КОНЦЕПЦИИ ЕСТЕСТВОЗНАНИЯ    
 Учебно-методический комплекс
 Ю. М. Наследников, А. Я. Шполянский, А. П. Кудря, А. Г. Стибаев.
 Главная|  О курсе|   Содержание|   Скачать архив


3.3. Учение о составе вещества

 

Учение о составе вещества охватывает три основные проблемы:

  • Проблема химического элемента.
  • Проблема химического соединения.
  • Проблема вовлечения и применения всё большего числа химических элементов и соединений для производства новых материалов.

 

3.3.1. Проблема химического элемента

 

В ХVII в. Р. Бойль (1627-1691 гг.) дал первое научное определение понятия  “химический элемент”, как предельного “простого вещества”, получаемого при  химическом разложении веществ, переходящего без изменения  из состава одного сложного тела в состав другого. Однако само открытие химических элементов произошло значительно позже (фосфор был открыт только в 1669 г., кобальт – в 1735г., никель – в 1751 г., водород – в 1766г., фтор – в 1771 г., азот и кислород – в 1772 г. и т.д.)
А.А Лавуазье (1743 – 1794 гг.) сделал первую  попытку  в истории химии систематизации химических элементов.

Д.И. Менделеев (1834 – 1907 гг.) открыл периодический закон и разработал Периодическую систему  химических элементов (1889 г.). Он исходил из того, что основной характеристикой химических элементов являются их атомные массы. Дальнейшие уточнения  показали, что  место химического элемента в Периодической системе определяется  не атомной массой, а зарядом атомного ядра. В этой связи можно утверждать, что химический элемент – это совокупность атомов (изотопов), обладающих одинаковым зарядом ядра. Каждый химический элемент имеет определённую массу, представляющую собой среднее значение  масс всех его изотопов. Изотопы, с точки зрения радиационной химии – разновидности атомов данного химического элемента, обладающие одинаковым зарядом ядра, но различающиеся  массой. Во времена Д.И. Менделеева было известно 62 химических элемента, сейчас – более 114.

Периодический закон формулируется следующим образом: химические свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера). Исключение – изотопы водорода: протий, тритий, дейтерий, обладающие различными химическими свойствами. Атомом называется электронейтральная совокупность элементарных частиц, состоящая из ядра (образованного протонами и нейтронами) и электронов.

В настоящее время раскрыт физико-химический смысл периодического закона, и дано квантово-механическое объяснение строения атомов химических элементов на основе понятия электронной оболочки и принципа Паули.

 

3.3.2. Проблема химического соединения

 

Все химические соединения подразделяются на неорганические и органические. Особой проблемы понятия химического соединения до недавнего времени не существовало. Было общепринято, что следует относить к химическим соединениям, а что – к смесям.

В начале XIX в. Ж. Пруст (1754-1826гг.) сформулировал закон постоянства состава: любое индивидуальное химическое соединение обладает строго определённым  неизменным составом, прочным притяжением составных частей (атомов) и тем отличается от смесей.

Теоретически закон постоянства  состава обосновал Д. Дальтон (1766-1844гг.). Возникла модель веществ постоянного состава – дальтониды. На основе идеи об атомистическом  строении вещества он утверждал, что химические соединения состоят из атомов двух или нескольких элементов, образующих определённые (он считал кратные) сочетания друг с другом. Возникла стехиометрическая модель химических соединений, а затем  и типологии молекул.

К.Л. Бертолле (1748-1822), внёсший совместно с А.А. Лавуазье значительный вклад в номенклатуру химических соединений, считал, что в химии огромная роль принадлежит веществам переменного состава – бертоллидам.

С конца XIX в. возобновились исследования, подвергающие сомнению абсолютизацию закона постоянства состава. Результаты исследований показали, что суть проблемы химических соединений состоит не столько в постоянстве состава, сколько в природе химических связей, объединяющих атомы в единую квантово-механическую систему – молекулу. Молекула представляет собой электронейтральную  наименьшую совокупность атомов, образующих определённую структуру посредством химических связей. Химические связи – это обменное взаимодействие  электронов, обобщение  валентных электронов, и “перекрывание электронных облаков”.

В результате открытия  физической природы химизма, как обменного взаимодействия электронов, химия по-новому стала решать проблему химического соединения, которое  определяется как качественно определённое  вещество, состоящее из одного или нескольких химических элементов, атомы которых за счёт обменного взаимодействия (химической связи) объединены в частицы (химические  корпускулы по меткому выражению М.В. Ломоносова) – молекулы, комплексы, монокристаллы или иные агрегаты (системы).

Произошло пересечение (“вложение” друг в друга) стехиометрической, атомно-молекулярной, геометрической и электронной моделей химии. С современной точки зрения, стехиометрическая модель означает использование химических формул и уравнений, атомно-молекулярная модель – описание химических реакций как внутри- и межмолекулярных перегруппировок атомов, геометрическая модель определяет язык структурных формул и геометрических молекулярных параметров, а электронная модель выводит реакционную способность веществ из электронного строения молекул. Эти модели “вложены” друг в друга: каждая последующая использует и детализирует постулаты предыдущих:

  • На основании вышеизложенного можно дать определение химическим формулам и реакциям. Химическая формула отображает состав (структуру) вещества в виде химического соединения. Молекулярная формула указывает число атомов химического элемента в молекуле. Структурная (графическая) формула отражает порядок соединения атомов в молекуле и число связей между атомами. Химическая реакция отображает превращение веществ, сопровождающееся изменением их состава и (или) строения. Записывается схематически с помощью формул реагентов и продуктов реакции.
  • В рамках современной электронной модели можно дать и краткую характеристику основным типам химических связей (см. схему 43)

 

Схема 43. Характерные особенности
основных типов химических связей.


 

Тип связи

Характерные особенности

 

Ковалентная связь

Взаимодействие между атомами обусловлено тем, что два электрона принадлежат одновременно двум атомам. В обобщенных парах электронов важную роль начинает играть обменная энергия, которая является существенно квантовой и зависит от обменной плотности зарядов р12(r)

 

Ионная связь

Возникает в результате электрического взаимодействия между ионами, которые образуются в результате отдачи одним атомом другому одного или нескольких электронов.

 

Металлическая связь

Эту связь образуют элементы, атомы которых на верхнем уровне имеют мало электронов по сравнению с общим числом внешних энергетически близких орбиталей, а валентные электроны из-за небольшой энергии ионизации образуют «электронный газ» и свободно перемещаются по всему кристаллу.

 

Водородная связь

Образуется благодаря электрическому взаимодействию атома водорода с другими атомами, обладающими значительной электро-отрицательностью. Определяет геометрическую структуру белковых молекул, и является существенной в молекулярной генетике, открывая отчасти возможность спаривания двух спиралей ДНК.

 

Ван-дер-Ваальсова связь

Силы взаимодействия между молекулами определяются наличием у молекул природных или индуцированных электрических моментов.

 

 

3.3.3. Проблема вовлечения и применения
новых химических соединений

    • Практическое решение этой проблемы в разработке новых химических технологий синтеза и катализа.
    • Свойства вещества определяются его элементным и молекулярным составом, структурой его молекул, термодинамическими и кинетическими условиями, в которых вещество находится в процессе химической реакции, уровнем химической организации веществ.
    • Все химические вещества можно разделить на органические, неорганические и смеси двух или нескольких веществ, гомогенные и гетерогенные смеси.

     

     

     





    Назад| Содержание| Вперед




 Главная|   О курсе|   Содержание|   Скачать архив