

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Кафедра «Робототехника и мехатроника»

СБОРНИК ЗАДАЧ

по дисциплине

«Управление роботами и робототехническими системами»

Автор Логвинов В.И.

Ростов-на-Дону, 2015

Аннотация

Изложены цели лабораторной работы по определению законов движения звеньев и схвата манипулятора при позиционном управлении и краткие сведения, необходимые студентам для ее выполнения.

Автор

к.т.н., доцент Логвинов В.И.

Оглавление

Цель работы:	4
Задачи работы:	4
Основные сведения	
Порядок выполнения	
Требования к отчету	
Контрольные вопросы	
Литература	
Варианты заданий	

Цель работы:

- **изучение методов** планирования траекторий звеньев манипулятора и схвата при позиционном управлении.

Задачи работы:

- спланировать траектории звеньев манипулятора в пространстве обобщенных координат q_i (t) (i=1,, n);
- определить траекторию движения схвата и его ориентацию в пространстве при его движении от начальной точки к конечной.

Основные сведения

Позиционное управление обеспечивает движение схвата от одной фиксированной точки к другой с остановкой в каждой точке. Поэтому с теоретической точки зрения достаточно рассмотреть движение между двумя соседними точками, которые можно назвать: одну начальной, в которой схват находится в данное время, другую – конечной, куда схват должен переместиться. При позиционном управлении таких точек обычно более двух: 3,4,...N.

Будем считать, что для решения прямой задачи при позиционном управлении известны координаты начальной и конечной точек схвата в неподвижной системе координат, связанной с неподвижным (0-м) звеном манипулятора (Рисунок 1):

$$M_1 = X_{OM1}, Y_{OM1}, Z_{OM1};$$

 $M_2 = X_{OM2}, Y_{OM2}, Z_{OM2}.$

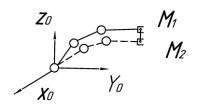


Рисунок1 - Координаты начальной и конечной точек схвата

Считаем также, что известны значения обобщенных координат, соответствующие начальному и конечному положениям схвата:

$$\bar{q}_{H} = (q_{1H}, q_{2H}, q_{3H} \dots q_{nH});$$

 $\bar{q}_{K} = (q_{1K}, q_{2K}, q_{3K} \dots q_{nK}).$

Выбираем закон движения звена - прямоугольное ускорение. Время перемещения из точки M_1 в точку M_2 - T, c [1].

Порядок выполнения

- 1. Для заданных значений обобщенных координат определяем координаты точек M_1 и M_2 в базовой системе координат. Для этого используем метод Денавита Хартенберга (Д-X)[1].
- 2. Для закона движения звена прямоугольное ускорение (Рисунок 2) задаем длительности интервалов разгона, торможения и движения с постоянной скоростью:

$$t_{\mathrm{P}i}+t_{\mathrm{\Pi}i}+t_{\mathrm{T}i}=\mathsf{T},$$

где T - время премещения из M_1 в M_2 . Например, $t_{\mathrm{P}i}=t_{\mathrm{\Pi}i}=t_{\mathrm{T}i}=1/3$ T или $t_{\mathrm{P}i}=t_{\mathrm{T}i}=0,5$ T.

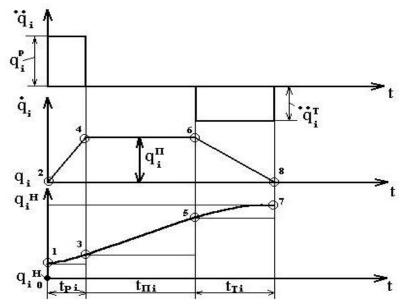


Рисунок 2 - Закон движения звена - прямоугольное ускорение

Можно принять, что все премещения звеньев относительно

друг друга происходят одновременно и равны по времени Т. Тоесть, $T1 = T2 = T3 = \dots Tn = T$. Если принять, что премещения звеньев осуществляются поочередно, тогда Ti = T/n.

3. Определяем величины ускорений \ddot{q}_i^p , при которых звенья за заданное время T перемещаются из начальной точки в конечную при прямоуголном законе ускорения:

$$\ddot{q}_{i}^{\,p} = (q_{i}^{\,k} - q_{i}^{\,\mathrm{H}})/[(0.5 \, t_{\mathrm{p}i} + t_{\mathrm{\pi}i} + 0.5 \, t_{\mathrm{T}i} \,) \, 0.5 \, t_{\mathrm{p}i}].$$
 Ускорение на участке торможения $\ddot{q}_{i}^{\,\mathrm{T}} = \ddot{q}_{i}^{\,p} \, t_{\mathrm{p}i}/t_{\mathrm{T}i}$, если $t_{\mathrm{p}i} = t_{\mathrm{T}i}$, то $\ddot{q}_{i}^{\,\mathrm{T}} = \ddot{q}_{i}^{\,p}$.

4. Далее определяем обобщенные скорости q_{i} и обобщенные координаты i -го звена в любой момент времени:

- участок разгона
$$(0 \le t \le t_{pi})$$
:

$$\dot{q}_i = \ddot{q}_i^p t$$
 ; $q_i = q_i^n + 0.5\ddot{q}_i^p t^2$;

- участок движения с постоянной обобщенной скоростью ($t_{\mathrm{p}i} < t \leq \, t_{\mathrm{p}i} + t_{\mathrm{n}i}$):

$$\dot{q}_i = \ddot{q}_i^p t_i = const;$$

 $q_i = q_i^n + 0.5\ddot{q}_i^p t_{pi}^2 + \ddot{q}_i^p t_{pi} (t - t_{pi});$

- участок торможения ($t_{pi} + t_{\pi i} < t \le T$):

$$\begin{split} \dot{q}_{i} &= \ddot{q}_{i}^{p} t_{pi} - \ddot{q}_{i}^{T} (t - t_{pi} - t_{ni}); \\ q_{i} &= q_{i}^{H} + 0.5 \ddot{q}_{i}^{p} t_{pi}^{2} + \ddot{q}_{i}^{p} t_{pi} t_{ni} + \ddot{q}_{i}^{p} t_{pi} (t - t_{pi} - t_{ni}) - 0.5 \ddot{q}_{i}^{t} (t - t_{pi} - t_{ni})^{2}. \end{split}$$

Таким образом, нами получены зависимости $q_i = q_i$ (t) при $0 \le t \le T$ (i=1,..., n).

4. Определяем траекторию движения схвата и его ориентацию в пространстве при его движении от начальной точки к конечной.

Эту задачу решаем с использованием зависимостей $T_0^n = M_1^0 \bullet M_2^1 \bullet M_3^2 \bullet M_n^{n-1}$ и

$$\begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 1 \end{bmatrix} = M_1^0 \cdot M_2^1 \cdot M_3^2 \cdot \dots M_n^{n-1},$$

с учетом того, в каждой матрице $M_{i-1,i}$ элементы являются функциями одной обобщенной координаты q_i

$$\mathbf{q}_{i}(t)\!=\!egin{array}{c} \Theta_{i}(t), \ \text{если пара вращательная;} \\ \mathbf{S}_{i}(t), \ \text{если пара поступательная.} \end{array}$$

Перепишем выражение выражение $T_0^n=M_1^0 \bullet M_2^1 \bullet M_3^2 \bullet \dots M_n^{n-1}$ в виде T_0^n $(q_1,\dots,q_n;t)=M_1^0$ $[q_1(t)] \bullet M_2^1$ $[q_2(t)] \dots M_n^{n-1}[q_n(t)],$

из которого можно определить значения 6 наддиагональных элементов:

[-
$$m_{12}$$
 (t) m_{13} (t) m_{14} (t)
-- m_{23} (t) m_{24} (t)= $M_1^0[q_1(t)] \cdot M_2^1[q_2(t)] \dots M_n^{n-1}[q_n(t)]$.
- - - m_{34} (t)
0 0 0 1]

В этом выражении элементы m_{14} (t), m_{24} (t), m_{34} (t) определяют траекторию схвата в базовой системе координат $X_0^{\rm cx}(t);Y_0^{\rm cx}(t);Z_0^{\rm cx}(t)$, а элементы m_{12} (t) ; m_{13} (t); m_{23} (t) ориентацию схвата.

Каждый из наддиагональных элементов есть также функция обобщенных координат и времени, то есть, $m_{k,1}=m_{k,1}(q_1,...,q_n;t)$, (k=1,2,3; l=2,3,4).

Таким образом, решение 2-й задачи (определение траектории движения схвата и его ориентации в пространстве) есть решение основной прямой задачи кинематики манипулятора и она решается по изложенному ранее алгоритму при известных, как результат выполнения 1-й подзадачи (планирование траекторий звеньев в пространстве обобщенных координат $q_i = q_i(t); \ 0 \le t \le T$.

Далее разбиваем интервал времени T на 10 участков и строим зависимости

 $X_0^{
m cx}(t);Y_0^{
m cx}(t);Z_0^{
m cx}(t)$ и графики q_i (t); $\dot{q_i}(t);$ $\ddot{q_i}(t)$ для одного из звеньев.

Требования к отчету

Отчет должен содержать:

- 1. Название лабораторной работы, Ф.И.О. студента, номер группы и номер задания
 - 2. Цели и задачи работы
 - 3. Исходные данные
- 4. Основные сведения о методах решения: Д-Х; планирование траекторий звеньев в пространстве обобщенных координат; определение траектории движения схвата и его ориентации в пространстве.
 - 5. Последовательность и результаты расчетов
- 6. Графики $X_0^{\text{CX}}(t); Y_0^{\text{CX}}(t); Z_0^{\text{CX}}(t)$ и графики q_i (t); $\dot{q}_i(t)$; $\ddot{q}_i(t)$ для одного из звеньев по указанию преподавателя.
 - 7. Выводы

Контрольные вопросы

- 1.Какое управление манипулятором называется позиционным?
 - 2. Каким методом решается прямая задача кинематики?
- 4. Какие значения интервалов разгона, торможения и движения вы приняли в работе?
- 5. Основные особенности прямоугольного закона движения звена?

Литература

1. Хомченко В.Г., Соломин В.Ю. Мехатронные и робототехнические системы: Учеб. пособие.- Омск.: Изд-во ОмГТУ, 2008.

Варианты заданий

Вариа нт	Схема	Параметры						
		q_{1H}	q_{2H}	q_{3H}	q_{1k}	q_{2k}	q _{3k}	T,C
1		1,0 м	60°	45	1,5 м	90 °	60 :	60
2	01 - 11 00	30°	45°	60.	45	90 •	90 •	45
3		0,8 м	0,5 м	45	1,2 м	0,2 м	90 •	50
4		1,0 м	0,6 м	30°	1,5 м	1,0 м	<u>60</u>	40
5		0,9 м	30 °	45	1,4 м	90 •	90 •	45
6		1,0 м	45	60.:	1,4 м	90 •	90 •	50
7		1,2 м	30 °	45	1,5 м	75°	20	40

8		60	30°	1,0м	90	60	1,5 м	50
9		1,2 м	0,8 м	45	1,5 м	1,0 м	90	45
10		45	1,1 м	0,5 M	90.	1,5 м	0,8 M	40
11		60°	0,8 м	0,6 M	90.	1,2 м	1,1 м	55
12	× × × × × × × × × × × × × × × × × × ×	1,3 м	0,8	0,9	1,6	1,2	1,4	30

Размеры звеньев принять по 1 м