8. ЭЛЕКТРОСТАТИКА
где – модуль силы взаимодействия двух точечных зарядов и в вакууме; – расстояние между зарядами; – электрическая постоянная; - диэлектрическая проницаемость вещества (для вакуума )
- Напряженность и потенциал электростатического поля
; , или ,
где - сила, действующая на точечный положительный заряд , помещенный в данную точку поля; - потенциальная энергия заряда в электростатическом поле; - работа по перемещению заряда из данной точки поля за пределы поля.
- Напряженность и потенциал электростатического поля точечного заряда на расстоянии от заряда
; .
- Поток вектора напряженности через площадку
,
где - вектор, модуль которого равен , а направление совпадает с нормалью к площадке; – составляющая вектора по направлению нормали к площадке (); -угол между векторами и .
- Поток вектора напряженности через произвольную поверхность
.
- Поток вектора напряжённости через замкнутую поверхность (рис. 14)
.
Рис.14.
- Принцип суперпозиции (наложения) электростатических полей
; ,
где , - соответственно напряженность и потенциал поля, создаваемого зарядом .
- Направление вектора напряжённости , создаваемого точечным зарядом (рис. 15):
Рис.15
Напряженность электрического поля, созданного двумя разноимёнными зарядами в точках А, В и С (рис. 16):
Рис.16.
В точке А: .
В точке В: .
В точке С: .
- Связь между напряженностью и потенциалом электростатического поля
, или ,
где , , - единичные векторы координатных осей. Знак минус определяется тем, что вектор напряженности поля направлен в сторону убывания потенциала (рис. 17).
Рис.17.
- Направление вектора градиента потенциала в точке А (рис.18):
Рис.18.
- В случае поля, обладающего центральной или осевой симметрией
.
- Эквипотенциальные поверхности – геометрическое место точек с одинаковым потенциалом. Вектор напряжённости направлен по нормали к эквипотенциальной поверхности.
- Электрический момент диполя (дипольный момент)
,
где - плечо диполя (рис. 19).
Рис.19.
Напряженность поля на продолжении оси диполя на расстоянии от центра диполя
,
Напряженность поля на перпендикуляре, восстановленном к оси диполя из ее середины на расстоянии
.
- Линейная, поверхностная и объемная плотности зарядов, т.е. заряд, приходящийся соответственно на единицу длины, поверхности и объема:
; ; .
- Теорема Гаусса для электростатического поля в вакууме
,
где - алгебраическая сумма зарядов, заключенных внутри замкнутой поверхности ; – число зарядов.
Если заряд распределён внутри замкнутой поверхности непрерывно с объёмной плотностью , то
Примеры. 1. Определить поток вектора напряженности электростатического поля через сферическую поверхность, охватывающую точечный заряд (рис. 20).
;
Рис.20.
По теореме Гаусса
.
2. Как изменится поток через ту же поверхность, если внутрь поместить ещё один заряд (рис. 21)?
Рис.21.
По теореме Гаусса
,
т.е. поток уменьшится вдвое и станет отрицательным.
3. Как изменится поток через данную поверхность, если около неё поместить любой заряд на расстоянии (рис. 22)?
Рис.22.
Поток не изменится, так как заряд находится вне поверхности.
- Напряженность поля, создаваемого равномерно заряженной бесконечной плоскостью,
.
- Напряжённость поля, создаваемого двумя бесконечными параллельными разноимённо заряженными плоскостями:
– между плоскостями;
– вне плоскостей.
- Напряженность поля, создаваемого равномерно заряженной сферической поверхностью радиусом с общим зарядом на расстоянии от центра сферы,
при (внутри сферы);
при (вне сферы).
- Напряженность поля, создаваемого объемно заряженным шаром радиусом Rс общим зарядом q на расстоянии rот центра шара,
при (внутри шара);
при (вне шара).
- Напряженность поля, создаваемого равномерно заряженным проводящим бесконечнодлинным цилиндром (нитью) радиусом на расстоянии от оси цилиндра,
при (внутри цилиндра);
при (вне цилиндра).
- Работа, совершаемая силами электростатического поля при перемещении заряда из точки 1 в точку 2,
, или ,
где – проекция вектора на направление элементарного перемещения ; и – потенциалы электростатического поля в точках 1 и 2.
- Работа сил электростатического поля не зависит от вида траектории, а определяется только начальным и конечным положениями точки, по замкнутому пути работа равна нулю.
- Циркуляция вектора напряжённости электростатического поля вдоль замкнутого контура равна нулю, следовательно, это поле потенциальное
.
Линии напряжённости электростатического поля начинаются и заканчиваются на зарядах.
- Вектор поляризации диэлектрика:
,
где - объем диэлектрика; - дипольный момент -й молекулы; - число молекул диэлектрика в объеме .
- Связь между векторами поляризации и напряженности электростатического поля внутри диэлектрика
æ,
где æ – диэлектрическая восприимчивость вещества.
- Связь диэлектрической проницаемости e с диэлектрической восприимчивостью æ
= 1+æ.
- Связь между напряженностью поля в диэлектрике и напряженностью внешнего поля
, или .
- Связь между векторами электрического смещения () и напряжённостью электростатического поля ():
.
- Теорема Гаусса для электростатического поля в диэлектрике
,
где – алгебраическая сумма свободных электрических зарядов, заключенных внутри замкнутой поверхности ; – составляющая вектора по направлению нормали к площадке ; – вектор, модуль которого равен , а направление совпадает с нормалью к площадке. Интегрирование ведется по всей поверхности.
- Электроемкость уединенного проводника и конденсатора:
, ,
где – заряд, сообщенный проводнику; – потенциал проводника; , – разность потенциалов между пластинами.
,
где r– радиус шара.
- Электроемкость плоского конденсатора
,
где – площадь пластины конденсатора; – расстояние между пластинами.
- Электроемкость цилиндрического конденсатора
,
где – длина обкладок конденсатора; и - радиусы внутренней и внешней обкладок конденсатора.
- Электроемкость сферического конденсатора
,
где и - радиусы сферических обкладок конденсатора.
- Электроемкость системы конденсаторов соответственно при последовательном (а) и параллельном (б) соединениях:
а);
б),
где – электроемкость – го конденсатора; - число конденсаторов.
- Энергия уединенного заряженного проводника
.
- Потенциальная энергия системы точечных зарядов
,
где – потенциал, создаваемый в той точке, где находится заряд всеми зарядами, кроме -го.
- Энергия заряженного конденсатора
,
где – заряд конденсатора; – его емкость; – разность потенциалов между обкладками.
- Сила притяжения между обкладками плоского конденсатора
.
- Энергия электростатического поля плоского конденсатора
,
где – площадь одной пластины; – разность потенциалов между пластинами; – объем области между пластинами конденсатора.
- Объемная плотность энергии электростатического поля
,
где – электрическое смещение; - напряжённость поля.
- Если конденсатор заряжен до разности потенциалов () и отключен от источника тока, то при изменении расстояния между пластинами заряд на них неизменен, т.е. .
Если конденсатор не отключен от источника тока, то при изменении расстояния между пластинами неизменна разность потенциалов, т.е. .
|