3.2.4. Построение законов управления
План лекции:
1.Две задачи управления.
2.Примеры построения законов управления.
Резюмируя все вышесказанное, можно сформулировать две основные задачи управления:
1. Дать аппроксимацию выходного сигнала к ожидаемому или заданному процессу
(задача слежения) в каждый момент времени
.
2. Обеспечить близость выходного сигнала и желаемому постоянному значению
(задача регулирования).
Тогда естественно ввести в рассмотрение ошибку слежения
(*)
Поставленная задача решена, если
. Пусть объект управления задан дифференциальным уравнением
,
где
- управляющее воздействие;
- возмущенная.
С учетом (*) уравнение принимает вид:
.
Управляющее воздействие является решением уравнения.
,
а ошибка управления совпадает с решением однородного уравнения
при нулевых начальных условиях. Но тогда, очевидно
.
Рассмотрим пример построения законов уравнения.
ПРИМЕР 1. Объект представляет из себя апериодическое звено
,
и требуется осуществить слежение на процессом
.
Тогда
, где
, и, следовательно
,
- управляющее воздействие пропорционально единичному ……….. и учитывает постоянную времени звена
.
ПРИМЕР 2. Требуется сохранить устойчивость для объекта, описывающего колебательное звено
при начальных условиях
,
при наличии возмущения
. Так как в силу начальных условий
, то
,
общая оригинале
дает вид управляющего воздействия.
Вот пример построения управления с помощью обратной связи.
ПРИМЕР 3. Пусть теперь в рассмотренном выше уравнении объекта управления управляющее воздействие имеет вид:
.
Здесь
- есть сигнал обратной связи, вырабатываемый на основе полученных измерений выхода, а второе слагаемое не зависит от
.
Пусть обратная связь линейна
, где
.
Подставляет это в уравнение объекта, получим
.
И, таким образом
Введение обратной связи по выходу и его ………… позволяется изменять характеристический многочлен системы: вместо исходного
получаем
.
Пусть
- произвольный устойчивый многочлен. Тогда при выборе
система с обратной связью окажется устойчивой.
Пусть объект описан уравнением
,
.
Исходный объект не является устойчивым, так как его характеристический многочлен
имеет корни
,
.
Введем обратно связь
.
Тогда выход будет изменяться согласно уравнению
, а характеристическое уравнение системы с обратной связью имеет вид
.
Выберем коэффициент усиления
,
,
так, чтобы все корни многочлена были одинаковы:
,
,
т.е.
.
Уравнением у многочленов коэффициента при одинаковых степенях, предварительно умножив обе части полученных уравнений на
, будем иметь:
;
;
.
Варьируя величину параметра
, можно добиться различных способов сглаживания выхода в зависимости от ненулевых начальных условий.
Контрольные вопросы:
1.В чём состоит задача сложения?
2.В чём состоит задача регулирования?
3.Уравнения для управляющего воздействия и ошибки управления.