Key words

A Database is a collection of persistent data that is used by the application systems of some given enterprise.

Data definition language (DDL) is a computer language for definition data structures.
Data manipulation language (DML) is a family of computer languages used by computer programs and/or database users to insert, delete and update data in a database.
The Database management system (DBMS) provides users with a perception of the database that is elevated somewhat above the hardware level, and it supports user operations that are expressed in terms of that higher-level perception.
The Structured Query Language (SQL) is a database computer language designed for managing data in relational database management systems (RDMBS), and originally based on Relation Algebra.
The SQL language is sub-divided into several language elements, including:
· Clauses, which are in some cases optional, constituent components of statements and queries;
· Expressions which can produce either scalar values or tables consisting of columns and rows of data;

· Predicates which specify conditions that can be evaluated to SQL three-valued logic Boolean truth values and which are used to limit the effects of statements and queries, or to change program flow;
· Queries which retrieve data based on specific criteria;
· Statements which may have a persistent effect on schemas and data, or which may control transactions, program flow, connections, sessions, or diagnostics;

· Insignificant whitespace which is generally ignored in SQL statements and queries, making it easier to format SQL code.
These elements are reviewed at fig.1.
[image: image1.png]
Figure 1 – Language elements
The SQL consists of:
· Data definition language (DDL). The DDL portion consists of those declarative constructs of SQL that are needed to declare database objects (for example, CREATE TABLE);
· Data manipulation language (DML). The DML portion consists of those executable statements of SQL that insert, update and delete information into the database (for example, INSERT clause);

· Data control language (DCL) is a computer language and a subset of SQL, used to control access to data in a database (for example, GRANT and REVOKE);
· Transaction control language (TCL) is a family of computer languages used by database systems to control transactions (for example, COMMIT and ROLLBACK).

The SQL DML can operate at both the external level (on views) and the conceptual level (on base tables). Likewise, the SQL DDL can be used to define objects at the external level (views), the conceptual level (base tables), and even – in most commercial systems, though not in the standard per se – the internal level as well (indexes or other auxiliary structures).
Moreover, SQL also provides certain data control facilities that cannot really be classified as belonging to either the DDL or the DML. An example of such a facility is the GRANT statement, which allows users to grant access privileges to each other.
Standardization

SQL was adopted as a standard by the American National Standards Institute (ANSI) in 1986 as SQL-86 and International Organization for Standardization (ISO) in 1987. Until 1996, the National Institute of Standard and Technology (NIST) data management standards program certified SQL database management systems (DBMS) compliance with the SQL standard. Vendors now self-certify the compliance of their products. SQL standard realization most be different for different DBMS.
All examples in this aids tested in PostgreSQL 8.2

CREATE/DROP TABLE
CREATE TABLE will create a new, initially empty table in the database.
Synopsis:

CREATE TABLE table_name (

[{ column_name data_type [DEFAULT expr]

[column_constraint […]]

| table_constraint }]);
The CREATE TABLE executed looks as follows:
CREATE TABLE tpost
(

 id integer NOT NULL DEFAULT nextval('tpost_id_seq'::regclass),

 name text NOT NULL,

 shortname character varying(50),

 CONSTRAINT tpost_pkey PRIMARY KEY (id)

);
CREATE TABLE statement specifies the name of the base table to be created, the names and types of the columns of that table, and the primary key and any foreign keys in that table.
DROP TABLE removes tables from the database. To empty a table of rows without destroying the table, use DELETE.
Synopsis:

DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Next example assumes that we have table with name «tpos» and shows how to use drop clause.
DROP TABLE tpost; -- remove table tpost
“--" use for comments.
DML operators
Having defined the database, we can now start operating on it by means of the SQL manipulative operations SELECT, INSERT, UPDATE, and DELETE.
1. SELECT

Synopsys:
 SELECT [ALL | DISTINCT [ON (expression [, ...])]]

 * | expression [AS output_name] [, ...]

 [FROM from_item [, ...]]

 [WHERE condition]

 [GROUP BY expression [, ...]]

 [HAVING condition [, ...]]

 [{ UNION | INTERSECT | EXCEPT } [ALL] select]

 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]

 [LIMIT { count | ALL }]

 [OFFSET start]

 [FOR { UPDATE | SHARE } [OF table_name [, ...]] [NOWAIT] [...]]
Example in fig.2 illustrates the point that dot-qualified names are sometimes necessary in SQL to "disambiguate" column references.
[image: image2.png]
Figure 2 – Use SELECT

Overview some parameters of SELECT statement:
· If DISTINCT is specified, all duplicate rows are removed from the result set (one row is kept from each group of duplicates). ALL specifies the opposite: all rows are kept; that is the default.;
· The FROM clause specifies one or more source tables for the SELECT. If multiple sources are specified, the result is the Cartesian product (cross join) of all the sources. But usually qualification conditions are added to restrict the returned rows to a small subset of the Cartesian product;
· WHERE condition is any expression that evaluates to a result of type boolean. Any row that does not satisfy this condition will be eliminated from the output. A row satisfies the condition if it returns true when the actual row values are substituted for any variable references;
· GROUP BY will condense into a single row all seleted rows that share the same values for the grouped expressions. expression can be an input column name, or the name or ordinal number of an output column (SELECT list item), or an arbitrary expression formed from input-column values. In case of ambiguity, a GROUP BY name will be interpreted as an input-column name rather than an output column name;
· The ORDER BY clause causes the result rows to be sorted according to the specified expressions. If two rows are equal according to the leftmost expression, there are compared according to the next expression and so on.
2. INSERT/UPDATE/DELETE
The INSERT statement inserts into table new row.

The UPDATE statement updates existing rows.

The DELETE statements deletes several rows.
Synopsys:

INSERT INTO table [(column [, ...])]

{ VALUES ({ expression } [, ...]) };

UPADATE [ONLY] table [[AS] alias]

SET { column = { expression | DEFAULT } |

(column [, ...]) = ({ expression | DEFAULT } [, ...]) } [, ...]

[WHERE condition];

DELETE FROM [ONLY] table [[AS] alias]

[WHERE condition]
OUTER JOIN

Outer join is an extended form of the regular or inner join operation. It differs from the inner join in that tuples in one relation having no counterpart in the other appear in, the result with nulls in the other attribute positions, instead of simply being ignored as they normally are. It is not a primitive operation; for example, the following expression could be used to construct the outer join of suppliers and shipments on supplier numbers.
In fig. 3, the top portion shows some sample data values for relation variables S and SP, the middle portion shows the regular inner join. and the bottom portion shows the corresponding outer join. As the figure indicates, the inner join "loses information" for suppliers who supply no parts (supplier S5, in the example), whereas the outer join “preserves” such information; indeed, exactly that distinction is the whole point of outer join.

[image: image3.png]
Figure 3 – Inner vs. outer join (example)
FOREIGN KEY

A foreign key is a set of attributes of some relation variable (relvar) R2 whose values are required to match values of some candidate key of some relvar R1. For example, consider the set of attributes {S} of relvar SP. It should be clear that a given value for {S} can be allowed to appear in relvar SP only if that same value also appears as a value of the sole candidate key, {S} for relvar S. These examples serve to motivate following definition:
Let R2 be a relvar. Then a foreign key in R2 is a set of attributes of R2, say F, so that:
· There exists a relvar R1 (R1 and R2 not necessarily distinct) with a candidate key CK.
· It is possible to rename some subset of the attributes of FK, such that FK becomes FK (say) and FK and CK are of the same (tuple) type.
· For all time, each value of FK in the current value of R2 yields a value for FK that is identical to the value of CK in some tuple in the current value of R1.
Synopsys:
FOREIGN KEY (column [, ...]) REFERENCES reftable [(refcolumn [, ...])] [ON DELETE action] [ON UPDATE action]
Example queries
(1) CREATE TABLE b(b integer NOT NULL, name2 VARCHAR(5),
CONSTRAINT pk_b PRIMARY KEY (b)) WITH OIDS;

(2) CREATE TABLE a(a integer NOT NULL, name VARCHAR(10), b integer,

CONSTRAINT pk_a PRIMARY KEY (a),

CONSTRAINT fk_b FOREIGN KEY (b)

REFERENCES b (b) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION) WITH OIDS;

(3) INSERT INTO b VALUES(1,'aaa');

(4) INSERT INTO b(name2,b) VALUES('bbb',2);

(5) INSERT INTO b VALUES(3);

(6) INSERT INTO a VALUES(1,'AAAAA',1);

(7) INSERT INTO a(b,name,a) VALUES(3,'BBBBB',2);

(8) SELECT * FROM a,b WHERE a.b = b.b ORDER BY name2;

(9) SELECT * FROM a inner join b on a.b = b.b ORDER BY name2 DESC;

(10) SELECT * FROM a left join b on a.b = b.b;

(11) SELECT * FROM a right join b on a.b = b.b;

(12) SELECT * FROM a full join b on a.b = b.b;

(13) DROP TABLE IF EXISTS a,b;
Description:

· Queries numbers 1 and 2 create two tables with fields and constraints;
· Queries with numbers from 3 to 7 inclusively show different ways for adding data into the tables;

· Queries from 8 to 12 can’t be used at one time; there are queries for selecting data from table. Test them and answer the question: Why do queries 8,9,10 show two tuples, while queries number 11 and 12 show three tuples?
· Last query in this script drop tables “a” and “b”.
Exercises
If A = 6, B = 5. C = 4, state the truth values of the following expressions:

a. A = B OR (B > C AND A > 0)
b. A < C OR B < C OR NOT (A = C)
c. NOT (A = B) AND NOT NOT B<>C

d. NOT (A=B OR B>C) AND NOT (C <> A)

e. (A+C+B > 2*B-C+A*8-B*9+C*5-(A+C)*B) OR TRUE
When this predicate has false values: (A > B AND B > C) OR C > A
laboratory operation
Subject: “An introduction to SQL”
Purpose: using SQL statement for creating databases structures and modifies theirs.

Task:

1. Choose your universe of discourse and design objects in your database.

2. Create schema that include tables with theirs fields and without constraints.

3. Create scripts that add data in tables.
4. Create View that demonstrates how works inner join.

5. Create View that demonstrates how works left join.

6. Create View that demonstrates how works right join.

7. Create View that demonstrates how works full join.

ALL VIEWS MUST BE RETURNED DIFFERENT RESULTS

8. Define constrains for tables (ALTER cause).
9. Update part of tuples.

10. Delete other part of tuples.

11. Drop all tables.
References
1. C.J. Date. An Introduction to Database Systems, an 8/E. Addison Wesley, 2003
2. C.J. Date. Instructor’s manual for An Introduction to Database Systems, an 8/E. Addison Wesley, 2003
3. PostgreSQL 8.2.3 Documentation

PAGE
10

