.0024 \left(E_o - e_o^{\scriptscriptstyle H} \right) z_o / R_{vp}^e \,, \tag{37}$$

где $e_o^{^{_{\! H}}}$ – среднее парциальное давление водяного пара наружного воздуха, Па, периода месяцев с отрицательными среднемесячными температурами, определяемыми, согласно своду правил.

Парциальное давление насыщенного водяного пара E_1 , E_2 , E_3 , E, E_0 , принимают по приложениями М,Н по температуре в плоскости возможной конденсации T_c , определяемой при средней температуре наружного воздуха

соответственно холодного, переходного, теплого периодов и периода месяцев с отрицательными средними месячными температурами по формуле

$$\tau_c = t_s - \left(t_s + t_i\right)\left(1/\alpha_s + R_c\right)/R_o, \tag{38}$$

где t_в − то же, что и в 5.2.2 [2];

*а*_в − то же, что и в 9.1.2 [2];

 t_i – средняя температура наружного воздуха \dot{r} го периода, ${}^{\circ}$ С,

$$t_{i} = \sum_{j=1}^{n} t_{j}^{av} / n, (39)$$

где t_i^{av} – средняя месячная температура воздуха *j*-го месяца, °C;

n – число месяцев \dot{F} го периода;

 R_{c} — термическое сопротивление слоя ограждающей конструкции от внутренней поверхности до плоскости возможной конденсации, м^{2.0}C/B τ ;

 R_0 – сопротивление теплопередаче ограждающей конструкции, м^{2.0}С/Вт.

Сопротивление паропроницанию однослойной или отдельного слоя многослойной ограждающей конструкции следует определять по формуле

$$R_{\nu p} = \delta / \mu_{\text{, M}^2 \cdot \text{H} \cdot \text{\Pia/MF}}, \tag{40}$$

где δ – толщина слоя ограждающей конструкции, м;

 μ — расчетный коэффициент паропроницаемости материала слоя ограждающей конструкции, мг/(м·ч·Па), принимаемый по приложению Б.

Сопротивление паропроницанию многослойной ограждающей конструкции (или ее части) равно сумме сопротивлений паропроницанию составляющих ее слоев.

Сопротивление паропроницанию R_{vp} листовых материалов и тонких слоев пароизоляции следует принимать по приложению Π .

Примечания:

1. Сопротивление паропроницанию воздушных прослоек в ограждающих конструкциях следует принимать равным нулю.

2. Для обеспечения нормируемого сопротивления паропроницанию R_{vp1}^{mp} ограждающей конструкции следует определять сопротивление паропроницанию R_{vp} конструкции в пределах от внутренней поверхности до плоскости возможной конденсации.

Значения температуры в плоскости возможной конденсации

$$\tau = t_{\scriptscriptstyle g} - \left[\left(t_{\scriptscriptstyle g} - t_{\scriptscriptstyle H} \right) / R_{\scriptscriptstyle O} \right] \left(R_{\scriptscriptstyle g} + \sum_{\scriptscriptstyle g} R \right), \tag{41}$$

где $t_{_{\it B}}$, $t_{_{\it H}}$ — расчетные температуры соответственно внутреннего и наружного воздуха (среднесезонная или средняя за период влагонакопления), $^{\circ}$ C;

 R_o — сопротивление теплопередаче ограждающей конструкции, м^{2.0}С/Вт;

$$R_e = 1/\alpha_e$$
,

 ΣR — сумма термических сопротивлений слоев конструкции, расположенных между внутренней поверхностью и плоскостью возможной конденсации, м^{2.0}С/Вт.

Независимо от результатов расчета нормируемые сопротивления паропроницанию R_{vp1}^{mp} и R_{vp2}^{mp} (в пределах от внутренней поверхности до плоскости возможной конденсации) во всех случаях должны приниматься не более 5 м²-ч-Па/мг.

Результаты расчетов заносятся в соответствующие таблицы приложению С.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. СП 50.13330.2012. Тепловая защита зданий. Актуализированная редакция СНиП 23.02.2003. Введ. 2013-07-01. М.:Изд-во стандартов, 2012 100с.
- 2. СП 131.13330.2012 Строительная климатология. Актуализированная редакция СНиП 23-01-99. Введ. 2013-01-01. М.:Изд-во стандартов, 2012 113с.

ПРИЛОЖЕНИЕ А

Наружные климатические условия

Город	Ши-ро-	Зона	Темпера-	Средняя тем-	Продолжи-	Средняя	Макси-	Средняя
	та,	влаж-	тура воз-	пература воз-	тельность,	месячная	мальная из	месячная
	град	ности	духа	духа, °С, пери-	сут., перио-	относит.	средних	темп-ра
			наиболее	ода со средне-	да со сред-	влажность	скоростей	наиболее
			холодной	суточной тем-	ней суточ-	воздуха	ветра по	холодно-го
			пятиднев-	пературой воз-	ной темпе-	наиболее	румбам за	месяца, ℃
			ки, ℃	духа < 8°С	ратурой воз-	холодного	январь,	
			обеспе-		духа< 8°С	месяца, %	м/с	
1	2	3	4	5	6	7	8	9
1. Астрахань	48	Cyx.	-23	-1,2	167	84	4,8	-6,7
2. Брянск	52	Норм.	-26	-2,3	205	85	6,3	-9,1
3. Владимир	56	Норм.	-28	-3,5	217	84	4,5	-11,1
4. Волгоград	48	Cyx.	-25	-2,2	178	85	8,1	-9,1
5. Вологда	60	Норм.	-32	-4,1	231	85	6,0	-12,6
6. Воронеж	52	Cyx.	-26	-3,1	196	83	5,1	-9,8
.7. Екатерин-	56	Сух.	-35	-6	230	79	5,0	-15,5
8. Иваново	56	Норм.	-30	-3,9	219	85	4,9	-11,9
9. Калининград	56	Норм.	-18	0,6	195	85	5,9	-3,1
10. Калуга	56	Норм.	-27	-2,9	210	83	4,9	-10,1
11. Кострома	56	Норм.	-31	-3,9	222	85	5,8	-11,8
12. Краснодар	44	Сух	-19	-2,0	149	83	3,2	-1,6
13. Курск	52	Норм.	-26	-2,4	198	86	5,3	-9,3
14. Липецк	52	Cyx.	-27	-3,4	202	85	5,9	-10,3
15. Москва	56	Норм.	-28	-3,1	214	84	4,9	-10,2
16. Нижний	56	Норм.	-31	-4,1	215	84	5,1	-11,8
17. Новгород	60	Норм.	-27	-2,3	221	85	6,6	-8,7
18. Орел	52	Норм.	-26	-2,7	205	86	6,9	-9,7
19. Пенза	52	Cyx.	-29	-4,5	207	84	5,6	-12,2
20. Псков	56	Норм.	-26	-1,6	212	86	4,8	-7,5
21. Ростов-на-	48	Cyx.	-22	-0,6	171	85	6,5	-5,7
22. Рязань	56	Норм.	-27	-3,5	208	83	7,3	-11,0
23. Самара	52	Cyx.	-30	-5,2	203	84	5,4	-13,5
24. Саратов	52	Cyx.	-27	-4,3	196	82	5,6	-11,0
25. Смоленск	56	Норм.	-26	-2,4	215	86	6,8	-9,4
26. Тамбов	52	Норм.	-28	-3,7	201	84	4,7	-10,9
27. Тверь	56	Норм.	-29	-3,0	218	85	6,2	-10,5
28. Тула	56	Норм.	-27	-3,0	207	83	4,9	-19,9
29. Ульяновск	56	Cyx.	-31	-5 , 4	212	82	-	-13,8
30. Ярославль	56	Норм.	-31	-4,0	221	83	5,5	-11,9

Таблица А.1- Географическая широта, зона влажности и климатические параметры холодного периода года

Таблица А.2 - Климатические параметры теплого периода года

Город	Средняя максимальная температура воздуха наиболее теплого месяца, °C	Средняя месячная относительная влажность воздуха наиболее теплого месяца, %	Максимальная из средних скоростей ветра по румбам за июль, м/с	Максимальная ам- плитуда колебаний темпе- ратуры наружного воздуха в июле А _{text,} ⁰ С		
1	2	3	4	5		
1. Астрахань	31,0	55	3,6	22,3		
2. Брянск	22,8	73	0,1	19,8		
3. Владимир	23,3	72	3,3	18,3		
4. Волгоград	30,0	51	5,2	21,2		
5. Вологда	22,3	76	0	22,2		
6. Воронеж	25,9	66	3,3	19,9		
.7. Екатеринбург	23,1	68	4,0	20,1		
8. Иваново	23,3	72	2,8	19,2		
9. Калининград	22,4	77	4,3	18,1		
10. Калуга	23,4	76	0	25,3		
11. Кострома	23,1	37	4,2	20,3		
12. Краснодар	29,8	64	0	22,5		
13. Курск	24,0	69	3,5	18,2		
14. Липецк	25,9	66	4,1	20,4		
15. Москва	23,6	70	0	19,8		
16. Нижний	23,5	70	0	17,5		
1 7. Новгород	22,7	76	4,0	20,9		
18. Орел	24,1	71	3,9	19,7		
19. Пенза	25,3	67	-	18,4		
20. Псков	22,9	74	3,5	20,9		
21. Ростов-на-	29,1	58	3,6	20,8		
22. Рязань	24,1	71	4,1	20,3		
23. Самара	25,9	63	3,2	18,5		
24. Саратов	27,5	56	4,3	20,4		
25. Смоленск	22,3	77	3,2	19,1		
26. Тамбов	25,6	67	2,8	20,4		
27. Тверь	23,0	75	0	20,0		
28. Тула	24,3	70	3,4	20,3		
29. Ульяновск	25,7	66	-	21,6		
30. Ярославль	23,2	74	3,9	18,4		

Примечание. Минимальная скорость ветра по гр. 4 принимается 1,0 м/с.

Таблица А.3 – Средняя месячная температура воздуха

	Город		Месяцы										
		1	2	3	4	5	6	7	8	9	1	1	1
											0	1	2
/п													
	Астрахань	-6,7	-5,6	0,4	9,9	18,0	22,8	25,3	23,6	17,3	9,6	2,4	-3,2
	Брянск	-9,1	-8,4	-3,2	5,9	12,8	16,7	18,1	16,9	11,5	5,0	-0,4	-5,2
	Владимир	-11,1	-10,0	-4,3	4,9	12,2	16,6	17,9	16,4	10,7	3,7	-2,7	-7,5
	Волгоград	-9,1	-7,6	-1,4	10,0	17,0	21,0	23,4	22,0	16,2	7,5	1,4	-4,2
	Вологда	-12,6	-11,6	-5,9	2,3	9,6	14,9	16,8	15,0	9,1	2,5	-3,5	-8,9
	Воронеж	-9,8	-9,6	-3,7	6,6	14,6	17,9	19,9	18,6	13,0	5,9	-0,6	-6,2
	Екатерин-	-15,5	-13,6	-6,9	2,7	10,0	15,1	17,2	14,9	9,2	1,2	-6,8	-13,1
	бург												
	Иваново	-11,9	-10,9	-5,1	4,1	11,4	15,8	17,6	15,8	10,1	3,5	-3,1	-8,1
	Калуга	-10,1	-8,9	-3,9	4,8	12,3	16,2	18,0	16,5	11,0	4,7	-1,5	-6,5
	Калининград	-3,1	-2,5	0,6	6,2	11,6	15,2	17,3	16,7	13,0	7,8	2,9	-0,9
0													
	Кострома	-11,8	-11,1	-5,3	3,2	10,9	15,5	17,8	16,1	10,0	3,2	-2,9	-8,7
1													
12	Краснодар	-1,6	-0,6	4,3	11,3	17,0	20,7	23,3	22,7	17,6	11,4	5,6	1,1
13	Курск	-9,3	-7,8	-3,0	6,6	13,9	17,2	18,7	17,6	12,2	5,6	-0,4	-5,2
14	Липецк	-10,3	-9,5	-4,4	5,5	13,8	18,0	20,2	18,5	12,5	5,5	-1,5	-7,1
15	Москва	-10,2	-9,2	-4,3	4,4	11,9	16,0	18,1	16,3	10,7	4,3	-1,9	-7,3
16	Нижний Нов-	-11,8	-11,1	-5,0	4,2	12,0	16,4	18,4	16,9	11,0	3,6	-2,8	-8,9
	город												
17	Новгород	-8,7	-8,7	-4,3	3,3	10,4	15,2	17,3	15,4	10,3	4,2	-0,9	-5,9

18	Орел	-9,7	-8,8	-4,0	5,6	13,0	16,9	18,5	17,1	11,7	5,1	-0,9	-5,6
19	Пенза	-12,2	-11,3	-5,6	4,9	13,5	17,6	19,6	18,0	11,9	4,4	-2,9	-9,1
20	Псков	-7,5	-7,5	-3,4	4,2	11,3	15,5	17,4	15,7	10,9	5,3	0,0	-4,5
21	Ростов-на-	-5,7	-4,8	0,6	9,4	16,2	20,2	23,0	22,1	16,3	9,2	2,5	-2,6
	Дону												
22	Рязань	-11,0	-10,0	-4,7	5,2	12,9	17,3	18,5	17,2	11,6	4,4	-2,2	-7,0

Окончание таблицы А.3

Nō	Город		Месяцы										
п/п	-	1	2	3	4	5	6	7	8	9	10	11	12
23	Самара	-13,5	-12,6	-5,8	5,8	14,3	18,6	20,4	19,0	12,8	4,2	-3,4	-9,6
24	Саратов	-11,0	-11,4	-4,8	6,6	15,0	19,4	21,4	19,9	14,0	5,4	-3,0	-8,3
25	Смоленск	-9,4	-8,4	-4,0	4,4	11,6	15,7	17,1	15,9	10,4	4,5	-1,0	-5,8
26	Тамбов	-10,9	-10,3	-4,6	6,0	14,1	18,1	19,8	18,6	12,5	5,2	-1,4	-7,3
27	Тверь	-10,5	-9,4	-4,6	4,1	11,2	15,7	17,3	15,8	10,2	4,0	-1,8	-6,6
28	Тула	-19,9	-9,5	-4,1	5,0	12,9	16,7	18,6	17,2	11,6	5,0	-1,1	-6,7
29	Ульяновск	-13,8	-13,2	-6,8	4,1	12,6	17,6	19,6	17,6	11,4	3,8	-4,1	-10,4
30	Ярославль	-11,9	-10,7	-5,7	3,7	10,9	15,7	17,6	16,0	10,0	3,4	-2,7	-8,1

Таблица А.4 – Влажность наружного воздуха

	Город		Упругость водяного пара наружного воздуха по месяцам, гПа										
		1	2	3	4	5	6	7	8	9	10	11	12
/п													
	Астрахань	3,6	3,7	4,9	7,2	11,2	15,0	17,3	16,4	12,3	8,6	6,1	4,5
	Брянск	3,3	3,2	4,1	6,7	9,5	13,1	15,1	14,7	10,8	7,3	5,4	4,0

	Владимир	2,7	2,7	3,6	6,0	8,8	12,6	14,9	14,2	10,4	6,8	4,6	3,6
	Волгоград	3,0	3,3	4,5	7,0	10,2	12,4	13,8	13,2	10,0	7,3	5,4	4,1
	Вологда	2,5	2,5	3,1	5,5	8,2	12,2	14,7	13,8	9,9	6,7	4,4	3,2
	Воронеж	3,0	3,0	4,0	6,9	9,3	12,5	14,9	14,2	10,2	7,3	5,1	4,0
	Екатерин-	1,7	1,7	2,5	5,2	7,4	11,0	13,9	12,9	9,1	5,5	2,8	2,1
	бург	2.6	2.6	2.4	ГЭ	9.6	12.4	140	12.0	10.1	6.0	<i>1</i> Γ	2.2
	Иваново	2,6	2,6	3,4	5,7	8,6	12,4	14,9	13,9	10,1	6,8	4,5	3,3
	Калининград	4,6	4,4	4,9	7,3	9,7	12,8	15,0	15,0	12,5	9,3	6,9	5,6
0	Калуга	2,9	2,9	3,8	6,3	9,5	13,2	15,3	14,8	10,6	7,0	4,9	3,7
1	Кострома	2,6	2,6	3,4	5,7	8,6	12,6	15,1	14,1	10,2	6,8	4,5	3,3
2	Краснодар	5,0	5,3	6,0	8,8	12,7	16,4	18,0	17,2	13,3	10,0	7,9	6,0
3	Курск	3,3	3,3	4,3	6,9	9,5	12,7	15,0	14,6	10,7	7,3	5,4	3,9
4	Липецк	2,8	2,9	3,8	6,7	9,4	12,8	15,1	14,4	10,4	7,0	4,8	3,6
5	Москва	2,8	2,7	3,5	6,0	8,8	12,5	15,0	14,2	10,3	6,9	4,8	3,6
6	Нижний Новгород	2,6	2,5	3,4	5,9	8,6	12,2	15,0	14,0	10,1	6,7	4,4	3,3
7	Новгород	3,3	3,1	3,7	6,1	8,8	12,6	15,3	14,7	10,9	7,5	5,5	4,0
8	Орел	3,2	3,1	4,0	6,9	9,6	13,0	15,0	14,4	10,6	7,3	5,1	4,0
9	Пенза	2,5	2,6	3,5	6,2	8,9	12,4	14,9	13,8	9,8	6,6	4,4	3,2

	Ростов-на-	4,2	4,3	5,3	7,8	10,9	14,4	15,7	14,7	11,4	8,6	6,7	5,1
0	Дону												
	Рязань	2,8	2,8	3,8	6,5	9,2	12,7	15,2	14,4	10,4	7,1	4,7	3,5
1													
	Самара	2,2	2,2	3,5	6,2	8,5	12,1	14,6	13,3	9,6	6,3	4,2	2,9
2			-	-			-		-				-

Окончание таблицы А.4

	Город		Упругость водяного пара наружного воздуха по месяцам, гПа											
		1	2	3	4	5	6	7	8	9	10	11	12	
/п														
	Саратов	2,5	2,6	3,7	6,4	8,8	11,8	13,7	13,1	9,3	6,6	4,6	3,5	
3														
	Смоленск	3,2	3,1	4,0	6,5	9,6	13,0	14,9	14,5	10,8	7,5	5,4	4,1	
4				·		•						,		
	Тамбов	2,7	2,9	3,8	6,7	9,3	12,7	15,1	14,3	10,3	7,0	4,8	3,6	
5				·		•						,		
	Тверь	3,0	3,0	3,6	6,1	8,9	12,8	14,9	14,3	10,4	7,0	4,9	3,8	
6		,	,	,	,	ĺ	,	,	,	,	,	,		
	Тула	2,9	2,9	3,9	6,6	9,3	12,7	15,0	14,4	10,5	7,1	4,9	3,7	
7		,	,	,	,	ĺ	,	,	,	,	,	,		
	Ульяновск	2,3	2,4	3,2	6,2	8,9	12,1	14,6	13,7	9,6	6,5	4,2	3,0	
8		,	,	,	,	,	,	,	,	,	,	,	,	
	Ярославль	2,6	2,5	3,5	5,9	8,6	12,8	15,0	14,3	10,2	6,8	4,7	3,3	
9		, -	, -	, -	,-	, ,	, -	, -	, -	,	, -	,	, -	

ПРИЛОЖЕНИЕ Б РАСЧЕТНЫЕ ТЕПЛОТЕХНИЧЕСКИЕ ПОКАЗАТЕЛИ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ

Νō	Материал	Характерис	тики материало	в в сухом состоя-	Расче	тные коэф	фициент	ы (при у	словиях	эксплуата	ции по СНиП 23-02)
п.п.		плотность р ₀ , кг/м ³	удельная теп- лоемкость со,	коэффициент теплопроводно-	шени	вого отно- я влаги в риале ω,%	теплопро сти λ, Вт,		теплоус (при пе ч) s, Вт	воения ериоде 24 /(м²-°С)	паропроницаемости µ, мг/(м-ч-Па)
			кДж/(кг°С)	сти λο, Вт/(м-°С)	Α	Б	Α	Б	Α	Б	А, Б
1	2	3	4	5	6	7	8	9	10	11	12
I			Тепло	изоляционные ма		ы (ГОСТ 16	381)				
Α		T	T	Попимер	рные	1		•		T	
	Пенополистирол	150	1,34	0,05	1	5	0,052	0,06 "	0,89	0,99	0,05
	»	100	1,34	0,041	2	10	0,041	0,052	0,65	0,82	0,05
3	Пенополистирол (ГОСТ 15588)	40	1,34	0,037	2	10	0,041	0,05	0,41	0,49	0,05
4	Пенополистирол ОАО «СП Радослав»	,18	1,34	0,042	2	10	0,042	0,043	0,28	0,32	0,02
	Тоже	24	1,34	0,04	2	10	0,04	0,041	0,32	0,36	0,02
	Экструдированны и		1/5 :	3,3 .	_		0,0 .	0,012	0,52	0,50	0/02
6	Пенополистирол Стиродур	25	1,34	0,029	2	10	0,031	0,031	0,28	0,31	0,013
7	То же, 2800С	28	1,34	0,029	2	10	0,031	0,031	0,30	0,33	0,013
8	То же, 3035С	- 33	1,34	0,029	-2	10	0,031	0,031	0,32	0,36	0,013
	То же, 4000С	35	1,34	0,030	2	10	0,031	0,031	0,34	0,37	0,005
10	То же, 5000С	45	1,34	0,030	2	10	0,031	0,031	0,38	0,42	0,005
11	Пенополистирол Стиропор	15	1,34	0,039	2	10	0,040	0,044	0,25	0,29	0,035
12	То же, PS20	20	1,34	0,037	2	10	0,038	0,042	0,28	0,33	0,030
13	То же, PS30	30	1,34	0,035	2	10	0,036	0,040	0,33	0,39	0,030
	Экструдированны и Пенополи-										
14	стирол «Стайрофоам»	28	1,45	0,029	2	10	0,030	0,031	0,31	0,34	0,006
15	То же, «Руфмат»	32	1,45	0,028	2	10	0,029	0,029	0,32	0,36	0,006
16	То же, «Руфмат А»	32	1,45	0,030	2	10	0,032	0,032	0,34	0,37	0,006
16a	То же, «Флурмат 500»	38	1,45	0,027	2	10 -	0,028	0,028	0,34	0,38	0,006
17	То же, «Флурмат 500А»	38	1,45	0,030	2	10	0,032	0,032	0,37	0,41	0,006
	То же, «Флурмат 200» .	25	1,45	0,028	2	10	0,029	0,029	0,28	0,31	0,006
	То же, «Флурмат 200А»	25	1,45	0,029	2	10	0,031	0,031	0,29	0,32	0,006
	Пенопласт ПХВ-1 и ПВ1	125	1,26	0,052	2	10	0,06	0,064	0,86	0,99	0,23
21	Тоже ,	100 и ме-	1,26	0,041	2	10	0,05	0,052	0,68	0,8	0,23

22	Пенополиуретан	80	1,47	0,041	2	5	0,05	0,05	0,67	0,7	0,05
23	»	60	1,47	0,035	2	5	0,041	0,041	0,53	0,55	0,05
24	»	40	1,47	0,029	2	5	0,04	0,04	0,4	0,42	0,05
27	″ Плиты из ре-	70	1,77	0,023		<u> </u>	0,07	0,07	0,7	0,72	0,03
25	зольно-	90	1,68	0,045	5	20	0,053	0,073	0,81	1,10	0,15
23		50	1,00	0,013		20	0,033	0,073	0,01	1,10	0,13
26	<u>Фенолформальдегидного пе-</u> Тоже	80	1,68	0,044	5	20	0,051	0,071	0,75	1,02	0,23
27	»	50	1,68	0,041	5	20	0,045	0,064	0,56	0,77	0,23
28	Перлитопластбетон	200	1,05	0,041	2	3	0,052	0,06	0,93	1,01	0,008
29		100	1,05	0,035	2	3	0,032	0,05	0,58	0,66	0,008
30	<i>"</i> Перлитофосфогелевые изде-	300	1,05	0,033	3	12	0,041	0,03	1,43	2,02	0,008
31	 	200	1,05	0,076	3	12	0,08	0,12	1,43		
21	Тоже	200	1,05	0,004	3	12	0,07	0,09	1,1	1,43	0,23
32	Теплоизоляционные изделия	80	1 906	0.024	5	15	0.04	0,054	0.65	0.71	0.002
32	из вспененного синтети-	80	1,806	0,034)	15	0,04	0,054	0,65	0,71	0,003
	ческого каучука «Аэрофлекс»										
	То же, «К флекс»: EC	60-80 60-	1,806 1,806	0,039 0,039	0 0		0,039	0,039	0,6 0,6	0,6 0,6	
33	ST	80 66-95	1,806	0,039 0,039	0	000	0,039	0,039	0,65	0,65	0,010 0,009 0,010
	ECO	00 00-93	1,000	0,071			0,041	0,041	0,03	0,05	
	Экструзионный пенополисти-										
34	рол «Пеноплэкс», тип 35	35	1,65	0,028	2	3	0,029	0,030	0,36	0,37	0,018
35	То же, тип 45	45	1,53	0,030	2	3	0,031	0,032	0,40	0,42	0,015
Б	10 же, тип 15	_	•	ОСТ 4640), стеклов		_	•			0,12	0,015
	Маты минерало-										
36	ватные прошивные (ГОСТ 2 1	125	0,84	0,044	2,	5	0,064	0,07	0,73	0,82 .	0,30
37	Маты минерало- ватные прошивные (ГОСТ 2 1	100	0,84	0,044	2	5	0,061	0,067	0,64	0,72	0,49
38	Тоже	75	0,84	0,046	2	5	0,058	0,064	0,54	0,61	0,49
30		/3	דט,ט	ט,טדט		J	0,030	0,004	דכיט	0,01	כד,ט
39	· · · · · · · · · · · · · · · · · · ·	225	0,84	0,054	2	5	0,072	0,082	1,04	1,19	0,49
ا ع	на синтетическом свя-	225	0,04	U,U3 4		3	0,072	0,062	1,04	1,19	U,43
40	зующем (ГОСТ 9573)	175	0,84	0,052	2	5	0,066	0,076	0,88	1,01	0,49
	Тоже	125	0,84		2	5	_		_		0,49
41	»	75		0,049	2		0,064	0,07	0,73	0,82	
42	»	/5	0,84	0,047		5 ,	0,058	0,064	0,54	0,61	0,53

	тумном связующих (ГС		0,84	0,058		2 5	0,	082 0,	085	1,17	1,28	0,41
	44 То же	225	0,84	0,058		2 5	0,	079 0,	084	1,09	1,20	0,41
Продо	лжение приложения Б											
45	»	200	0,84	0,056	2	5	0,076	0,08	1,0		1,∏	0,49
46	»	150	0,84	0,050	2	5	0,068),92	0,49
47	»	125	0,84	0,049	2	5	0,064),81	0,49
48	»	100	0,84	0,044	2	5	0,06	0,065),71	0,56
49	»	75	0,84	0,046	2	5	0,056				,60	0,6
50	Плиты ми нерало ватные ЗАО «Минеральная вата»	180	0,84	0,038	2	5	0,045				,81.	0,3
51	Тоже	140-175	0,84	0,037	2	5	0,043	0,046	0,68	3 0),75	0,31
52	»	80-125	0,84	0,036	2	5	0,042	0,045	' 0,53	3 0),59	0,32
53	»	40-60	0,84	0,035	2	5	0,041	0,044	0,37	7 0	,41	0,35
54	»	25-50	0,84	0,036	2	5	0,042	0,045	0,3	L O),35	0,37
55	Плиты минерало- ватные повышенной жесткости на органофос-	200	0,84	0,064	1	2	0,07	0,076	0,94		.,01	0,45
56	Плиты полу- жесткие минераловатные на крахмальном связующем	200	0,84	0,07	2	5	0,076	0,08	1,0	l 1,	1 1	0,38
57	Тоже	125	0,84	0,056	2	5	0,06	0,064	0,70) 0),78	0,38
58	Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499)	45	0,84	0,047	2	5	0,06	0,064	0,44	1 (0,5	0,6
59	Маты и полосы из стеклян- ного волокна прошивные	150	0,84	0,061	2	5	0,064	0,07	0,8	(0,9	0,53
60	Маты из стек- лянного штапельного волок-	25	0,84	0,04	2	5	0,043		0,27),31	0,61
61	Тоже	17	0,84	0,044	2	5	0,046	0,053),26	0,66
62	»	15	0,84	0,046	2	5	0,048),25	0,68
63	»	11	0,84	0,048	2	5	0,05	0,055	0,19	0),22	0,7
64	Плиты из стеклянного штапельного волокна	85	0,84	0,044	2	5	0,046	0,05	0,5	L 0),57	0,5

ного штапельного волокна

65	Тоже	75	0,84	0,04	2	5	0,042	0,047	0,46	0,52	0,5
66	»	60	0,84	0,038	2	5	0,04	0,045	0,4	0,45	0,51
67	»	45	0,84	0,039	2	5	0,041	0,045	0,35	0,39	0,51
68	»	35	0,84	0,039	2	5	0,041	0,046	0,31	0,35	0,52
69	»	30	0,84	0,04	2	5	0,042	0,046	0,29	0,32	0,52
70	»	20	0,84	0,04	2	5	0,043	0,048	0,24	0,27	0,53
71	»	17	0,84	0,044	2	5	0,047	0,053	0,23	0,26	0,54
72	»	15	0,84	0,046	2	5	0,049	0,055	0,22	0,25	0,55

73	Пеностекло или газостекло	400	0,84	0,11	1	2	0,12	0,14	1,76	1,94	0,02
74	Тоже	300	0,84	0,09	1	2	0,11	0,12	1,46	1,56	0,02
75	»	200	0,84	0,07	1	2	0,08	0,09	1,01	1,1	0,03
В			Плиты из приро	дных органически	и не	органически	их материо	алов			
76	Плиты древес но- волоки ис-	1000	2,3	0,15	10	12	0,23	0,29	6,75	7,7	0,12
	тые и древесно-стружечные										
	(FOCT 4598, FOCT 8904, FOCT										
77		800	2,3	0,13	10	12	0,19	0,23		6,13	0,12
78		600	2,3	0,11	10	12	0,13	0,16		4,43	0,13
79	»	400	2,3	0,08	10	12	0,11	0,13	2,95	3,26	0,19
80	Плиты древесно-волокнистые	200	2,3	0,06	10	12	0,07	0,08	1,67	1,81	0,24
	и древесно-стружечные				Ι						
	(FOCT 4598, FOCT 8904, FOCT										
81	Плиты фибролитовые и арбо-	500	2,3	0,095	10	15	0,15	0,19	3,86	4,50	0,11
	лит (ГОСТ 19222)										
	на портландцементе										
82		450	2,3	0,09	10	15	0,135	0,17		4,04	0,11
83	»	400	2,3	0,08	10	15	0,13	0,16	3,21	3,70	0,26
84	Плиты камышитовые	300	2,3	0,07	10	15	0,09	0,14	2,31	2,99	0,45
85	Тоже	200	2,3	0,06	10	15	0,07	0,09	1,67	1,96	0,49
	Плиты тор-										
86	фяные теплоизоляционные	300	2,3	0,064	15	20	0,07	0,08	2,12	2,34	0,19
87	Тоже	200	2,3	0,052	15	20	0,06	0,064	1,6	1,71	0,49
88	Пакля	150	2,3	0,05	7	12	0,06	0,07	1,3	1,47	0,49
89	Плиты из гипса (ГОСТ 6428)	1350	0,84	0,35	4	6	0,50	0,56	7,04	7,76	0,098
90	Тоже	1100	0,84	0,23	4	6	0,35	0,41	5,32	5,99	0,11

	Листы гипсовые обшивоч-										
91	ные (сухая штукатурка) (ГОСТ	1050	0,84	0,15	4	6	0,34	0,36	5,12	5,48	0,075
92		800	0,84	0,15	4	6	0,19	0,21	3,34	3,66	0,075
93	Изделия из вспученного пер-	300	1,68	0,087	1	2	0,09	0,099	1,84	1,95	0,04
	лита на битумном связующем (ГОСТ 16136)										
94	Тоже	250	1,68	0,082	1	2	0,085	0,099	1,53	1,64	0,04
95	»	225	1,68	0,079	1	2	0,082	0,094	1,39	1,47	0,04
96	»	200	1,68	0,076	1	2	0,078	0,09	1,23	1,32	0,04
Γ				Засы	ПКИ						
	Гравий керамзитовый										
97	(FOCT 9757)	600	0,84	0,14	2	3	0,17	0,19	2,62	2,83	0,23
98	Тоже	500	0,84	0,14	2	3	0,15	0,165	2,25	2,41	0,23

99	»	450	0,84	0,13	2	3	0,14	0,155	2,06	2,22	0,235
100	»	400	0,84	0,12	2	3	0,13	0,145	1,87	2,02	0,24
101	»	350	0,84	0,115	2	3	0,125	0,14	1,72	1,86	0,245
102	»	300	0,84	0,108	2	3	0,12	0,13	1,56	1,66	0,25
	Гравий керамзитовый										
103	(FOCT 9757)	250	0,84	0,099	2	3	0,11	0,12	1,22	1,3	0,26
	Гравий шунгизитовый										
104	(FOCT 9757)	700	0,84	0,16	2	4	0,18	0,21	2,91	3,29	0,21
105	То же	600	0,84	0,13	2	4	0,16	0,19	2,54	2,89	0,22
106	»	500	0,84	0,12	2	4	0,15	0,175	2,25	2,54	0,22
107	»	450	0,84	0,11	2	4	0,14	0,16	2,06	2,30	0,22
108	»	400	0,84	0,11	2	4	0,13	0,15	1,87	2,10	0,23
	Щебень из доменного						•	-		•	
109	шлака (ГОСТ 5578)	1000	0,84	0,21	2	3	0,24	0,31	4,02	4,67	0,21
	Щебень шлакопемзовый										
110	и аглопоритовый (ГОСТ 9757)	900	0,84	0,19	2	3	0,23	0,3	3,73	4,36	0,21
111	Тоже	800	0,84	0,18	2	3	0,21	0,26	3,36	3,83	0,21
112	»	700	0,84	0,16	2	3	0,19	0,23	2,99	3,37	0,22
И3	»	/500	0,84	0,15	2	3	0,18	0,21	2,7	2,98	0,23
114	»	500	0,84	0,14	2	3	0,16	0,19	2,32	2,59	0,23
115	»	450	0,84	0,13	2	3	0,15	0,17	2,13	2,32	0,24
116	»	400	0,84	0,122	2	3	0,14	0,16	1,94	2,12	0,24

	Щебень и песок из перил		0.04	0.00			0.4	0.11	4 70	4.00	0.26
117	ига вспученного (ГОСТ 10832)	500	0,84	0,09	1	2	0,1	0,11	1,79	1,92	0,26
118	Тоже	400	0,84	0,076	1	2	0,087	0,095	1,5	1,6	0,3
119	»	350	0,84	0,07	1	2	0,081	0,085	1,35	1,42	0,3
120	»	300	0,84	0,064	1	2	0,076	0,08	0,99	1,04	0,34
	Вермикулит вспученный										
121	(FOCT 12865)	200	0,84	0,065	1	3	0,08	0,095	1,01	1,16	0,23
122	Тоже	150	0,84	0,060	1	3	0,074	0,098	0,84	1,02	0,26
123	»	100	0,84	0,055	1	3	0,067	0,08	0,66	0,75	0,3
	Песок для строительных ра-										
124	бот (ГОСТ 8736)	1600	0,84	0,35	1	2	0,47	0,58	6,95	7,91	0,17
Д	Строительные растворы (ГОСТ2	?8013)									
125	Дементно-шлаковый	1400	0,84	0,41	2	4	0,52	0,64	7,0	8,11	0,11
126	Тоже	1200	0,84	0,35	2	4	0,47	0,58	6,16	7,15	0,14
127	Дементно-перлитовый	1000	0,84	0,21	7	12	0,26	0,3	4,64	5,42	0,15
128	Тоже	800	0,84	0,16	7	12	0,21	0,26	3,73	4,51	0,16

129	Гипсоперлитовый	600	0,84	0,14	10	15	0,19	0,23	3,24	3,84	0,17
130	Поризованный гипсоперадто-	500	0,84	0,12	6	10	0,15	0,19	2,44	2,95	0,43
131	Тоже	400	0,84	0,09	6	10	0,13	0,15	2,03	2,35	0,53
II			Констру	кционно-теплоиз	оляцио	нные мате	риалы				
Α			Бето	ны на природных г	•		re-				
122	Turbakarau	1000	0.04	<u>лях (ГОСТ 25820</u>	7, 1 OC 1		0.07	0.00	11 20	12.70	0.00
132	Туфобетон	1800	0,84	0,64	/	10	0,87	0,99	11,38	12,79	0,09
133	»	1600	0,84	0,52	7	10	0,7	0,81	9,62	10,91	0,11
134	»	1400	0,84	0,41	7	10	0,52	0,58	7,76	8,63	0,11
135	»	1200	0,84	0,29	7	10	0,41	0,47	6,38	7,2	0,12
136	Пемзобетон	1600	0,84	0,52	4	6	0,62	0,68	8,54	9,3	0,075
137	»	. 1400	0,84	0,42	4	6	0,49	0,54	7,1	7,76	0,083
138	»	1200	0,84	0,34	4	6	0,4	0,43	5,94	6,41	0,098
139	»	1000	0,84	0,26	4	6	0,3	0,34	4,69	5,2	0,И
140	»	800	0,84	0,19	4	6	0,22	0,26	3,6	4,07	0,12
141	Бетон на вулканическом шла-	1600	0,84	0,52	7	10	0,64	0,7	9,2	10,14	0,075
142	Тоже	1400	0,84	0,41	7	10	0,52	0,58	7,76	8,63	0,083
143	»	1^00	0,84	0,33	7	10	0,41	0,47	6,38	7,2	0,09
144	»	1000	0,84	0,24	7	10	0,29	0,35	4,9	5,67	0,098

145	»	800	0,84	0,20	7	10	0,23	0,29	3,9	4,61	0,11
Б			Бетонь	і на искусствені	ных порис	стых запол	ните-				
				лях (ГОСТ25	<u>820. ГОС</u>	<u> 79757)</u>					
	Керамзитобетон на керамзи-										
146	товом песке и керамзитопено-	1800	0,84	0,66	5	10	0,80	0,92	10,5	12,33	0,09
147	Тоже	1600	0,84	0,58	5	10	0,67	0,79	9,06	10,77	0,09
148	»	1400	0,84	0,47	5	10	0,56	0,65	7,75	9,14	0,098
149	»	1200	0,84	0,36	5	10	0,44	0,52	6,36	7,57	0,11
150	»	1000	0,84	0,27	5	10	0,33	0,41	5,03	6,13	0,14
	Керамзитобетон на керамзито-										
151	вом песке и керамзитопенобе-	800	0,84	0,21	5	10	0,24	0,31	3,83	4,77	0,19
152	Тоже	600	0,84	0,16	5	10	0,2	0,26	3,03	3,78	0,26
153	»	500	0,84	0,14	5	10	0,17	0,23	2,55	3,25	0,3
	Керамзитобетон на кварце-										
154	вом песке с поризацией	1200	0,84	. 0,41	4	8	0,52	0,58	6,77	7,72	0,075
155	Тоже	1000	0,84	0,33	4	8	0,41	0,47	5,49	6,35	0,075
156	»	800	0,84	0,23	4	8	0,29	0,35	4,13	4,9	0,075
	Керамзитобетон на перлито-			•							
	вом песке	1000	0,84	0,28	9	13	0,35	0,41	5,57	6,43	0,15
	Тоже	800	0,84	0,22	9	13	0,29	0,35	4,54	5,32	0,17

159	Шунгизитобетон	1400	0,84	0,49	4	7	0,56	0,64	7,59	8,6	0,098
160	»	1200	0,84	0,36	4	7	0,44	0,5	6,23	7,04	0,11
161	»	1000	0,84	0,27	4	7	0,33	0,38	4,92	5,6	0,14
162	Перлитобетон	1200	0,84	0,29	10	15	0,44	0,5	6,96	8,01	0,15
163	»	1000	0,84	0,22	10	15	,0,33	0,38.	5,5	6,38	0,19
164	»	800	0,84	0,16	10	15	0,27	0,33	4,45	5,32	0,26
165	»	600	0,84	0,12	10	15	0,19	0,23	3,24	3,84	0,3
	Шлакопемзобетон (термоз ито-										
166	бетон)	1800	0,84	0,52	5	8	0,63	0,76	9,32	10,83	0,075
167	То же	1600	0,84	0,41	5	8	0,52	0,63	7,98	9,29	0,09
168	»	1400	0,84	0,35	5	8	0,44	0,52	6,87	7,9	0,098
169	»	1200	0,84	0,29	5	8	0,37	0,44	5,83	6,73	0,11
170	»	1000	0,84	0,23	5	8	0,31	0,37	4,87	5,63	0,11
	Шлакопемзопено-										
171	и шлакопемзогазобетон	1600	0,84	0,47	8	11	0,63	0,7	9,29	10,31	0,09
	То же	1400	0,84	0,35	8	11	0,52	0,58	7,9	8,78	0,098

173	»	1200	0,84	0,29	8	11	0,41	0,47	6,49	7,31	0,11
174	»	1000	0,84	0,23	8	11	0,35	0,41	5,48	6,24	0,11
175	»	800	0,84	0,17	8	11	0,29	0,35	4,46	5,15	0,13
176	Бетон на до- менных гранулированных	1800	0,84	0,58	5	8	0,7	0,81	9,82	11,18	0,083
	Бетон на до- менных гранулированных		0,84	0,47		8	0,58	0,64	8,43	9,37	0,09
_	То же	1400	0,84	0,41	5		0,52 -	0,58	7,46	8,34	0,098
179		1200	0,84	0,35	5	8	0,47	0,52	6,57	7,31	0,11
180	Аглопоритобетон и бетоны на топливных (котельных)	1800	0,84	0,7	5	8	0,85	0,93	10,82	11,98	0,075
181	То же	1600	0,84	0,58	5	8	0,72	0,78	9,39	10,34	0,083
182	»	1400	0,84	0,47	5	8	0,59	0,65	7,92	8,83	0,09
183	»	1200	0,84	0,35	5	8	0,48	0,54	6,64	7,45	0,11
184	»	1000	0,84	0,29	5	8	0,38	0,44	5,39	6,14	0,14
185	Бетон на зольном гравии	1400	0,84	0,47	5	8	0,52	0,58	7,46	8,34	0,09
186	То же	1200	0,84	0,35	5	8	0,41	0,47	6,14	6,95	0,11
187	»	1000	0,84	0,24	5	8	0,3	0,35	4,79	5,48	0,12
188	Вермикул итобетон	800	0,84	0,21	8	13	0,23	0,26	3,97	4,58	_
189	»	600	0,84	0,14	8	13	0,16	0,17	2,87	3,21	0,15
190	»	400	0,84	0,09	8	13	0,11	0,13	1,94	2,29	0,19
191	»	300	0,84	0,08	8	13	0,09	0,11	1,52	1,83	0,23

продолжение приложения в												
В	Бетоны ячеистые (ГОСТ 2											
	5485, ΓOCT 5742)											
192	Полистиролбетон	600	1,06	0,145	4	8	0,175	0,20	3,07	3,49	0,068	
193	»	500	1,06	0,125	4	8	0,14	0,16	2,5	2,85	0,075	
194	»	400	1,06	0,105	4	8	0,12	0,135	2,07	2,34	0,085	
195	»	300	1,06	0,085	4	8	0,09	0,11	1,55	1,83	0,10	
196	»	200	1,06	0,065	4	8	0,07	0,08	1,12	1,28	0,12	
197	»	150	1,06	0,055	4	8	0,057	0,06	0,87	0,96	0,135	
	Газо- и пенобетон, газо-											
198	и пеносиликат	1000	0,84	0,29	10	15	0,41	0,47	6,13	7,09	0,Π	
199	Тоже	800	0,84	0,21	10	15	0,33	0,37	4,92	5,63	0,14	
200	»	600	0,84	0,14	8	12	0,22	0,26	3,36	3,91	0,17	
201	»	400	0,84	0,11	8	12	0,14	0,15	2,19	2,42	0,23	

	Газо- и пенобетон, газо-										
202		300	0,84	0,08	8	12	0,П	0,13	1,68	1,95	0,26
	и пеносиликат Газо- и пенозолобетон	1200	0,84	0,29	15	22	0,52	0,13	8,17	9,46	0,075
	Тоже	1000	0,84 0,84	0,29	15	22	0,32	0,56	6,86		0,075
_										8,01	
	>	800	0,84	0,17	15	22	0,35	0,41	5,48	6,49	0,12
Г	Кирпичная кладка из сплошного кирпича										
206	Глиняного обыкновен-	1800	0,88	0,56	1	2	0,7	0,81	9,2	10,12	0,11
	ного (ГОСТ 530) на це-										
	ментно-песчаном растворе										
207	Глиняного обыкновенного	4700	0.00	0.50	4 -		0.64	0.76	0.64	0 7	0.40
	на цементно- шлаковом рас-	1700	0,88	0,52	1,5	3	0,64	0,76	8,64	9,7	0,12
208	Глиняного обыкновенного										
	на цементно-перлитовом рас-	1600	0,88	0,47	2	4	0,58	0,7	8,08	9,23	0,15
209	Силикатного (ГОСТ 379)										
	на цементно-песчаном рас-	1800	0,88	0,7	2	4	0,76	0,87	9,77	10,9	0,11
	Трепельного (ГОСТ 530)										
210	на цементно-песчаном рас-	1200	0,88	0,35	2	4	0,47	0,52	6,26	6,49	0,19
	Тоже	1000	0,88	0,29	2	4	0,41	0,47	5,35	5,96	0,23
	Шлакового на це-		•								•
212	ментно-песчаном растворе	1500	0,88	0,52	1,5	3	0,64	0,7	8,12	8,76	0,11
Д			Kı	и рпичная кладка	из пусто	тного кирі	пича				
213	Керамического пустот-	1600	0,88	0,47	1	2	0,58	0,64	7,91	8,48	0,14
	ного плотностью 1400 кг/м ³		•	,					,	,	•
	(брутто) (ГОСТ 530) на										
	цементно-песчаном растворе										
	, and a second production										
214	Керамического пустот-										
	ного плотноствю 1300 кг/м ³	1 400	0.00	0.44		_	0.53	0.50	7.04	7.50	0.16
<u></u>	(6pvtto)	1400	0,88	0,41	1	2	0,52	0,58	7,01	7,56	0,16
Продо	лжение приложения Б										
	(ГОСТ 530) на цементно-										
	песчаном растворе										
215	Керамического пустот-	1200	0,88	0,35	1	2	0,47	0,52	6,16	6,62	0,17
213	ного плотностью 1000 кг/м³ (брут-	1200	0,00	0,55	1	_	0,77	0,32	0,10	0,02	0,17
	то) (ГОСТ 530) на цементно-										
	песчаном растворе										
216	Силикатного одиннадцатипу-	1500	0.88	0,64	2	4	0,7	0,81	8,59	9,63	0,13
210	стотного (ГОСТ 379) на	1300	0,00	0,07		'	0,7	0,01	0,33	7,03	0,13
	цементно- песчаном растворе										
1			1						1	1	

217	Силикатного четырнадцатипу- стотного (ГОСТ 379) на це- ментно-песчаном растворе	1400	0,88	0,52	20	4	0,64	0,76	7,93	9,01	0,14	
Е	Дерево и изделия из него											
	Сосна и ель поперек воло- кон (ГОСТ 8486, ГОСТ 9463)	500		0,09	15	20	0,14	0,18	3,87	4,54	0,06	
219	Сосна и ель вдоль волокон	500	2,3	0,18	15	20	0,29	0,35	5,56	6,33	0,32	
220	Дуб поперек волокон (ГОСТ 9462, ГОСТ 2695)	700	_	0,1	10	15	0,18	0,23	5,0	5,86	0,05	
221	Дуб вдоль волокон	700	,	0,23	10	15	0,35	0,41	6,9	7,83	0,3	
222	Фанера клееная (ГОСТ 8673)	600	2,3	0,12	10	13	0,15	0,18	4,22	4,73	0,02	
223	Картон облицовочный (ГОСТ 8740)	1000	2,3	0,18	5	10	0,21	0,23	6,2	6,75	0,06	
224	Картон строитель- ный	650	2.3	0,13	6	12	0,15	0,18	4,26	4,89	0,083	
III	Конструкционные материалы											
Α			Бетоны (ГОС	Τ 7473, ΓΟCT 25			ы (ГОСТ 280.	13)				
225	Железобетон (ГОСТ 26633)	2500	0,84	1,69	2	3	1,92	2,04	17,98	18,95	0,03	
226	Бетон на гравии или щебне из природного камня (ГОСТ	2400	0,84	1,51	2	3	1,74	1,86	16,77	17,88	0,03	
227	Раствор цементно-песчаный	1800	0,84	0,58	2	4	0,76	0,93	9,6	11,09	0,09	
228	Раствор сложный (песок, известь, цемент)	1700	0,84	0,52	2	4	0,7	0,87	8,95	10,42	0,098	
229	Раствор из вестково- песчаный	1600	•	0,47	2	4	0,7	0,81	8,69	9,76	0,12	
Б	Облицовка природным камнем (ГОСТ 9480)											
230	Гранит, гнейс и базальт	2800		3,49	0	0	3,49	3,49	25,04	25,04	0,008	
231	Мрамор	2800		2,91	0	0	2,91	2,91	22,86	22,86	0,008	
232	Известняк	2000	,	0,93	2	3	1,16	1,28	12,77	13,7	0,06	
233	»	1800	JU,88	0,7	2	3	0,93	1,05	10,85	11,77	0,075	

Окончание приложения Б

234	Известняк	1600	0,88	0,58	2	3	0,73	0,81	9,06	9,75	0,09
235	»	1400	0,88	0,49	2	3	0,56	0,58	7,42	7,72	0,11
236	Туф	2000	0,88	0,76	3	5	0,93	1,05	11,68	12,92	0,075
237	»	1800	0,88	0,56	3	5	0,7	0,81	9,61	10,76	0,083
238	»	1600	0,88	0,41	3	5	0,52	0,64.	7,81	9,02	0,09

239	»	1400	0,88	0,33	3	5	0,43	0,52	6,64	7,6	0,098
240	»	1200	0,88	0,27	3	5	0,35	0,41	5,55	6,25	0,11
241	»	1000	0,88	0,21	3	5	0,24	0,29	4,2	4,8	0,11
В	Материал	ы кровельн	ые, гидроизоляц	ционные,о блицов	очные і	и рулонные	покрытия	я для по	пов (ГОС	T 30547)	
	Листы асбесто це-										
242	ментные плоские (ГОСТ	1800	0,84	0,35	2	3	0,47	0,52	7,55	8,12	0,03
243	Тоже	1600	0,84	0,23	2	3	0,35	0,41	6,14	6,8	0,03
	Битумы нефтяные строи-	1400	1,68	0,27	0	0	0,27	0,27	6,8	6,8	0,008
44	тельные и кровельные (ГОСТ										
	6617, ΓΟCT 9548)										
	Тоже	1200	1,68	0,22	0	0	0,22	0,22	5,69	5,69	0,008
	»	1000	1,68	0,17	0	0	0,17	0,17	4,56	4,56	0,008
	Асфальтобетон (ГОСТ 9128)	2100	1,68	1,05	0	0	1,05	1,05	16,43	16,43	0,008
	Рубероид (ГОСТ										
48	10923), пергамин (ГОСТ 2697),	600	1,68	0,17	0	0	0,17	0,17	3,53	3,53	_
	Линолеум поливинилхлорид-	1800	1,47	0,38	0	0	0,38	0,38	8,56	8,56	0,002
49	ный на теплоизолирующей										
	подоснове (ГОСТ 18108)										
	То же	1600	1,47	0.33	0	0	0,33	0,33	.7,52	7,52	0,002
	Линолеум поливинилхлорид-										
51	ный на тканевой основе (ГОСТ	1800	1,47	0,35	0	0	0,35	0,35	8,22	8,22	0,002
	Тоже	1600	1,47	0,29	0	0	0,29	0,29	7,05	7,05	0,002
	»	1400	1,47	0,23	0	0	0,23	0,23	5,87	5,87	0,002
			,	Металлы	и стекл	70	1	1	1		
	Сталь стержневая арма-										
54	турная (ГОСТ 10884, ГОСТ	7850	0,482	58	0	0	58	58	126,5	126,5	0
	Чугун (ГОСТ 9583)	7200	0,482	50	0	0	50	50	112,5	112,5	0
	Алюминий (ГОСТ 22233, ГОСТ	2420								40= 6	
56	24767)	2600	0,84	221	0	0	221	221	187,6	187,6	0
	Медь (ГОСТ 93 1 , ГОСТ 1	8500	0,42	407	0	0	407	407	326	326	0
	Стекло оконное (ГОСТ 111)	2500	0,84	0,76	0	0	0,76	0,76	10,79	10,79	0

ПРИЛОЖЕНИЕ В

Условия эксплуатации ограждающих конструкций

Влажностный режим помещений при	Условия эксплуатации А и Б в зонах влажности			
относительной влажности внутреннего воздуха Св., %	сухой	нормальной	влажной	
Сухой, ζ₅≤50 %	А	A	Б	
Нормальный, ζ₃≤60 %	Α	Б	Б	
Влажный или мокрый, ζ₅≤50 %	Б	Б	Б	

ПРИЛОЖЕНИЕ Г

Нормируемые значения сопротивления теплопередаче ограждающих конструкций

	Граду со	Нормируемые значении сопротивления теплопередаче K м²-"С/Пт, ограждающих конструкций Град у ∞						
Здания и помещения, коэффициенты <i>а</i> и <i>Ь</i>	сутки отопи- тельного пе- риода, <i>О,</i> "С- сут	Степ	По- крытий и пе- рекрытий над	Пере- тий чердачных, над неотапли- ваемыми	Окон и балконных дверей.	Фона- рей с верти- кальным ос-		
			проез- дами	подпо- льями	витрин и витражей	текле- нием		
				лзми				
I	2	3	4	5	6	7		
1 Жилые, лечебно-профилактические и	2000	2,1	3,2	2,8	0,3	0,3		
детские учреждения, школы, интерна-	4000	2,8	4,2	3,7	0,45	0,35		
ты, гостиницы и общежития	6000	3,5	5,2	4,6	0,6	0,4		
	8000	4,2	6,2	5,5	0,7	0,45		
	10000	4,9	7,2	6,4	0,75	0,5		
	12000	5,6	8,2	7,3	0,8	0,55		
a	_	0,0003	0,0005	0,0004	_	0,00002		
Ь	_	1.4	2,2	1,9	• —	0,25		
2 Общественные, кроме указанных	2000	1,8	2,4	2,0	0,3	0,3		

выше, административные и бытовые, производственные и другие здания и помещения с влажным или мокрым	4000 6000 8000 12000	2,4 3,0 3,6 4,8	3,2 4,0 4,8 6,4	2,7 3,4 4,1 5,5	0,4 0,5 0,6 ô,8	0,35 0,4 0,45 • 0,55
a	_	0,0003	0,0004	0,0003	0,0000	0,00002
Ь	_	1,2	1,6	1,3	0,2	0,25
3 Производственные с сухим и нор-	2000	1,4	2,0	1,4	0,25	0,2
мальным режимами	4000 6000 8000 10000 12000	1,8 2,2 2,6 3,0 3,4	2,5 3,0 3,5 4,0 4,5	1,8 2,2 2,6 3,0 3,4	0,3 0,35 0,4 0,45 0,5	0,25 0,3 0,35 0,4 0,45
a	_	0,0002	0,0002	0,0002	0,0000	0,00002
Ь	_	1,0	1,5	1,0	0,2	0,15

Окончание приложения Г

Примечания

Значения R^{TP} для величин ГСОП отличающихся от табличных, следует определять по формуле

$$R_{rea} = aD_d + b ,$$

где ГСОП – градусо-сутки отопительного периода, °C-сут, для конкретного пункта;

а, b — коэффициенты, значения которых следует принимать по данным таблицы для соответствующих групп зданий, за исключением графы 6 для группы зданий в поз. 1, где для интервала до 6000 °C·сут: a=0,000075, b=0,15; для интервала 6000-8000 °C·сут: a=0,00005, b=0,3; для интервала 8000 °C·сут и более: a=0,000025, b=0,5.

Нормируемое приведенное сопротивление теплопередаче глухой части балконных дверей должно быть не менее чем в 1,5 раза выше нормируемого сопротивления теплопередаче светопрозрачной части этих конструкций.

Нормируемые значения сопротивления теплопередаче чердачных и цокольных перекрытий, отделяющих помещения здания от неотапливаемых пространств с температурой $t_c(t_{ht} < t_c < t_{st})$, следует уменьшать умножением величин, указанных в графе 5, на коэффициент n, определяемый по примечанию n0 температуру воздуха в теплом чердаке, теплом подвале и остекленной лоджии и балконе следует определять на основе расчета теплового баланса.

Допускается в отдельных случаях, связанных с конкретными конструктивными решениями заполнений оконных и других проемов, применять конструкции окон, балконных дверей и фонарей с приведенным сопротивлением теплопередаче на 5 % ниже установленного в таблице.

Для группы зданий в поз. 1 нормируемые значения сопротивления теплопередаче перекрытий над лестничной клеткой и теплым чердаком, а также над проездами, если перекрытия являются полом технического этажа, следует принимать как для группы зданий в поз. 2.

приложение д

Нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции

Здания и помещения	Нормир	уемый температурны	й перепад <i>&г_а, °С,</i> для	
	наружных стен	покрытий и чер- дачных перекры- тий	перекрытий над проездами, подва- лами и подпольями	зенитных фонарей
1 . Жилые, лечебно-профилактические и детские учреждения, школы, интернаты	4,0	3,0	2,0	$t_{\scriptscriptstyle B}-t_{\scriptscriptstyle d}$
2. Общественные, кроме указанных в поз. 1, административные и бытовые, за исключением помещении с. влажным или мокрым режимом	4,5	4,0	2,5	$t_{\scriptscriptstyle B}-t_{\scriptscriptstyle d}$
3. Производственные с сухим и нормальным режимами	t _в – t _d , но не более 7	0,8 (t _в – t _d), но не более б	2,5	$t_{\scriptscriptstyle B}-t_{\scriptscriptstyle d}$
4. Производственные и другие помещения с влажным или мокрым режимом	$t_{\scriptscriptstyle B}-t_{\scriptscriptstyle d}$	0,8 (t _B - t _d)	2,5	-
 Производственные здания со значительными избытками ли- пой теплоты (более 23 Вт/м³) и расчетном относительной влажностью внутреннего воздуха более 50 % 		12	2,5	$t_{\text{B}}-t_{\text{d}}$

Обозначения: t_в – то же, что в формуле (2); t_d – температура точки росы, °С, при расчетной температуре t_в и относительной влажности внутреннего воздуха, принимаемым согласно 5.9 и 5.10 СанПиН 2.1.2.1002, ГОСТ 12.1.005 и СанПиН 2.2.4.548, СНиП 41-01 и нормам проектирования соответствующих зданий.

Примечание — Для зданий картофеле- и овощехранилищ нормируемый температурный перепад Δt_n для наружных стен, покрытий и чердачных перекрытий следует принимать по СНиП 2.11.02.

ПРИЛОЖЕНИЕ Е

Коэффициент, учитывающий зависимость положения ограждающей конструкции по отношению к наружному воздуху

Ограждающие конструкции	Коэффициент <i>п</i>
1. Наружные стены и покрытия (в том числе вентилируемые наружным воздухом), зенитные фонари, перекрытия чердачные (с кровлей из штучных материалов) и над проездами; перекрытия над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне	1
2. Перекрытия над холодными подвалами, сообщающимися с наружным воздухом; перекрытия чердачные (с кровлей из рулонных материалов); перекрытия над холодными (с ограждающими стенками) подпольями и холодными этажами и Северной строительно-климатической зоне	0,9
3. Перекрытия над неотапливаемыми подвалами со световыми проемами в степах	0,75
4. Перекрытия над неотапливаемыми подвалами без световых проемов в степах, расположенные выше уровня земли	0,6
5. Перекрытия над неотапливаемыми техническими подпольями, расположенными ниже уровня земли	0,4
Примечание — Для чердачных перекрытии теплых чердаков и цокольных перекрытии над подвала большей $t_{\rm ext}$, но меньшей $t_{\it int}$ коэффициент n следует определять по формуле	ми с температурой воздуха в них t_{c}
$n = (t_e - t_c)'(t_e - t_n)$	(5)

приложение ж

Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции

Внутренняя поверхность ограждения	Коэффициент теплоотдачи а _в Вт/(м²."С)
1. Стен, полов, гладких потолков, потолков с выступающими ребрами при отношении высоты Л ребер к рас- стоянию а между гранями соседних ребер h/a< 0,3	8,7
2. Потолков с выступающими ребрами при отношении h/a > 0,3	7,6
3. Окон	8,0
4. Зенитных фонарей	9,9

Примечание — Коэффициент теплоотдачи а_{int} внутренней поверхности ограждающих конструкции животноводческих и птицеводческих зданий следует принимать н соответствии с СНиП 2.10.03.

приложение 3

Коэффициент теплоотдачи наружной поверхности аехt для условий холодного периода

u\u Nō	Наружная поверхность ограждающих конструкций	Коэффициент теплоот- дачи а _н , Bт/(м ^{2.o} C)
1	Наружных стен, покрытий, перекрытий над проездами и над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне	23
2	Перекрытий над холодными подвалами, сообщающимися с наружным воздухом; перекрытий над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне	17
3	Перекрытий чердачных и над неотапливаемыми подвалами со световыми проемами в стенах	12
4	Перекрытий над неотапливаемыми подвалами без световых проемов в стенах, расположенных выше уровня земли, и над неотапливаемыми техническими подпольями, расположенными ниже уровня земли	6

ПРИЛОЖЕНИЕ ИТермическое сопротивление замкнутых воздушных прослоек

Толщина	Термическое сопротивление замкнутой воздушной прослойки R _{a,l} , м ^{2.o} C/Вт					
воздушной	горизонтальной при потоке теплоты снизу вверх и вертикальной		горизонтальной при потоке теплоты св вниз			
прослойки, м	,	при температуре во:				
_	положительной	отрицательной	положительной	отрицательной		
0,01	0,13	0,15	0,14	0,15		
0,02	0,14	0,15	0,15	0,19		
0,03	0,14	0,16	0,16	0,21		
0,05	0,14	0,17	0,17	0,22		
0,1	0,15	0,18	0,18	0,23		
0,15	0,15	0,18	0,19	0,24		
0,2-0,3	0,15	0,19	0,19	0,24		

Примечание – При наличии на одной или обеих поверхностях воздушной прослойки теплоотражающей алюминиевой фольги термическое сопротивление следует увеличивать в два раза.

приложение к

СОПРОТИВЛЕНИЕ ПАРОПРОНИЦАНИЮ ЛИСТОВЫХ МАТЕРИАЛОВ И ТОНКИХ СЛОЕВ ПАРОИЗОЛЯЦИИ

№ п. п.	Материал	Толщи- на слоя, мм	Сопротивление паропрони- цанию R _{vp} м ² ч-Па/мг
1	Картон обыкновенный	1,3	0,016
2	Листы асбестоцементные I	6	0,3

3	Листы гипсовые обшивочные (сухая штукатурка)	10	0,12
_			
4	Листы древесно-волокнистые жесткие	10	0,11
5	Листы древесно-волокнистые мягкие	12,5	0,05
6	Окраска горячим битумом за один раз	2	0,3
7	Окраска горячим битумом за два раза	4	0,48
8	Окраска масляная за два раза с предварительной шпатлевкой и грунтовкой	_	0,64
9	Окраска эмалевой краской	_	0,48
10	Покрытие изольной мастикой за один раз	2	0,60
11	Покрытие битумно-кукерсольной мастикой за один раз	1	0,64
12	Покрытие битумно-кукерсольной мастикой за два раза	2	1,1
13	Пергамин кровельный	0,4	0,33
14	Полиэтиленовая пленка	0,16	7,3
15	Рубероид	1,5	1,1
16	Толь кровельный	1,9	0,4
17	Фанера клееная трехслойная	3	0,15

ПРИЛОЖЕНИЕ Л

МАКСИМАЛЬНЫЕ И СРЕДНИЕ ЗНАЧЕНИЯ СУММАРНОЙ СОЛНЕЧНОЙ РАДИАЦИИ (ПРЯМАЯ И РАССЕЯННАЯ) ПРИ ЯСНОМ НЕБЕ В ИЮЛЕ

Градусы с.ш.	Ориентация поверхности	Суммарная солнечная радиация, Вт/м ²			
		максимальная $\mathit{I}_{\mathit{max}}$	средняя I_{av}		
36	Горизонтальная	1000	344		
	Западная	712	162		
38	Горизонтальная	942	334		
	Западная	721	163		
40	Горизонтальная	928	333		
	Западная	740	169		
42	Горизонтальная	915	334		
	Западная	748	175		

44	Горизонтальная	894	331
	Западная	756	180
46	Горизонтальная	880	329
	Западная	752	182
48	Горизонтальная	866	328
	Западная	764	184
50	Горизонтальная	859	328
	Западная	774	187
52	Горизонтальная	852	329
	Западная	781	194
54	Горизонтальная	838	329
	Западная	788	200
56	Горизонтальная	817	327
	Западная	786	201

ПРИЛОЖЕНИЕ М

Значения парциального давления насыщенного водяного пара E, Па, для температуры t от 0 до +30 °C (над водой)

t,°c	0	0,1	0,2	0,3	0,4	0,5,	0,6	0,7	0,8	0,9
0	611	615	620	624	629	633	639	643	648	652
1	657	661	667	671	676	681	687	691	696	701
2	705	711	716	721	727	732	737	743	748	753
3	759	764	769	775	780	785	791	796	803	808
4	813	819	825	831	836	843	848	855	860	867
5	872	879	885	891	897	904	909	916	923	929
6	935	941	948	956	961	968	975	981	988	995
7	1001	1009	1016	1023	1029	1037	1044	1051	1059	1065
8	1072	1080	1088	1095	1103	1109	1117	1125	1132	1140
9	1148	1156	1164	1172	1180	1188	1196	1204	1212	1220
10	1228	1236	1244	1253	1261	1269	1279	1287	1285	1304
11	1312	1321	1331	1339	1348	1355	1365	1375	1384	1323
12	1403	1412	1421	1431	1440	1449	1459	1468	1479	1488
13	1497	1508	1517	1527	1537	1547	1557	1568	1577	1588

14	1599	1609	1619	1629	1640	1651	1661	1672	1683	1695
15	1705	1716	1727	1739	1749	1761	1772	1784	1795	1807
16	1817	1829	1841	1853	1865	1877	1889	1901	1913	1925
17	1937	1949	1962	1974	1986	2000	2012	2025	2037	2050
18	2064	2077	2089	2102	2115	2129	2142	2156	2169	2182
19	2197	2210	2225	2238	2252	2266	2281	2294	3209	2324
20	2338	2352	2366	2381	2396	2412	2426	2441	2456	2471
21	2488	2502	2517	2538	2542	2564	2580	2596	2612	2628
22	2644	2660	2676	2691	2709	2725	2742	2758	2776	2792
23	2809	2826	2842	2860	2877	2894	2913	2930	2948	2965
24	2984	3001	3020	3038	3056	3074	3093	3112	3130	3149
25	3168	3186	3205	3224	3244	3262	3282	3301	3321	3341
26	3363	3381	3401	3421	3441	3461	3481	3502	3523	3544
27	3567	3586	3608	3628	3649	3672	3692	3714	3796	3758
28	3782	3801	3824	4846	3869	3890	3913	3937	3960	3982
29	4005	4029	4052	4076	4100	4122	4146	4170	4194	4218
30	4246	4268	4292	4317	4341	4366	4390	4416	4441	4466

ПРИЛОЖЕНИЕ Н

Значения парциального давления насыщенного водяного пара E, Па, для температуры t от минус 18 до 0 °C.

t, °C	Е, Па	t, °C	Е, Па	t, °C	Е, Па
0,0	611	-6,0	368	-12,0	217
-0,2	601	-6,2	363	-12,2	213
-0,4	591	-6,4	356	-12,4	209
-0,6	581	-6,6	351	-12,6	206
-0,8	572	-6,8	344	-12,8	203
-1,0	562	-7,0	337	-13,0	199
-1,2	553	-7,2	332	-13,2	195
-1,4	544	-7,4	327	-13,4	191

-1,6	534	-7,6	321	-13,6	188
-1,8	526	-7,8	315	-13,8	184
-2,0	517	-8,0	309	-14,0	181
-2,2	509	-8,2	304	-14,2	179
-2,2 -2,4	500	-8,4	299	-14,4	175
-2,6	492	-8,6	293	-14,6	172
-2,8	484	-8,8	289	-14,8	168
-2,8 -3,0 -3,2	476	-9,0	284	-15,0	165
-3,2	468	-9,2	279	-15,2	163
-3,4	460	-9,4	273	-15,4	159
-3,6	452	-9,6	268	-15,6	156
-3,8	445	-9,8	264	-15,8	153
-4,0	437	-10,0	260	-16,0	151
-4,2	429	-10,2	255	-16,2	148
-4,4	423	-10,4	251	-16,4	145
-4,6	415	-10,6	245	-16,6	143
-4,8	408	-10,8	241	-16,8	140
-5,0	401	-11,0	237	-17,0	137
-5,2	395	-11,2	233	-17,2	135
-5,4	388	-11,4	229	-17,4	132
-5,6	381	-11,6	225	-17,6	129
-5,8	375	-11,8	221	-17,8	127
				-18,0	125

приложение п

Сопротивление воздухопроницанию материалов и конструкций

Νō	Материалы и конструкции	Толщина	Сопротивление
п. п.		слоя, мм	воздухопроницанию Rinf,
			м. ч .Па/кг
1	2	3	4
1	Бетон сплошной (без швов)	100	19620
2	Газосиликат сплошной (без швов)	140	21
3	Известняк-ракушечник	500	6
4	Картон строительный (без швов)	1,3	64
5	Кирпичная кладка из сплошного кирпича на цементно-песчаном	250 и бо-	18
	растворе толщиной в 1 кирпич и более	лее	
6	Кирпичная кладка из сплошного кирпича на цементно-песчаном растворе толщиной в полкирпича	120	2
7	Кирпичная кладка из сплошного кирпича на цементно-шлаковом	250 и бо-	9
,	растворе толщиной в 1 кирпич и более	лее	
8	Кирпичная кладка из сплошного кирпича на цементно-шлаковом растворе толщиной в полкирпича	120	1
9	Кладка кирпича керамического пустотного на цементно-песчаном растворе толщиной в полкирпича	_	2
10	Кладка из легкобетонных камней на цементно-песчаном растворе	400	13
11	Кладка из легкобетонных камней на цементно-шлаковом растворе	400	1
12	Листы асбестоцечентные с заделкой швов	6	196
13	Обои бумажные обычные	_	20
14		20-25	ОД
15	Обшивка из обрезных досок, соединенных в шпунт	20-25	1,5
16			98
	ной бумаги		
17		15-70	2,5
	мягких плит с заделкой швов		
18	Обшивка из фибролита или из древесно-волокнистых бесцементных	15-70	0,5
	мягких плит без заделки швов		

19	Обшивка из жестких древесно-волокнистых листов с заделкой швов	10	3,3
20	Обшивка из гипсовой сухой штукатурки с заделкой швов	10	20
21	Пенобетон автоклавный (без швов)	100	1960
22	Пенобетон неавтоклавный	100	196
23	Пенополистирол	50-100	79
24	Пеностекло сплошное (без швов)	120	>2000
25	Плиты минераловатные жесткие	50	2
26	Рубероид	1,5	Воздухонепроницаем
27	Толь	1,5	490
28	Фанера клееная (без швов)	3-4	2940
29	Шлакобетон сплошной (без швов)	100	14
30	Штукатурка цементно-песчаным раствором по каменной или кир- пичной кладке	15	373
31	Штукатурка известковая по каменной или кирпичной кладке	15	142
32	Штукатурка известково-гипсовая по дереву (по драни)	20	17
33	Керамзитобетон плотностью 900 кг/м3	250-400	13-17

ОКОНЧАНИЕ ПРИЛОЖЕНИЯ П

п. п.	Материалы и конструкции	Толщина слоя, мм	Сопротивление воздухопроницанию Rinf, м2. ч .Па/кг
3	То же, 1000 кг/м3	250-400	53-80
3	То же, 1100— 1300 кг/м3	250-450	390-590
3	Шлакопемзобетон плотностью 1500 кг/м3	250-400	0,3

Примечания

- 1 Для кладок из кирпича и камней с расшивкой швов на наружной поверхности приведенное в настоящей таблице сопротивление воздухопроницанию следует увеличивать на 20 м2чПа/кг.
- 2 Сопротивление воздухопроницанию воздушных прослоек и слоев ограждающих конструкций из сыпучих (шлака, керамзита, пемзы и т.п.), рыхлых и волокнистых (минеральной ваты, соломы, стружки и т.п.) материалов следует принимать равным нулю независимо от толщины слоя.
- 3 Для материалов и конструкций, не указанных в настоящей таблице, сопротивление воздухопроницанию следует определять экспериментально.

ПРИЛОЖЕНИЕ Р

ПРИВЕДЕННОЕ СОПРОТИВЛЕНИЕ ТЕПЛОПЕРЕДАЧЕ $R_o^{\scriptscriptstyle T}$, КОЭФФИЦИЕНТ ЗАТЕНЕНИЯ НЕПРОЗРАЧНЫМИ ЭЛЕМЕНТАМИТ, КОЭФФИЦИЕНТ ОТНОСИТЕЛЬНОГО ПРОПУСКАНИЯ СОЛНЕЧНОЙ РАДИАЦИИ k ОКОН, БАЛКОННЫХ ДВЕРЕЙ И ФОНАРЕЙ

		Светопрозрачные конструкции						
№ п.	Заполнение светового проема	в деревянных ил	еплетах	в алюминиевых переплетах				
п.	заполнение светового просна	R_o^r	Т	k	R_o^r м²-°С/Вт	Т	k	
1	2	3	4	5	6	7	8	
1	Двойное остекление из обычного стекла в спаренных переплетах	0,40	0,75	0,62	_	0,70	0,62	
2	Двойное остекление с твердым селективным покрытием в спаренных переплетах	0,55	0,75	0,65		0,70	0,65	
3	Двойное остекление из обычного стекла в раздельных переплетах	0,44	0,65	0,62	0,34	0,60	0,62	
4	Двойное остекление с твердым селективным покрытием в раздельных переплетах	0,57	0,65	0,60	0,45	0,60	0,60	
5								
	Блоки стеклянные пустотные (с шириной швов 6 мм) размеров, мм: $194 \times 194 \times 98$	0,31 0,33	0,90 0,90	0,40 (б та)	0,40 (без переплета) 0,45 (без переплета)			
6	Профильное стекло коробчатого сечения	0,31	0,90	0,50 (6	ез переплета)	<u> </u>	·	

7	Двойное из органического стекла для зенитных фонарей	0,36	0,90	0,9	_	0,90	0,90
8	Тройное из органического стекла для зенитных фонарей	0,52	0,90	0,83	_	0,90	0,83
9	Тройное остекление из обычного стекла в раздельно-спаренных переплетах	0,55	0,50	0,70	0,46	0,50	0,70
10	Тройное остекление с твердым селективным покрытием в раздельно-спаренных переплетах	0,60	0,50	0,67	0,50	0,50	0,67
11	Однокамерный стеклопакет в одинарном переплете из стекла: обычного с твердым селективным покрытием с мягким селективным покрытием	0,35 0,51 0,56	0,80 0,80 0,80	0,76 0,75 0,54	0,34 0,43 0,47	0,80 0,80 0,80	0,76 0,75 0,54
12	Двухкамерный стеклопакет в одинарном переплете из стекла: обычного (с межстекольным расстоянием 8 мм) обычного (с межстекольным расстоянием 12 мм) с твердым селективным покрытием с мягким селективным покрытием с твердым селективным покрытием и заполнением аргоном	0,50 0,54 0,58 0,68 0,65	0,80 0,80 0,80 0,80 0,80	0,74 0,74 0,68 0,48 0,68	0,43 0,45 0,48 0,52 0,53	0,80 0,80 0,80 0,80 0,80	0,74 0,74 0,68 0,48 0,68

ОКОНЧАНИЕ ПРИЛОЖЕНИЯ Р

		Светопрозрачные конструкции							
№ п.п.	Заполнение светового проема	в деревянні	переплетах	в алюм	в алюминиевых переплетах				
		R_o^r м²-°С/Вт	т	k	<i>R</i> _o ^r м²-°С/Вт	т	k		
1	2	3	4	5	6	7	8		
13	Обычное стекло и однокамерный стеклопакет в раздельных переплетах из								
	стекла:								
	обычного		0,6			0,			
		0,56	0	0,63	0,50	60	0,63		
	с твердым селективным покрытием	0,65	0,6	0,58	0,56	0,	0,58		
	с мягким селективным покрытием	0,72	0,6	0,51	0,60	0,	0,58		

	с твердым селективным покрытием и заполнением аргоном	0,69	0,6	0,58	0,60	0,	0,58
14	Обычное стекло и двухкамерный стеклопакет в раздельных переплетах из стекла: обычного с твердым селективным покрытием с мягким селективным покрытием с твердым селективным покрытием и заполнением аргоном	0,65 0,72 0,80 0,82	0,6 0,6 0,6 0,6	0,60 0,56 0,36 0,56	_ _ _ _	0, 0, 0, 0,	0,60 0,56 0,56 0,56
15	Два однокамерных стеклопакета в спаренных переплетах	0,70	0,7	0,59	_	0,	0,59
16	Два однокамерных стеклопакета в раздельных переплетах	0,75	0,6	0,54	_	0,	0,54
17	Четы рехсло иное остекление из обычного стекла в двух спаренных переплетах	0,80	0,5	0,59	_	0,	0,59

Примечания

1 Значения приведенного сопротивления теплопередаче, указанные в таблице, допускается применять в качестве расчетных при отсутствии этих значений в стандартах или технических условиях на конструкции или не подтвержденных результатами испытаний.

- 2 К мягким селективным покрытиям стекла относят покрытия с тепловой эмиссией менее 0,15, к твердым (К-стекло) 0,15 и более.
- 3 Значения приведенного сопротивления теплопередаче заполнений световых проемов даны для случаев, когда отношение площади остекления к площади заполнения светового проема равно 0,75.
 - 4 Значения для окон со стеклопакетами приведены:
 - для деревянных окон при ширине переплета 78 мм;
 - для конструкций окон в ПВХ переплетах шириной 60 мм с тремя воздушными камерами.

При применении ПВХ переплетов шириной 70 мм и с пятью воздушными камерами приведенное сопротивление теплопередаче увеличивается иа 0,03 м² • °C/Вт;

- для алюминиевых окон значения приведены для ереплетов с термически ми вставкам и.

приложение с

Таблица С.1 – Теплофизические показатели материала слоев наружной ограждающей конструкции

п/п	ļŌ	Ма териал	ρ, κг/м³	δ, M	λ, Вт/(м·°С)	R (м ^{2.0} С)/Вт	S Вт/(м ^{2.0} С)	D -	Ү Вт/(м ^{2.0} С)
	1	2	3	4	5	6	7	8	9

Таблица C.2 – Продолжительность периодов и температуры для расчета влажностного режима ограждения при проверке недопустимости накопления влаги за годовой период

№ п/п	Периоды	Месяцы	Количество	Расчетные	Средняя	Температура	Е, Па пе-
			месяцев	температуры	температура	в плоскости	риода
				месяцев	периода	возможной	
						компенсации	
1	2	3	4	5	6	7	8
1	Зимний						
2	Весенне-						
	осенний						
3	Летний						

Таблица С.3-Расчетные данные месяцев с отрицательными температурами воздуха при проверке влажностного режима ограждения на ограничение накопления влаги

Месяцы с отрицательными	I	II	 XII	
температурами				
Количество дней, z				Σ_{z}
Среднемесячная температура,				t_{cp}
°C				
Упругость водяного пара, Па				е _{н.о}