Главная страница
Содержание
 
 
Тема №1.
                                  
                          Арифметические вычисления. Проценты.
        
          1.1 Обыкновенные дроби. Действия над обык
новенными дробя.


1º. Натуральные числа – это числа, употребляемые при счете. Множество всех натуральных чисел обозначают N, т.е. N={1, 2, 3, …}.

Дробью называется число, состоящее из нескольких долей единицы.      Обыкновенной дробью называется число вида , где натуральное число

n показывает, на сколько равных частей разделена единица, а натуральное число m показывает, сколько таких равных частей взято. Числа m и n называют соответственно числителем и знаменателем дроби.

  Если числитель меньше знаменателя, то обыкновенная дробь называется правильной; если числитель равен знаменателю или больше него, то дробь называется неправильной. Число, состоящее из целой и дробной частей, называется смешанным числом.

Например,
  - правильные обыкновенные дроби,

 - неправильные обыкновенные дроби, 

1-смешанное число.

            

    2º. При выполнении действий над обыкновенными дробями следует помнить следующие правила:

1) Основное свойство дроби. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.

Например,  а) ;          б) .

Деление числителя и знаменателя дроби на их общий делитель, отличный от единицы, называется сокращением дроби.

2) Чтобы смешанное число представить в виде неправильной дроби, нужно умножить его целую часть на знаменатель дробной части и к полученному произведению прибавить числитель дробной части, записать полученную сумму числителем дроби, а знаменатель оставить прежним.

Аналогично любое натуральное число можно записать в виде неправильной дроби с любым знаменателем.
Например, а) , так как ;       б)  

                                 и  т.д.

3) Чтобы неправильную дробь записать в виде смешанного числа (т.е. из неправильной дроби выделить целую часть), нужно числитель разделить на знаменатель, частное от деления взять в качестве целой части, остаток  - в качестве числителя, знаменатель оставить прежним.

Например, а) , так как 200 : 7 = 28 (ост. 4);
б) , так как 20 : 5 = 4 (ост. 0).


4) Чтобы привести дроби к наименьшему общему знаменателю, надо найти наименьшее общее кратное (НОК) знаменателей этих дробей (оно и будет их наименьшим общим знаменателем), разделить наименьший общий знаменатель на знаменатели данных дробей (т.е. найти дополнительные множители для дробей), умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

Например, приведем дроби к наименьшему общему знаменателю:

,  ,  ;

;

630  : 18 = 35,  630 : 10 = 63,  630 : 21 = 30.

Значит, ; ;    .

            

5) Правила арифметических действий над обыкновенными дробями:

a) Сложение и вычитание дробей с одинаковыми знаменателями выполняется по правилу:

.

b) Сложение и вычитание дробей с разными знаменателями выполняется по правилу a), предварительно приведя дроби к наименьшему общему знаменателю.

c) При сложении и вычитании смешанных чисел можно обратить их в неправильные дроби, а затем выполнить действия по правилам a) и b),

d) При умножении дробей пользуются правилом:

.

e) Чтобы разделить одну дробь на другую, надо делимое умножить на число, обратное делителю:

.

f) При умножении и делении смешанных чисел, их предварительно переводят в неправильные дроби, а затем пользуются правилами d) и e).

3º. При решении примеров на все действия с дробями следует помнить, что сначала выполняются действия в скобках. Как в скобках, так и вне их сначала выполняют умножение и деление, а затем сложение и вычитание.

Рассмотрим выполнение вышеизложенных правил на примере.

Пример 1. Вычислить: .

1)         ;

2)         ;

3)         ;

4)         ;

5)         .                              Ответ: 3.




Дидактический материал.

Найдите значение выражения:

1) ;            2) ;

3) ;       4) ;

5) ;                 6) ;

7) ;

8) .


Ответы
: