

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Кафедра «Теплогазоснабжение и вентиляция»

Методические указания

для проведения практических занятий для подготовки бакалавров направления 08.03.01 «Строительство» по дисциплине

«Теплогазоснабжение и вентиляция»

Авторы Тихомиров А.Л., Тихомиров С.А.

Аннотация

Теплогазоснабжение и вентиляция: методические указания для проведения практических занятий для подготовки бакалавров направления 08.03.01 «Строительство».

Приведены примеры решения задач по основным разделам дисциплины «Теплоснабжение».

Авторы

к.т.н., доцент кафедры «Теплогазоснабжение и вентиляция» Тихомиров А.Л.

к.т.н., доцент, зав. кафедрой «Теплогазоснабжение и вентиляция» Тихомиров С.А.

Оглавление

1. ТЕПЛОВОЕ ПОТРЕБЛЕНИЕ			4
2.	РЕЖИМЫ	РЕГУЛИРОВАНИЯ	СИСТЕМ
ЦЕНТ	РАЛИЗОВАННОГО	ТЕПЛОСНАБЖЕНИЯ	6
3. ГИ	ДРАВЛИЧЕСКИЙ Г	РАСЧЕТ ТЕПЛОВЫХ СЕТЕЙ	Í7
4. ОБОРУДОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ			10
5. ТЕПЛОВОЙ РАСЧЕТ			13
ЛИТЕРАТУРА			15

1. ТЕПЛОВОЕ ПОТРЕБЛЕНИЕ

Пример. Определить годовые расходы теплоты на отопление, горячее водоснабжение и суммарный для здания длиной 86 м, шириной 14 м и высотой 20м. Коэффициент остекления (отношение поверхности окон к общей поверхности вертикальных наружных ограждений) ϕ =0,2. k_{cr} =1,20 BT/($m^{2\circ}$ c); k_{ok} =3,23 BT/($m^{2\circ}$ c); k_{rn} =0,90 BT/($m^{2\circ}$ c); k_{rn} =0,77 BT/($m^{2\circ}$ c)

Температура внутреннего воздуха $t_{\text{вн}}{=}18^{\circ}\text{с}$, а расчетная для отопления температура наружного воздуха $t_{\text{н.о.}}{=}{-}25^{\circ}\text{с.}$ Средняя температура наружного воздуха за отопительный период $t_{\text{н.ср.}}{=}{-}3,2^{\circ}\text{с.}$ Длительность отопительного периода $n_{\text{o}}{=}4920$ часов. Полная длительность работы тепловой сети за год $n_{\text{e}}{=}8400$ часов.

Обеспеченность жилой площадью $f_*=10\text{м}^2$ /чел. Средненедельный расход воды за сутки на 1 человека a=105 кг/(сут*чел); температура холодной (водопроводной) воды для зимнего периода $t_*=5^\circ\text{c}$; температуру нагретой местнрй воды $t_r=60^\circ\text{c}$. Объемный коэффициент здания $K_{06}=V/F_*=6,4\text{м}^3/\text{ м}^2$ (F_* -жилая площадь M_*^2).

Решение. Поверхности стен, окон, потолка и пола:

 $F_{c\tau} = (86+14)*2*20*0,8=3200 \text{ M}^2;$

 $F_{OK} = (86+14)*2*20*0,2=800 M^2;$

 $F_{n\tau} = F_{n\sigma} = 86*14 = 1204 \text{M}^2$.

Наружный объем здания:

$$V=86*14*20=24080 \text{ m}^3$$
.

Удельные теплопотери теплопередачей через наружные ограждения здания:

$$q = \frac{\Sigma kF}{F} =$$

$$= \frac{(1,2 * 3200 + 3,23 * 800 + 0,9 * 1204 * 0,8 + 0,77 * 1204 * 0,7)}{24080}$$

$$= 0,326 \text{ BT/(M}^3 \cdot \text{Y} \cdot \text{°c}).$$

Расчетные теплопотери теплопередачей через наружные ограждения здания:

$$Q_T = q_0 V(t_{BH}-t_{H.0}) = 0,326*24080(18+25) =$$

= 337000 BT=0,337 MBT.

Средняя за отопительный период нагрузка отопления определяется пересчетом:

$$Q_0^{\text{cp}} = \frac{t_{\text{BH}} - t_{\text{H}}^{\text{cp}}}{t_{\text{BH}} - t_{\text{H,0}}} = 0.037 \frac{(18 + 3.2)}{(18 + 25)} = 0.166 \text{ MBT}.$$

Годовой расход теплоты на отопление:

$$Q_0^{\text{год}} = Q_0^{\text{ср}} n_0 = 0,166*17,7*10^6 = 2940$$
 ГДж/год.

Годовой расход теплоты на горячее водоснабжение подсчитывается для зимнего и летнего периода отдельно.

Жилая площадь здания:

$$F_{\pi}$$
= V/ K_{06} =24080/6,4=3760 M^2 .

Число жителей здания:

$$M= F_{\rm w}// f_{\rm w}=3760/10=376$$
 чел.

Тепловая нагрузка горячего водоснабжения для зимнего периода средненедельная:

$$Q_{\rm r.3}^{\rm cp.H} = \frac{\alpha {\rm Mc}(t_{\rm r} - t_{\rm x})}{n_{\rm c}} = \frac{105*376*4190(60-5)}{3600*24} = 0{,}105~{\rm MBt}.$$

Тепловая нагрузка горячего водоснабжения для летнего периода средненедельная:

$$Q_{\scriptscriptstyle \Gamma,\Pi}^{\scriptscriptstyle \mathrm{CP,H}} = \frac{\alpha \mathrm{Mc}(t_{\scriptscriptstyle \Gamma} - t_{\scriptscriptstyle \mathrm{X}})}{n_{\scriptscriptstyle C}} = \frac{105*376*4190(60-15)}{3600*24} = 0,086\,\mathrm{MBT},$$

$$Q_{\Gamma}^{\Gamma O \Pi} = Q_{\Gamma .3}^{\text{Cp.H}} * n_0 + Q_{\Gamma .7}^{\text{Cp.H}} * (n - n_0) = 0,105 * 17,7 * 10^6 + 0,086 * 12,5 * 10^6 = 2933,5 ГДж/год.$$

Суммарный годовой расход теплоты:

$$Q^{\text{год}} = Q_0^{\text{год}} + Q_{\Gamma}^{\text{год}} = 2940 + 2933,5 = 5873,5$$
 ГДж/год.

2. РЕЖИМЫ РЕГУЛИРОВАНИЯ СИСТЕМ ЦЕНТРАЛИЗОВАННОГО ТЕПЛОСНАБЖЕНИЯ

Пример. При расчетной температуре наружного воздуха для отопления $t_{\text{H.o}}$ =-32°с температура воды в подающем трубопроводе отопительной сети t_1 =150°с и в обратном t_2 =70°с. Расчетная внутренняя температура отапливаемых помещений $t_{\text{вн}}$ =18°с. Определить температуру в подающем и обратном трубопроводах тепловой сети при температуре наружного воздуха t_{H} =-7°с, если эта сеть работает по графику центрального качественного регулирования.

<u>Решение</u>. Относительная тепловая нагрузка при $t_{\rm H}$ =-7°c:

$$Q_{\text{O. OTH.}} = Q_{\text{O}}/Q_{\text{P.O}} = (t_{\text{BH}} - t_{\text{H}})/(t_{\text{BH}} - t_{\text{H.O.}}) = (18+7)/(8+32) = 0,5.$$

Температура воды в подающем и обратном трубопроводах при $t_{\rm H}$ =-7°c:

$$T_{1.\text{TeK.}=}t_{\text{BH}} + (T_1-t_{\text{BH}})\text{Qo. oth} = 18 + (150 - 18)0.5 = 84^{\circ}\text{c},$$

$$T_{2.\text{TEK.}=}t_{\text{BH}} + (T_2-t_{\text{BH}})Q_0.$$
 oth = $18 + (70 - 18)0.5 = 44$ °c.

3. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТЕПЛОВЫХ СЕТЕЙ

Пример 3.1. Определить удельное линейное падение давления для воды с температурой т=75°с, проходящей по трубопроводу d=100мм со скоростью $\omega=0.2$ м/с. Эквивалентная шероховатость трубопровода $k_9 = 0.5$ мм.

Решение. Кинематическая вязкость и плотность воды при T=75°C $U=0.391*10^{-6}M^2/C$ и $\rho=975\kappa\Gamma/M^3$.

Число Рейнольдса:

$$Re = \frac{\omega d}{v} = \frac{0.2 * 0.1}{0.391 * 10 - 6} = 51100.$$

Предельное число Рейнольдса:

$$Re_{\rm np} = 568 \frac{d}{k_3} = \frac{568 * 0.1}{0.0005} = 113500.$$

Поскольку $2300 < Re < Re_{\rm np}$, то коэффициент гидравлического трения определяем по формуле Альтшуля:

$$\lambda = 0.11(\frac{k_3}{d} + \frac{68}{Re})^{0.25} = 0.11(\frac{0.0005}{0.1} + \frac{68}{51100})^{0.25} = 0.31.$$

Удельное линейное падение давления:

$$R_{\pi} = \frac{\lambda \omega^2 \rho}{2d} = \frac{0.031 * 0.2^2 * 975}{2 * 0.1} = 6.04 \text{ Па/м}.$$

Пример 3.2. По трубопроводу с внутренним диаметром d=514мм и длиною L=1000м подается вода в V=0,35м³/с с температурой 75°с и избыточным давлением в начальной точке $p_1=0.8$ Мпа. Отметка оси трубопровода в его конечной точке на 8м выше отметки начальной точки. Сумма коэффициентов местных сопротивлений ∑ζ=10.

Определить полный напор (сумма геометрического, пьезометрического и динамического напоров) и сумму геометрического и пьезометрических напоров в начальной и конечной точках трубопровода, а также давление в конечной точке. При расчете эквивалентную шероховатость принять $k_3 = 0.5$ мм.

Решение. Скорость воды:

$$\omega = 4V/\Pi d^2 = \frac{4*0.35}{3.14*0.514^2} = 1.69 \text{ M/c}.$$

Поскольку $\omega > \omega_{\rm np}$, коэффициент гидравлического трения определяем по формуле Б.Л. Шифринсона:

$$\lambda = 0.11 \left(\frac{k_3}{d}\right)^{0.25} = 0.11 \left(\frac{0.005}{0.514}\right)^{0.25} = 0.0194.$$

Эквивалентная длина местных сопротивлений и приведенная длина:

$$l_{\scriptscriptstyle 9} = \frac{\Sigma \xi d}{\lambda} = \frac{10*0.514}{0,0194} = 265$$
м,

$$I_{\pi} = I + I_{\theta} = 1000 + 265 = 1265 \text{ M}.$$

Удельное линейное падение давления при р=975кг/м³ (для T=75°c):

$$R_{\pi} = \frac{\lambda \omega^2}{2d} \rho = \frac{0.0194 * 1.69^2}{2 * 0.514} 975 = 52.6 \frac{\Pi a}{M}.$$

Потери напора при ġp=9,81*975=9570н/м²:

$$\delta H = \frac{R_{\pi} l_{\Pi}}{\rho g} = \frac{52,6*1265}{9570} = 6,96$$
M.

Отметку начальной точки трубопровода принимаем равной нулю (z=0). Полный напор в начале и конце трубопровода:

$$H_1 = \frac{p}{\rho g} + z_1 + \frac{w_1^2}{2g} = \frac{800000}{9570} + 0 + \frac{1,69^2}{2*9,81} = 83,75$$
 m.

$$H_2=H_1-\sigma H=83,6-6,96=76,9M.$$

Давление в конце трубопровода при $\omega = \omega_1 = \omega_2$:

$$p_2 = p_1 - \delta H \rho g - (z_2 - z_1) \rho g =$$
= 800000 - 6,96 * 9570 - (8 - 0)9570 = 0,657 * 10⁻⁶.

Сумма геометрического и пьезометрического напоров в начале и конце трубопровода:

$$\frac{p_1}{\rho g} + z_1 = \frac{800000}{9520} + 0 = 83,6$$
м,

$$\frac{p_2}{\rho g}$$
 + $z_2 = \frac{657000}{9520}$ + $8 = 76,65$ м.

4. ОБОРУДОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ

Пример. Провести тепловой и конструктивный расчет отопительного парового подогревателя горизонтального типа, а также определить потери напора при движении воды в трубках по следующим данным: производительность подогревателя $Q=1,163*10^6$ Вт; абсолютное давление сухого насыщенного пара p=2,94 Мпа $(\tau_H=133°c)$; температура конденсата, выходящего из подогревателя, $\tau_K=\tau_H$; температура воды при входе в подогреватель $t_1=70°c$, а при выходе из него $t_2=95°c$.

При расчете принять: скорость воды в трубках $\omega=1$ м/с; плотность воды $\rho=1000$ кг/м³; число ходов z=2; наружный диаметр латунных труб 16 мм при толщине стенки $\delta=1$ мм. Загрязнение поверхности учесть дополнительным тепловым сопротивлением $\delta_3/\lambda_3=0,00013$ м $_2$ °c/Вт.

Решение. Расход воды:

$$G = \frac{Q}{c(t_2 - t_1)} = \frac{1,163*10^6}{4190(95-70)} = 11,1 \text{ K}\Gamma/\text{C}$$
 ,

или

$$V=0,0111 M^{3}/C.$$

Число трубок в одном ходе и корпусе

$$n_0 = \frac{4V}{\pi d_{\rm B}^2} = \frac{4*0,0111}{1*3,14*0,014^2} = 72$$
 шт,

$$n = zn_0 = 72 * 2 = 144$$
 шт.

Принимая шаг трубы a=25 мм, угол между осями трубной системы $\xi=60^{0}$ и коэффициент использования трубной решетки $\psi=0.7$, определяем диаметр корпуса:

$$D = 1,13a\sqrt{\frac{n\sin\xi}{\psi}} = 1,13*0,025\sqrt{\frac{144\sin60^{\circ}}{0,7}} = 0,378 \text{ m}.$$

Принимаем для корпуса подогревателя трубу диаметром 426/414 мм

Приведенное число трубок в вертикальном ряду:

$$m pprox \sqrt{n} = \sqrt{144} = 12$$
 шт.

Температурный напор:

$$\Delta t = \frac{t_2 - t_1}{\ln \frac{\tau_H - t_1}{\tau_H - t_2}} = \frac{95 - 70}{\ln \frac{133 - 70}{133 - 95}} = 49.4 \, ^{\circ}\text{c}.$$

Средняя температура воды и стенки:

$$t=T_H-\Delta t=133-49,4=86,3$$
°c,
 $t_{CT}=0,5(t+T_H)=0,5(83,6+133)=108,3$ °c.

В рассматриваемом случае критерий Z получается меньше критического (Z_{KP} =3900), что указывает на ламинарный режим течения пленки конденсата, для которого коэффициент теплоотдачи от пара к стенке может быть определен по преобразованной формуле Лабунцова (при $T_H=133$ °c $A_2=9494$):

$$\alpha_{\Pi} = \frac{A_2}{\sqrt[4]{ml(\tau_H - t_{CT})}} = \frac{9494}{\sqrt[4]{12*0,016(133-108,3)}} = 6420 \text{ BT/m}^2 \text{°C}$$

Коэффициент теплоотдачи от стенки к воде (при t=83,6 $A_5=3094$):

$$\alpha_{\rm B} = A_5 \frac{\omega^{0.8}}{d^{0.2}} = 3094 \frac{1^{0.8}}{0.014^{0.2}} = 7269 \,\mathrm{Br/m^2 \, °C}.$$

Расчетный коэффициент теплопередачи:

$$k = \frac{1}{\frac{1}{\alpha_{\rm H}} + \frac{\delta}{\lambda} + \frac{\delta_3}{\lambda_3} + \frac{1}{\alpha_{\rm B}}} = \frac{1}{\frac{1}{6420} + \frac{0,001}{105} + 0,00013 + \frac{1}{7269}} = \frac{2314 \text{BT}}{\text{M}^2} \text{°C}.$$

Уточненное значение температуры стенки трубок:

$$t_{cT} = \frac{t_{H}\alpha_{\Pi} + t\alpha_{B}}{\alpha_{\Pi} + \alpha_{B}} = \frac{133 * 7269 + 83,6 * 6420}{7269 + 6420} = 110^{\circ}c.$$

Поскольку уточненное значение t_{cr} мало отличается от принятого для предварительного расчета, пересчета расчетного коэффициента теплопередачи не производим.

Площадь поверхности нагрева:

$$F = \frac{Q}{k\Delta t} = \frac{1.163 * 10^6}{2314 * 49.4} = 10.2 \text{ M}^2.$$

Длина трубок и длина хода воды:

$$l = \frac{F}{\pi dn} = \frac{10,2}{3,14 * 0.015 * 144} = 1,51 \text{ m},$$

$$L=k=1,51*2=3.02 \text{ M}.$$

Число Рейнольдса для воды t=83.6 °с, $u=0.352*10^6$ м²/с:

$$Re = \frac{\omega d}{v} = \frac{1*0,014}{0.352*10^6} = 39800.$$

Коэффициент гидравлического трения для латунных трубок с учетом их загрязнения k₃=0,2 мм:

$$\lambda = 0.11 \left(\frac{k_9}{d} + \frac{68}{Re}\right)^{0.25} = 0.11 \left(\frac{0.0032}{0.014} + \frac{68}{39800}\right)^{0.25} = 0.0391.$$

Коэффициенты местных сопротивлений приведены ниже:

На входе в камеру 1,5*1=1,5, На входе в трубки 1,0*2=2,0, На выходе из трубок 1,0*2=2,0, При повороте на 180° 2,5*1=2,5, На выходе из камеры 1,5*1=1,5, $\Sigma \xi = 9.5$.

Потери напора в подогревателе

$$\delta H = (\frac{\lambda L}{d} + \Sigma \xi) \frac{\omega^2}{2g} = (\frac{0.0391*3.02}{0.014} + 9.5) \frac{1^2}{2*9.81} = 0.94 \text{ m}.$$

5. ТЕПЛОВОЙ РАСЧЕТ

Пример. Определить тепловые потери 1 м подающего и обратного теплопроводов с наружным диаметром d=273 мм, проложенного бесканально в грунте на глубине h=1,8 м с расстоянием между осями труб b=520 мм.

Температура воды в подающем трубопроводе τ_1 =150 °c, а в обратном трубопроводе τ_2 =70 °c. Температура грунта на глубине заложения труб t_0 =2 °c. Теплопроводность изоляции $\lambda_{\text{и}}$ =0,116 B_{T}/M^2 °C, толщина ее на подающем трубопроводе δ_1 =70 мм и на обратном δ_2 =40 мм. Теплопроводность грунта λ_{u} =1,75 B_{T}/M^2 °C.

Решение. Так как $\frac{h}{d_{\rm H}} = \frac{1,8}{0,413} > 2$, то расчет ведем по формулам для трубопроводов глубокого заложения.

Термическое сопротивление подающего и обратного трубопроводов:

$$\begin{split} R_1 &= \, \frac{1}{2\pi\lambda_{_{\rm H}}} ln \frac{d_{_{\rm H}1}}{d} + \frac{1}{2\pi\lambda_{_{\rm P}p}} ln \frac{4h}{d_{_{\rm H}1}} = \frac{1}{2*3,14*0,116} ln \frac{0,413}{0,273} + \\ &+ \frac{1}{2*3,14*1,75} ln \frac{4*1.8}{0.413} = 0.828 \, \mathrm{m}^{\circ} \frac{\mathrm{c}}{\mathrm{B}\mathrm{T}}, \end{split}$$

$$R_2 = \frac{1}{2\pi\lambda_{_{\rm H}}}ln\frac{d_{_{\rm H2}}}{d} + \frac{1}{2\pi\lambda_{_{\rm Fp}}}ln\frac{4h}{d_{_{\rm H2}}} = \frac{1}{2*3,14*0,116}ln\frac{0,353}{0,273} + \\ + \frac{1}{2*3.14*1.75}ln\frac{4*1.8}{0.353} = 0,624~{\rm M}^{\circ}\frac{\rm c}{\rm BT}.$$

Условное термическое сопротивление, учитывающее взаимное влияние труб:

$$\begin{split} R_0 = & \frac{1}{2\pi\lambda_{\rm rp}} ln \sqrt{1 + \left(\frac{2h}{b}\right)^2} = \frac{1}{2*3,14*1,75} ln \sqrt{1 + \left(\frac{2*1,8}{0,52}\right)^2} = \\ & = 0,177 \; {\rm m}^{\circ}{\rm c/Bt} \, . \end{split}$$

Удельные тепловые потери подающего и обратного теплопроводов:

$$q_1 = \frac{(\tau_1 - t_0)R_2 - (\tau_2 - t_0)R_0}{R_1R_2 - R_0^2} =$$

$$=\frac{(150-2)0,624-(70-2)0,177}{0,828*0,624-0,177^2}=165~\mathrm{Bt/m},$$

$$q_2=\frac{(\tau_2-t_0)R_1-(\tau_1-t_0)R_0}{R_1R_2-R_0^2}=$$

$$=\frac{(70-2)0,828-(150-2)0,177}{0,828*0,624-0,177^2}=61,6~\mathrm{Bt/m}.$$

Суммарные удельные тепловые потери:

$$q = q_1 + q_2 = 165 + 61,6 = 226,6 \,\mathrm{Bt/m}.$$

ЛИТЕРАТУРА

1. Сафонов А.П. Сборник задач по теплофикации и тепловым сетям. – М.: Энергоатомиздат, 1985. – 232с.